Rasterkraftmikroskopie. (atomic force microscopy)

Größe: px
Ab Seite anzeigen:

Download "Rasterkraftmikroskopie. (atomic force microscopy)"

Transkript

1 Rasterkraftmikroskopie (atomic force microscopy)

2 Rasterkraftmikroskopie Einleitung Überblick Die Vorläufertechnologie Rastertunnelmikroskopie Entwicklung der Rasterkraftmikroskopie Aufbau und Funktionsweise Betriebsmodi Anwendungsbeispiele

3 Einleitung 1982 Einführung der Rastertunnelmikroskopie durch Gerd Binning / Heinrich Rohrer (Nobelpreis für Physik 1986) Prinzip: Abrastern einer zu untersuchenden Oberfläche durch eine Sonde Erstellen eines Höhenprofils Meßgröße: Tunnelstrom in Abhängigkeit vom Abstand zur Probe Vorteile gegenüber SEM und TEM: atomare Auflösung erreichbar kein UHV notwendig

4 Die Vorläufertechnologie - Rastertunnelmikroskopie Prinzip: Metallische Spitze wird sehr dicht an elektrisch leitende Oberfläche gebracht Obwohl kein Kontakt besteht, existiert für die Elektronen eine bestimmte Wahrscheinlichkeit, die Potentialbarriere der Isolatorschicht zu überwinden (Tunneleffekt) Messung des Tunnelstromes gibt Information über den Abstand der Sonde zur Oberfläche (Bei Verringerung des Abstandes um 0,1 nm steigt der Tunnelstrom auf das 10fache an) Erreichbare Auflösung: axial: 0,01Å lateral: 1Å

5 Theorie der RTM Quantenmechanik: Elektron wird durch Wellenfunktion Ψ(d) beschrieben, die im Isolator exponentiell abfällt Φ Μ : Austrittsarbeit des Metalls E F : Fermienergie Ψ( d) = Ψ0 exp( κd ) κ = 2m( Φ M EF ) h Tunnelwahrscheinlichkeit: W ( d) = Ψ( d) 2 = Ψ 0 2 exp( 2κd ) Tunnelstrom proportional zur Tunnelwahrscheinlichkeit typische Werte zwischen 1pA und 50 na, Strom wird üblicherweise über Feedback- Schleife konstant gehalten

6 Entwicklung der Rasterkraftmikroskopie aus der RTM Einschränkung der RTM: Nur elektrisch leitfähige Oberflächen können untersucht werden Weiterentwicklung der RTM zur Rasterkraftmikroskopie durch Binning, Quate, Gerber 1985 Gleiches Rasterprinzip, Meßgröße: Kraft zwischen Sonde und Probe Geeignet zur Untersuchung jedes festen und weichen Materials in diversen Umgebungen (Luft, Gase oder Flüssigkeiten) daher sehr gut in Biowissenschaften einsetzbar

7 Rasterkraftmikroskopie Einleitung Aufbau und Funktionsweise Allgemeiner Aufbau Piezoelemente Spitzen und Cantilever Auflösungsvermögen Kräfte zwischen Spitze und Probe Betriebsmodi Anwendungsbeispiele

8 Aufbau und Funktionsweise Funktionsprinzip wie Plattenspieler: Empfindliche Nadel wird über unebene Oberfläche gezogen und tastet Höhenprofil ab Tastspitze an Federbalken ( Cantilever ) angebracht Detektion von Auslenkungen mit Hilfe eines auf die Spitze fokussierten Laserstrahls Reflexion des Strahls auf ein Photodioden - Meßfeld

9 Aufbau und Funktionsweise Zeilenweises Abscannen der xy-ebene mit konstanter Geschwindigkeit Jeder gemessenen Verbiegung des Federbalkens wird ein Helligkeitswert zugeordnet Erzeugung eines Falschfarbenbildes der Probe Spitze darf nicht zu fest auf die Oberfläche drücken: Regulierung der z-bewegung durch Feedback Schleife (präzise Bewegung durch Piezo-Element)

10 Piezoelemente Piezoelektrischer Effekt: Bindeglied zwischen Mechanik und Elektrostatik Deformation eines Kristalls durch eine äußere Kraft führt zu einer Verschiebung der Ladungsschwerpunkte, im Kristallinneren entsteht eine elektrische Polarisation, nach außen hin sind Oberflächenladungen messbar Effekt auch umkehrbar Piezoelektrisches Material (z.b. Quarz SiO 2 ) dehnt sich bei Anlegen einer äußeren Spannung senkrecht zum Feld aus oder zieht sich zusammen (je nach Polarität) Piezoelemente werden zur schnellen, präzisen Bewegung der Probe oder des Cantilevers eingesetzt

11 Spitzen und Cantilever Cantilever meist Balken- oder V-förmig, Spitzen selber pyramidenförmig oder konisch Spitzenradius bis zu 10 nm klein Resonanzfrequenzen von 1kHz bis 500 khz Gebräuchliche Materialien: Si, SiO 2, Si 3 N 4

12 Um die Cantilever-Verbiegung mit der Federkonstanten in Verbindung zu bringen, verwendet man das Hooke`sche Gesetz z= F/k Die Resonanzfrequenz eines Cantilevers ist gegeben durch ω 0 = (k/m) 1/2 Die Empfindlichkeit erhöht sich mit Erniedrigung der Federkonstanten Jedoch: Um die Empfindlichkeit gegenüber Vibrationen zu minimieren und die Scanrate zu optimieren ist eine höhere Federkonstante nötig Zudem wird die Empfindlichkeit von thermischen Schwingungen des Federbalkens beeinflußt dabei gilt ( z) therm = (k B T/k) 1/2 Die Auswahl des Cantilevers ist aus diesen Gründen gut zu überlegen, typische Federkonstanten liegen im Bereich von 0,1 N/m bis 1 N/m

13 Auflösungsvermögen Auflösung des AFM durch Radius der Spitze limitiert Modell: rollende Kugel auf unebener Oberfläche - Erhöhungen werden verstärkt, Vertiefungen abgeschwächt Erreichbare Auflösung hängt sehr stark von den Eigenschaften der Probenoberfläche ab

14 Auflösungsvermögen Unter Umgebungsbedingungen sind die meisten Oberflächen von einem Flüssigkeitsfilm bedeckt Ausbildung eines Meniskus führt zu Vergrößerung des Wechselwirkungsbereiches zwischen Spitze und Probe Bei weichen Proben kann ein Eindringen der Spitze in die Probe die Abbildung beeinflussen Atomare Auflösung bei harten regelmäßigen Proben leichter zu erreichen als bei weichen Proben mit großen Höhenunterschieden

15 Kräfte zwischen Spitze und Probe Beschreibung von Kraft-Abstand Beziehung aufgrund verschiedener wirkender Kräfte sehr komplex Nährungsweise beschrieben durch Lennard-Jones Potential C V ( d) = 1 + d 12 abstoßende Pauli WW für Abstände unter 2Å C d 2 6 für Abstände >2Å überwiegen anziehende Van der Waals WW zwischen Probe und Spitze (induzierte Dipol WW)

16 Interatomare und intermolekulare Kräfte Chemische Kräfte: Kovalente Bindung: Überlapp der Orbitale Ionenbindung: Coulomb Wechselwirkung sehr stark, kurzreichend Elektrostatische Kräfte zwischen geladenen Molekülen langreichende, starke Kräfte Magnetische Kräfte zwischen Molekülen mit magnetischen Momenten langreichend, schwach Oberflächenspannung durch Feuchtigkeit und Adsorbate langreichend, stark Wasserstoffbrückenbindung: H kovalent gebunden an O,F,Cl,N wird polarisiert(+) durch nahegelegenes O,F,Cl,N Van der Waals Kräfte: Dipolkräfte, langreichend, anziehend

17 Rasterkraftmikroskopie Einleitung Aufbau und Funktionsweise Betriebsmodi Kontaktmodus Dynamischer Modus Vor- und Nachteile der Scanmodi Anwendungsbeispiele

18 Der Kontaktmodus ( repulsive mode ) Scannen einer Oberfläche in physical contact Cantilever-Verbiegung generiert ein Topographiebild der Probe 2 grundlegende Möglichkeiten: constant-height mode : Konstanthalten der Höhe des Piezos der den Cantilever trägt geeignet zur Darstellung von kleinen Unebenheiten constant force mode : Konstanthalten der Cantilever-Verbiegung durch Feedback Schleife meist bevorzugter Modus, geeignet für rauhe Proben, jedoch geringere Scangeschwindigkeit

19 Topographie-Bilder durch Detektion der Auf- und Abbewegung des Scanners lateral force imaging : Aufnahme seitlicher Bewegungen, hervorgerufen durch lokale Änderungen der Reibungskräfte bzw. Neigung der Oberfläche lateral force imaging

20 lateral force imaging Die seitlichen Bewegungen der Spitze werden vom Photodetektor registriert Die Bewegungen des reflektierten Laserstrahls stellen die vertikalen Bewegungen des Scanners und die horizontalen Bewegungen der Spitze dar Analyse der Oberflächenbeschaffenheit in Mischstrukturen möglich

21 Der dynamische Modus ( tapping mode ) Cantilever oszilliert normal zur Probe, berührt diese nur kurz ( intermittent contact ) Reduzierung seitlicher Bewegungen, keine Zerstörung der Probe durch permanente Kraftausübung besonders attraktiv für weiche (v.a. biologische) Proben Idealfall: laterale Auflösung 1 nm, Höhenauflösung 0,01 nm Anregung der Schwingung nahe der Resonanzfrequenz des Cantilevers (akustische Anregung des Piezos bzw. magnetische Anregung des Cantilevers )

22 Dynamischer Modus mit Änderung der Resonanzfrequenz durch auf die Spitze wirkende Kräfte Anregungsfrequenz fest, daher Änderung der Amplitude der Cantileverschwingung Anregungsspannung des Piezos bleibt konstant technisch einfach realisierbar Relation zwischen gemessener Amplitude und wirkender Kraft bereits für einfache Wechselwirkungen sehr kompliziert Geeignet für einfache Abbildungen von Oberflächen an Luft Amplitudenmessung

23 Dynamischer Modus mit Anstatt die Amplitude bei fester Frequenz zu messen, wird der Cantilever immer in seiner augenblicklichen Resonanzfrequenz getrieben Amplitude wird über zusätzliche Feedback-Schleife konstant gehalten Regelsignal für z-positionierer: Frequenzverschiebung Identifikation von unterschiedlichen Materialien aufgrund von Frequenzverschiebung Frequenzmessung

24 Einfluss der Spitze-Probe-Kraft auf die Resonanzfrequenz des Federbalkens: Falls sich das Spitze-Probe Potential im Bereich der Balkenschwingung ebenfalls quadratisch mit dem Abstand ändert, wirkt die Kraft als zusätzliche Feder und ändert die Federkonstante des Systems Die neue Resonanzfrequenz ergibt sich zu Für die Frequenzverschiebung ergibt sich

25 phase imaging Phasenverschiebung abhängig von Oberflächeneigenschaften wie Zusammensetzung, Adhäsion, Reibung und viskoeleastischen Eigenschaften Identifikation zweiphasiger Strukturen in Polymermischungen Identifikation von Kontaminationen, die im Höhenbild nicht sichtbar sind Geringere Schädigung weicher Proben als bei lateral fore imaging

26 Vor- und Nachteile der Scanmodi contact mode : Vorteile: Hohe Scangeschwindigkeiten Einziger Modus mit dem atomare Auflösung erreicht werden kann Leichteres Scannen bei extremen Topologieunterschieden Nachteile: Verzerrung der Abbildung durch laterale Kräfte In Luft können durch Kodensation hohe Kapillarkräfte entstehen Kombination von axialen und lateralen Kräften kann zur Reduzierung der Auflösung oder Zerstörung der Probe führen

27 Vor- und Nachteile der Scanmodi tapping mode : Vorteile: Höhere laterale Auflösung bei den meisten Proben Kleinere Kräfte und geringere Schädigung weicher Substanzen Fast keine lateralen Kräfte Nachteile: Deutlich geringere Scangeschwindigkeit als im contact mode

28 Rasterkraftmikroskopie Einleitung Aufbau und Funktionsweise Betriebsmodi Anwendungsbeispiele Oberflächencharakterisierung Kraftspektroskopie Entfaltung von Proteinen am Beispiel Titin Ausblick: Der IBM Millipede

29 Beispiele für Oberflächencharakterisierung mit dem AFM Quelle: Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik (

30 Atomare Auflösung an einer Aufnahme im constant-heightmodus Bestimmung der Abstände der einzelnen Atome möglich a) 3D Darstellung der Graphitoberfläche b) Linienprofil zur Bestimmung des Atomabstandes Graphitprobe

31 Abbildung verschiedener Blutbestandteile Abbildung biologischer Materialien mit dem AFM möglich a) Erythrozyten, Leukozyten, Thrombozyten b) Thrombozyt

32 Abbildung von Alzheimer-Fibrillen Untersuchung von Gehirn- Fibrillen spielt wichtige Rolle bei der Erforschung der Alzheimer-Krankheit Klassische Merkmale sind die sog. Alzheimer-Fibrillen, die sich in der Großhirnrinde und im Hippocampus anhäufen

33 Kraftspektroskopie an Proteinen Mit AFM auch Messung intermolekularer Kräfte möglich Protein wird zwischen Spitze und Probe befestigt Aufnahme einer Kraft-Abstands-Kurve Entfaltung eines Multi-Domain- Proteins führt zu charakteristischer Sägezahnkurve jeder Peak repräsentiert den Abriß einer Proteindomäne

34 Kraftkurven Die Spitze wird bis zum Kontakt (2) angenähert Bindet ein Molekül an die Spitze, wird es beim Zurückziehen gestreckt (3), die am Molekül anliegende Kraft wird als Auslenkung der Feder gemessen Reißt das Molekül ab (4), kehrt der Federbalken in die Ausgangslage (5) zurück

35 Entfaltung von Proteinen am Beispiel Titin Titin: Muskelprotein, dient als passives elastisches Element, schützt Muskel vor Überdehnung Im gestrecken (aber gefalteten) Zustand Länge von mehr als 1µm Aufbau aus Immunoglobulin und Fibronektin Beta-Faltblatt-Domänen Jede Domäne besteht aus ca. 100 Aminosäuren

36 Entfaltung von Proteinen am Beispiel Titin Bei Dehnung entfalten bei ca. 200 pn die einzelnen Beta-Faltblatt-Domänen Der Anstieg der einzelnen Peaks ist ein Maß für die entropisch bedingte Elastizität des entfalteten Proteins Die Längenänderung nach jeder Spitze entspricht genau dem Betrag einer entfalteten Domäne

37 Ausblick: Der IBM Millipede Entwicklung eines Datenspeichers auf der Basis von Rasterkraftmikroskopen Mehr als tausend Sonden sollen gleichzeitig einen Datenspeicher aus Kunststoff beschreiben und auslesen können (Lochkarte im nm-maßstab) Erreichbare Speicherdichte: bis zu 400 GBits/inch 2 (entspricht dem Inhalt von 25 DVD`s auf der Fläche einer Briefmarke!)

38 Ausblick: Der IBM Millipede Durch Aufheizen des Widerstandes im Cantilever schmilzt die Spitze eine Vertiefung in die Polymerschicht Zum Lesen wird der Lesesensor erhitzt, fällt die Spitze in eine Vertiefung, kühlt der Sensor wegen des geringerem Abstandes zum Substrat geringfügig ab, was zu einer messbaren Änderung des Widerstandes führt Durch leicht versetztes Einschmelzen von Vertiefungen sind alte Daten überschreibbar (Nachweis mit mehr als Schreib Überschreib Zyklen erbracht)

Auflösungsvermögen von Mikroskopen

Auflösungsvermögen von Mikroskopen Auflösungsvermögen von Mikroskopen Menschliches Auge Lichtmikroskopie 0.2 µm Optisches Nahfeld Rasterelektronen mikroskopie Transmissions Elektronenmikroskopie Rastersonden mikroskopie 10 mm 1 mm 100 µm

Mehr

RASTER-KRAFT-MIKROSKOPIE (ATOMIC FORCE MICROSCOPY AFM)

RASTER-KRAFT-MIKROSKOPIE (ATOMIC FORCE MICROSCOPY AFM) RASTER-KRAFT-MIKROSKOPIE (ATOMIC FORCE MICROSCOPY AFM) Inhaltsverzeichnis 1. Motivation 2. Entwickler des AFM 3. Aufbau des AFM 3.1 Spitze und Cantilever 3.2 Mechanische Rasterung 3.3 Optische Detektion

Mehr

Rasterkraftmikroskopie

Rasterkraftmikroskopie Rasterkraftmikroskopie Patrick Schömann Technische Universität München 06.05.2014 1 / 34 Übersicht 1 Geschichte der Rastersondenmikroskopie 2 Rastertunnelmikroskop 3 Rasterkraftmikroskop Aufbau Wechselwirkungskräfte

Mehr

Vortrag über die Funktionsweise von Rastertunnel- und Rasterkraftmikroskopen

Vortrag über die Funktionsweise von Rastertunnel- und Rasterkraftmikroskopen Vortrag über die Funktionsweise von Rastertunnel- und Rasterkraftmikroskopen Jens Wächter Universität Hamburg - Fachbereich Informatik Informatikanwendungen in Nanotechnologien : STM und AFM p.1 Historisches

Mehr

Rasterkraftmikroskopie

Rasterkraftmikroskopie Rasterkraftmikroskopie Rasterkraft- und Rastersondenmikroskopie als Werkzeug für nanostrukturierte Festkörper Manfred Smolik, Inst.f. Materialphysik, Univ. Wien Überblick Historischer Abriß Rastersondenmikroskopie

Mehr

Rastersonden-Mikroskopie (SPM)

Rastersonden-Mikroskopie (SPM) Rastersonden-Mikroskopie (SPM) Der Rastersonden-Mikroskopie (SPM) liegt eine geregelte rasternde Bewegung einer spitz zulaufenden Messsonde in unmittelbarer Nähe zur Probenoberfläche zugrunde. Die erhaltenen

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XI

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XI Prof. Dr. F. Koch Dr. H. E. Porteanu fkoch@ph.tum.de porteanu@ph.tum.de WS 4-5 HÖHEE PHYSIK SKIPTUM VOLESUNGBLATT XI 4..5 Molekülphysik Atome binden zu Molekülen und Festkörpern durch interatomare Kräfte

Mehr

Atomic Force Microscopy

Atomic Force Microscopy 1 Gruppe Nummer 103 29.4.2009 Peter Jaschke Gerd Meisl Atomic Force Microscopy Inhaltsverzeichnis 1. Einleitung... 2 2. Theorie... 2 3. Ergebnisse und Fazit... 4 2 1. Einleitung Die Atomic Force Microscopy

Mehr

Zellulose-Synthese. künstlich: enzymatische Polymerisation von Zellobiose-Fluorid

Zellulose-Synthese. künstlich: enzymatische Polymerisation von Zellobiose-Fluorid 18 Zellulose-Synthese künstlich: enzymatische Polymerisation von Zellobiose-Fluorid biologisch: Enzymkomplexe in der Zellmembran (terminal complexes, TCs) sphärulitische Kristalle außen S. Kobayashi et

Mehr

Zeichne 4 stehende Wellen, die auf einer Gitarre entstehen können! Durch welche mathematischen Funktionen lassen sich diese Wellen beschreiben?

Zeichne 4 stehende Wellen, die auf einer Gitarre entstehen können! Durch welche mathematischen Funktionen lassen sich diese Wellen beschreiben? Minitest 8 Zeichne 4 stehende Wellen, die auf einer Gitarre entstehen können! Durch welche mathematischen Funktionen lassen sich diese Wellen beschreiben? TIRF Mikroskopie TIRF Mikroskopie (Total internal

Mehr

Atomic Force Microscope (AFM)

Atomic Force Microscope (AFM) Materials Science & Technology Atomic Force Microscope (AFM) Workshop am 21. Juni 2006 Analytikmöglichkeiten von textilen Materialien und Oberflächen bis in den Nanometerbereich Jörn Lübben Atomare Kraftmikroskopie

Mehr

Sonderforschungsbereich 379

Sonderforschungsbereich 379 Sonderforschungsbereich 379 Mikromechanische Sensor- und Aktorarrays Elektrische Kraftmikroskopie Verfahren und Implementierung mit MEMS Prof. Dr. Michael Hietschold T Chemnitz, Institut für f r Physik

Mehr

Einführung in die Biophysik - Übungsblatt 3 - mit Lösung

Einführung in die Biophysik - Übungsblatt 3 - mit Lösung Einführung in die Biophysik - Übungsblatt 3 - mit Lösung May 21, 2015 Allgemeine Informationen: Die Übung ndet immer montags in Raum H030, Schellingstr. 4, direkt im Anschluss an die Vorlesung statt. Falls

Mehr

Rastertunnelmikroskopie

Rastertunnelmikroskopie Rastertunnelmikroskopie Michael Goerz FU Berlin Fortgeschrittenenpraktikum A WiSe 2006/2007 20. November 2006 Gliederung 1 Einführung Historischer Überblick Konzept, Zielsetzung und Anwendung 2 Aufbau

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke

Mehr

Praktikumsversuch AFM. Institut für Festkörperphysik Abteilung ATMOS

Praktikumsversuch AFM. Institut für Festkörperphysik Abteilung ATMOS Praktikumsversuch AFM Institut für Festkörperphysik Abteilung ATMOS Ansprechpartner E-Mail-Adresse: Philipp Kröger kroeger@fkp.uni-hannover.de Inhaltsverzeichnis 1 Theorie 1 1.1 Betriebsmodi des AFM........................

Mehr

Rastermethoden 1. Klaus Meerholz WS 2010/11. Raster. Reinzoomen

Rastermethoden 1. Klaus Meerholz WS 2010/11. Raster. Reinzoomen Rastermethoden / Bildgebende Verfahren Rastermethoden 1 Klaus Meerholz WS 2010/11 Sequentielle Datenerfassung: Parallele Datenerfassung: Rastern Scannen Abbilden Klaus Meer holz, Raster m ethoden 1 1 Klaus

Mehr

Rasterkraftmikroskopie

Rasterkraftmikroskopie Eine kleine Einführung in die Rasterkraftmikroskopie Ein Vortrag von Daniel C. Manocchio Ridnaun, Jan. 2001 Inhalt: Geschichte der Rastersondenmikroskopie Generelles Funktionsprinzip Topographie-Modi in

Mehr

Oberflächenanalyse mit Rasterkraft- (AFM) und Rastertunnelmikroskop (STM)

Oberflächenanalyse mit Rasterkraft- (AFM) und Rastertunnelmikroskop (STM) Oberflächenanalyse mit Rasterkraft- (AFM) und Rastertunnelmikroskop (STM) Julian Kluge Betreuer: Dr. Michael Jetter Date: 27.04.2016 July 8, 2016 Contents 1 Einführung 2 2 Geschichte 2 3 Rastertunnelmikroskop

Mehr

Kai Ruschmeier (Autor) Aufbau eines 300mK-10T-UHV-Kryostatsystems für die Rasterkraftmikroskopie und Analyse der Kraftsensortemperatur

Kai Ruschmeier (Autor) Aufbau eines 300mK-10T-UHV-Kryostatsystems für die Rasterkraftmikroskopie und Analyse der Kraftsensortemperatur Kai Ruschmeier (Autor) Aufbau eines 300mK-10T-UHV-Kryostatsystems für die Rasterkraftmikroskopie und Analyse der Kraftsensortemperatur https://cuvillier.de/de/shop/publications/6742 Copyright: Cuvillier

Mehr

Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I

Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Der Tunneleffekt Jan Lukas Becker Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Übersicht 1) Herleitung des Tunneleffekts 2) Der Tunneleffekt in Metallen 3) Einzel-Elektronen-Tunneln

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Versuch 6: Raster-Tunnel-Mikroskop (RTM)

Versuch 6: Raster-Tunnel-Mikroskop (RTM) Versuch 6: Raster-Tunnel-Mikroskop (RTM) Von Patrick Fritzsch und Thomas Bauer Versuchstag: 13.5.2002 Versuchsassistent: Hüve 1. Einleitung In diesem Versuch werden Aufnahmen von einer Graphit- und einer

Mehr

Vorlesung. Rastersondenmikroskopie WS 2010/11. Themenüberblick. Warum ist Nanotechnologie so interessant? Einzelne Atome bewegen Eine Vision in 1959

Vorlesung. Rastersondenmikroskopie WS 2010/11. Themenüberblick. Warum ist Nanotechnologie so interessant? Einzelne Atome bewegen Eine Vision in 1959 Vorlesung Rastersondenmikroskopie WS 2010/11 Priv. Doz. Dr. A. Schirmeisen www.centech.de/nanomechanics Themenüberblick 0. Einführung 1. Rastertunnelmikroskopie (STM) 2. Manipulation: Atome verschieben

Mehr

A. Erhaltungsgrößen (17 Punkte) Name: Vorname: Matr. Nr.: Studiengang: ET Diplom ET Bachelor TI WI. Platz Nr.: Tutor:

A. Erhaltungsgrößen (17 Punkte) Name: Vorname: Matr. Nr.: Studiengang: ET Diplom ET Bachelor TI WI. Platz Nr.: Tutor: Prof. Dr. O. Dopfer Prof. Dr. A. Hese Priv. Doz. Dr. S. Kröger Cand.-Phys. A. Kochan Technische Universität Berlin A. Erhaltungsgrößen (17 Punkte) 1. Unter welcher Bedingung bleiben a) der Impuls b) der

Mehr

Dynamik. 4.Vorlesung EPI

Dynamik. 4.Vorlesung EPI 4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip

Mehr

Das Rastertunnelmikroskop

Das Rastertunnelmikroskop Das Rastertunnelmikroskop 1 engl.: scanning tunneling microscope (kurz: STM) Nobelpreis für Physik 1986 Heinrich Rohrer Gerd Binnig Grundlagen STM 2 Das 1981 entwickelte Rastertunnelmikroskop (kurz: RTM)

Mehr

Rastersondenmikroskopie an molekularen Nanostrukturen

Rastersondenmikroskopie an molekularen Nanostrukturen Rastersondenmikroskopie an molekularen Nanostrukturen Michael Mannsberger, Institut für Materialphysik Rastersondenmikroskopische Methoden, die atomare Auflösung erlauben Vortrag 1: Dynamische Rasterkraftmikroskopie

Mehr

1 Atomic Force Microscopy (AFM) 1.1 Theoretische Grundlagen Mit AFM können, im Gegensatz zu z.b. STM, sowohl leitende als auch nicht leitende Material

1 Atomic Force Microscopy (AFM) 1.1 Theoretische Grundlagen Mit AFM können, im Gegensatz zu z.b. STM, sowohl leitende als auch nicht leitende Material Atomic Force Microscopy (AFM) Martin Trefzer 9. November 2000 Inhaltsverzeichnis 1 Atomic Force Microscopy (AFM) 2 1.1 Theoretische Grundlagen...................... 2 1.1.1 Contact AFM.........................

Mehr

Klausur. Physik für Pharmazeuten (PPh) SS Juli 2006

Klausur. Physik für Pharmazeuten (PPh) SS Juli 2006 Klausur Physik für Pharmazeuten (PPh) SS06 31. Juli 2006 Name: Matrikel-Nr.: Fachrichtung: Semester: Bearbeitungszeit: 90 min. Bitte nicht mit Bleistift schreiben! Nur Ergebnisse auf den Aufgabenblättern

Mehr

Replication of Single Macromolecules with Graphene

Replication of Single Macromolecules with Graphene N. Severin, M. Dorn, A. Kalachev, J. P. Rabe Replication of Single Macromolecules with Graphene Referent: Christian Niederauer Aufbau Einführung in die Technik Probenvorbereitung und Messtechnik Messungen

Mehr

Physikalisches Fortgeschrittenenpraktikum Rastertunnelmikroskop. Vorbereitung. 1 Theoretische Grundlagen. 1.1 Bändermodell

Physikalisches Fortgeschrittenenpraktikum Rastertunnelmikroskop. Vorbereitung. 1 Theoretische Grundlagen. 1.1 Bändermodell Physikalisches Fortgeschrittenenpraktikum Rastertunnelmikroskop Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen 1.1 Bändermodell Das Bändermodell ist ein quantenmechanisches Modell

Mehr

Biologie für Mediziner

Biologie für Mediziner Biologie für Mediziner Cytologische Technik Dipl.-Phys. Sebastian Tacke Institut für Medizinische Physik und Biophysik Arbeitsgruppe Prof. Dr. Reichelt Sommersemester 2010 Inhaltsangabe 1 Allgemeine Grundlagen

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Transiente Ultraschallfelder an Festkörperoberflächen - Wellenphysikalische Grundlagen einer neuen Ultraschall- Nahfeldmikroskopie

Transiente Ultraschallfelder an Festkörperoberflächen - Wellenphysikalische Grundlagen einer neuen Ultraschall- Nahfeldmikroskopie DGZfP-Jahrestagung 2013 Mo.2.B.2 Transiente Ultraschallfelder an - Wellenphysikalische Grundlagen einer neuen Ultraschall- Nahfeldmikroskopie Frank SCHUBERT*, Martin BARTH*, Bernd KÖHLER* * Fraunhofer-Institut

Mehr

Rasterkraftmikroskopie - AFM

Rasterkraftmikroskopie - AFM Versuchsprotokoll Fortgeschrittenenpraktikum Physikalische Chemie SS 11 Rasterkraftmikroskopie - AFM Assistent: Hannah Mangold Versuchsdurchführung: 05.05.2011 Protokollabgabe: 18.05.2011 Gruppe A8 Carmen

Mehr

Verfahren der Mikrosystemtechnik zur Herstellung/Charakterisierung von Chemo- und Biosensoren

Verfahren der Mikrosystemtechnik zur Herstellung/Charakterisierung von Chemo- und Biosensoren Verfahren der Mikrosystemtechnik zur Herstellung/Charakterisierung von Chemo- und Biosensoren Teil 8: Analysemethoden zur Charakterisierung der Mikrosysteme II Dr. rer. nat. Maryam Weil Fachhochschule

Mehr

Ultraschallsensoren von Alexandra Bauer

Ultraschallsensoren von Alexandra Bauer Ultraschallsensoren von Alexandra Bauer - 1 - Inhaltsverzeichnis 1. Funktionsweise von Ultraschallsensoren 1.1. Definition von Ultraschallsensoren S. 3 1.2. Probleme die mit beim Arbeiten mit S. 4 US Sensoren

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Tabelle: Kristalle - Übesicht und Klassifikation

Tabelle: Kristalle - Übesicht und Klassifikation Tabelle: Kristalle - Übesicht und Klassifikation Kristall- / Bindungstypen A-A Beispiele A-B Wechselwirkung (attraktive Terme) attraktives Potential E bin (ev) R 0 (Å) T schm (K) 1) Edelgaskristall, Molekülkristall

Mehr

Optimierung der Analytik nanostrukturierter Schichten

Optimierung der Analytik nanostrukturierter Schichten Abschließende Ergebnisse im Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie 3rd International Congress Next Generation Solar Energy Meets Nanotechnology 23-25 November 2016, Erlangen

Mehr

Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren

Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren Methoden Spektroskopische Verfahren Mikroskopische Verfahren Streuverfahren Kalorimetrische Verfahren Literatur D. Haarer, H.W. Spiess (Hrsg.): Spektroskopie amorpher und kristalliner Festkörper Steinkopf

Mehr

2.3 Intermolekulare Anziehungskräfte und Molekülkristalle

2.3 Intermolekulare Anziehungskräfte und Molekülkristalle 2.3 Intermolekulare Anziehungskräfte und Molekülkristalle Kinetische Energie der Moleküle / Aggregatzustand Bau und Struktur der Moleküle Intermolekulare Anziehungskräfte Kräfte zwischen Molekülen Van-der-Waals-Kräfte

Mehr

Kräfte. Florian Bansemer Nanostrukturphysik I Universität des Saarlandes

Kräfte. Florian Bansemer Nanostrukturphysik I Universität des Saarlandes Kräfte Florian Bansemer Nanostrukturphysik I Universität des Saarlandes 29.01.2013 Übersicht 1. Grundlagen und Begrifflichkeiten 2. Reichweite und Hierarchie 3. Van der Waals-Kräfte i. Quantenfeldtheoretische

Mehr

Geburtsdatum: BG/BRG Biondekgasse, Baden

Geburtsdatum: BG/BRG Biondekgasse, Baden NACHNAME, Vorname: LAIMER Tamina Geburtsdatum: 03.02.1991 Schule: BG/BRG Biondekgasse, Baden Schulstufe: 10. Schulstufe TITEL des Innovationspraktikums: Atomic Force Microscopy Of The Interaction Of Functionalyzed

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr

2. Elektrostatik und Ströme

2. Elektrostatik und Ströme 2. Elektrostatik und Ströme 2.1. elektrische Ladung, ionische Lösungen Wir haben letztes Semester angeschnitten, dass die meisten Wechselwirkungen elektrischer Natur sind. Jetzt wollen wir elektrische

Mehr

Physikalisches Fortgeschrittenenpraktikum Rastertunnelmikroskop. Auswertung. 1 Präparation einer Tunnelspitze. 2 Untersuchung der Goldprobe

Physikalisches Fortgeschrittenenpraktikum Rastertunnelmikroskop. Auswertung. 1 Präparation einer Tunnelspitze. 2 Untersuchung der Goldprobe Physikalisches Fortgeschrittenenpraktikum Rastertunnelmikroskop Auswertung Armin Burgmeier Robert Schittny Präparation einer Tunnelspitze Da noch eine gute funktionierende Spitze im Mikroskop eingebaut

Mehr

Methoden der Oberflächenphysik: Struktur. Rastertunnelmikroskopie und Rasterkraftmikroskopie. SS 09 Oberflächenphysik

Methoden der Oberflächenphysik: Struktur. Rastertunnelmikroskopie und Rasterkraftmikroskopie. SS 09 Oberflächenphysik Methoden der Oberflächenphysik: Struktur Rastertunnelmikroskopie und Rasterkraftmikroskopie Gliederung Kleine Geschichte der Mikroskopie Prinzip der Rastertunnelmikroskopie (RTM) - Quantenmechanische Grundlage

Mehr

2 Grundlagen der Rasterkraftmikroskopie

2 Grundlagen der Rasterkraftmikroskopie 7 1 Einleitung Mit der Entwicklung des Rastertunnelmikroskops im Jahr 1982 durch Binnig und Rohrer [1], die 1986 mit dem Physik-Nobelpreis ausgezeichnet wurde, wurde eine neue Klasse von Mikroskopen zur

Mehr

Brücke zwischen der modernen physikalischen Forschung und dem Unternehmertum im Bereich Nanotechnologie. Quantenphysik

Brücke zwischen der modernen physikalischen Forschung und dem Unternehmertum im Bereich Nanotechnologie. Quantenphysik Brücke zwischen der modernen physikalischen Forschung und dem Unternehmertum im Bereich Nanotechnologie Quantenphysik Die Physik der sehr kleinen Teilchen mit grossartigen Anwendungsmöglichkeiten Teil

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft, Coulombkraft,

Mehr

Übungsaufgaben zur E1 / E1p Mechanik, WS 2016/17. Prof. J. O. Rädler, PD. B. Nickel Fakultät für Physik, Ludwig-Maximilians-Universität, München

Übungsaufgaben zur E1 / E1p Mechanik, WS 2016/17. Prof. J. O. Rädler, PD. B. Nickel Fakultät für Physik, Ludwig-Maximilians-Universität, München Übungsaufgaben zur E1 / E1p Mechanik, WS 2016/17 Prof. J. O. Rädler, PD. B. Nickel Fakultät für Physik, Ludwig-Maximilians-Universität, München Blatt 11: Gekoppelter Oszillator, Hydrostatik & Gase Ausgabe:

Mehr

2 Coulomb-Kraft Elektrisches Potential... 9

2 Coulomb-Kraft Elektrisches Potential... 9 Inhaltsverzeichnis I Strukturprinzipien 7 1 Konservative Kraft / Potential 7 2 Coulomb-Kraft 8 2.1 Elektrisches Potential....................... 9 3 Abstoßendes Potential 10 4 Bindungsarten 10 4.1 Ionische

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Klassische Theorie der Lichtausbreitung

HANDOUT. Vorlesung: Glasanwendungen. Klassische Theorie der Lichtausbreitung Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Klassische Theorie der Lichtausbreitung Leitsatz: 27.04.2017 In diesem Abschnitt befassen

Mehr

Ein Idealer Generator - Variante

Ein Idealer Generator - Variante Ein Idealer Generator - Variante Dein Freund Luis möchte bei einem schulischen Wettbewerb mit folgender genialer antreten: Er hat einen Wechselspannungsgenerator entworfen, der, einmal angeworfen, für

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atomphysik Dr. Holger Hauptmann Europa-Gymnasium Wörth holger.hauptmann@gmx.de Quantenphysik in der Sek I, Folie 1 Inhalt 1. Der Aufbau der Atome 2. Größe und Dichte

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Probeklausur 1 - Einführung in die Physik - WS 2014/ C. Strassert

Probeklausur 1 - Einführung in die Physik - WS 2014/ C. Strassert Probeklausur - Einführung in die Physik - WS 04/05 - C. Strassert Erdbeschleunigung g= 9.8 m/s ; sin0 = cos 60 = 0.5; sin 60 = cos 0 = 0.866;. 4 ) Ein Turmspringer lässt sich von einem 5 m hohen Sprungturm

Mehr

2. Bildgebende Verfahren

2. Bildgebende Verfahren Vorlesung Charakterisierung von Halbleitermaterialien I Elektronenmikroskopie (Raster-, Transmissionselektronenmikroskop) (Rasterkraft-, Rastertunnel-, Rasterkapazitätsmikroskop) Lichtoptische Verfahren

Mehr

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche

Mehr

AFM Atomic-Force-Microscope K. Harnisch, R. Schenk

AFM Atomic-Force-Microscope K. Harnisch, R. Schenk AFM Atomic-Force-Microscope K. Harnisch, R. Schenk 1 Gliederung I. Einleitung I.Aufbau II.Messeinrichtung III.Cantilever IV.Spitzen I.Modi und deren Anwendung I.Contact-Modus II.Tapping-Modus III.Peak-Force-Tapping/

Mehr

Klausur Physik für Chemiker

Klausur Physik für Chemiker Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Winter Semester 2018 Prof. Dr. Mario Agio Klausur Physik für Chemiker Datum: 18.3.2019-10 Uhr Name: Matrikelnummer: Einleitung

Mehr

Versuch 42: Rastertunnelmikroskop

Versuch 42: Rastertunnelmikroskop Fortgeschrittenen Praktikum, Studiengang Physik, Universität Erlangen Versuch 42: Rastertunnelmikroskop Prof. Dr. Alexander Schneider Lehrstuhl für Festkörperphysik Universität Erlangen alexander.schneider@physik.uni-erlangen.de

Mehr

Atomic Force Microscopy: Grundlagen Methoden - Anwendung

Atomic Force Microscopy: Grundlagen Methoden - Anwendung AFM - Inhalt Grundlagen Grundprinzip Komponenten Spitzenwahl Methoden Contact-mode Tapping-mode Spezielle Modi Artefakte Beispielhafte Anwendung Langmuir-Blodgett Schichten Verwendungshinweis: Die verwendeten

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Schwingungen.

Spektroskopie. im IR- und UV/VIS-Bereich. Schwingungen. Spektroskopie im IR- und UV/VIS-Bereich Schwingungen Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Resonanzschwingungen http://www.youtube.com/watch?v=eaxva XWZ8 Resonanzschwingungen

Mehr

Aufgabe 1 ( 3 Punkte)

Aufgabe 1 ( 3 Punkte) Elektromagnetische Felder und Wellen: Klausur 2016-2 1 Aufgabe 1 ( 3 Punkte) Welche elektrische Feldstärke benötigt man, um ein Elektron (Masse m e, Ladung q = e) im Schwerefeld der Erde schweben zu lassen?

Mehr

18. Vorlesung III. Elektrizität und Magnetismus

18. Vorlesung III. Elektrizität und Magnetismus 18. Vorlesung III. Elektrizität und Magnetismus 17. Elektrostatik Zusammenfassung Nachtrag zur Influenz: Faraday-Käfig 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen; elektrische Stromkreise)

Mehr

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG Schülerlabor Science meets School Werkstoffe & Technologien in Freiberg Versuch: (Sekundarstufe I) Moduli: Physikalische Eigenschaften 1 Versuchsziel Die Messung

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

6.2.2 Mikrowellen. M.Brennscheidt

6.2.2 Mikrowellen. M.Brennscheidt 6.2.2 Mikrowellen Im vorangegangen Kapitel wurde die Erzeugung von elektromagnetischen Wellen, wie sie im Rundfunk verwendet werden, mit Hilfe eines Hertzschen Dipols erklärt. Da Radiowellen eine relativ

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 05.

Mehr

Festkorperspektroskopie

Festkorperspektroskopie Hans Kuzmany Festkorperspektroskopie Eine Einführung Mit 222 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong 1. Einleitung 1 2. Grundlagen der Festkörperphysik 4 2.1

Mehr

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16.

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 16 MICHAEL FEINDT & THOMAS KUH INSTITUT FÜ EXPEIMENTELLE KENPHYSIK Kernkraft KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2008-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Mechanische Eigenschaften von Polymeren auf mikroskopischer Skala. Von der Härtemessung bis zur quantitativen Rasterkraftmikroskopie

Mechanische Eigenschaften von Polymeren auf mikroskopischer Skala. Von der Härtemessung bis zur quantitativen Rasterkraftmikroskopie Mechanische Eigenschaften von Polymeren auf mikroskopischer Skala Von der Härtemessung bis zur quantitativen Rasterkraftmikroskopie Auf einen Blick Umfangreiches Portfolio in den Bereichen Standortleistungen,

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

STM Abbildung von Eiseninseln auf einer Kupferoberäche bei niederen Temperaturen

STM Abbildung von Eiseninseln auf einer Kupferoberäche bei niederen Temperaturen STM Abbildung von Eiseninseln auf einer Kupferoberäche bei niederen Temperaturen Christoph Gammer Andreas Grill 1 Einleitung Bei der STM (Scanning Tunneling Microscopy / Rastertunnelmikroskopie) wird eine

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.1 Gravitation 4.1 Gravitation 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft,

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 05.12.2014 Wiederholung Teil 1 (28.11.2014) Fragenstellungen: Druckanstieg im Reaktor bei Temeraturerhöhung und Produktbildung? Wie groß

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 22.Februar 2006, 9:00-11:00 Uhr für die Studiengänge Mb, Inft, Ciw, E+R/Bach. (bitte deutlich

Mehr

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie Vorkurs Allgemeine Chemie für Ingenieure und Biologen 20. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie DIE CHEMISCHE BINDUNG Ionische Bindung, Beispiel Natriumchlorid Trifft

Mehr

Werkstoffe Praktikum Softlithografie und Rasterkraftmikroskopie

Werkstoffe Praktikum Softlithografie und Rasterkraftmikroskopie Werkstoffe Praktikum Softlithografie und Rasterkraftmikroskopie Autor: Lukas Bischoff lukas-bischoff@student.ethz.ch Versuchsteilnehmer: Lukas Bischoff, Lorenz Germann Adrian Jenni, Dimitri Kokkinis 15.05.2007

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 2

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 2 1 .1.5 Experimentelle Aspekte von Kräften Bisher behandelt: - Gravitationskraft - Rückstellkraft einer Feder - Lorentzkraft: elektrisches und magnetisches Feld - Reibungskräfte - Scheinkräfte Gravitationskonstante

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 11. Vorlesung, 4.7. 2013 Para-, Dia- und Ferromagnetismus Isingmodell, Curietemperatur,

Mehr

5.3 Weitere Wechselwirkung mit Photonen: Spektroskopie

5.3 Weitere Wechselwirkung mit Photonen: Spektroskopie Dünnschichtanalytik Teil 2 5.3 Weitere Wechselwirkung mit Photonen: Spektroskopie [Schmidl] 1 5.3.1 Wechselwirkungen mit Photonen A - Elastische Wechselwirkung: - sekundäre Strahlung - Beugungsexperimente

Mehr

30. Lektion. Moleküle. Molekülbindung

30. Lektion. Moleküle. Molekülbindung 30. Lektion Moleküle Molekülbindung Lernziel: Moleküle entstehen aus Atomen falls ihre Wellenfunktionen sich derart überlappen, daß die Gesamtenergie abgesenkt wird. Begriffe Begriffe: Kovalente Bindung

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Physik I TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1

Physik I TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1 Physik I TU Dortmund SS18 Götz Uhrig Shaukat Khan Kapitel 1 Kugelkondensator Radien a (innen) und b (außen), Ladung ±. In der inneren Hohlkugel ist das E-Feld null (wie in jeder Hohlkugel, s. oben), außerhalb

Mehr

Zusammenfassung v13 vom 20. Juni 2013

Zusammenfassung v13 vom 20. Juni 2013 Zusammenfassung v13 vom 20. Juni 2013 Magnetfeldberechnungen Gerader Leiter im Abstand r: B = µ 0 I/(2 r) (57) Auf der Achse einer Leiterschleife mit Radius R im Abstand x von der Mitte der Schleife: B

Mehr