Mathematik für Biologen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik für Biologen"

Transkript

1 Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011

2 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen Mendelsche Erbregeln als Beispiel für mehr als zwei Ausprägungen Test auf Übereinstimmung zweier Verteilungen Kleine Stichprobenumfänge Große Stichprobenumfänge Chi-Quadrat-Verteilung Der Chi-Quadrat-Test zum

3 Ordinalskalierte Daten Beispiel: Tomaten sind delikat, schmackhaft, genießbar oder ekelhaft. Zahlenkodierung delikat schmackhaft genießbar ekelhaft Es handelt sich um ein diskretes quantitatives Merkmal. Je 12 Tester beurteilen die Qualität von zwei Tomatensorten, um herauszubekommen, ob die Neuzüchtung besser schmeckt. Wir machen einen U-Test. Da nur vier Werte möglich sind, sind Bindungen unvermeidlich.

4 U-Test: Wiederholung R 1 sei die Summe sämtlicher Ränge in der ersten Gruppe und R 2 sei die Summe sämtlicher Ränge in der zweiten Gruppe Die Zufallsvariable U wird definiert als U = n 1 n 2 + n 1 (n 1 + 1) R 1 2 U gibt die Anzahl der Rangplatzüberschreitungen an r 1, r 2, u sind die Realisierungen Die Teststatistik ist t = u µ σ wobei µ = n 1 n 2 2 n1 n 2 (n 1 + n 2 + 1) σ = 12

5 U-Test, Fortsetzung Das Signifikanzniveau sei α Entscheidung: H 0 = {µ 1 = µ 2 }: Die Nullhypothese H 0 wird abgelehnt, wenn t > q 1 α/2 H 0 = {µ 1 µ 2 }: Die Nullhypothese H 0 wird abgelehnt, wenn t < q 1 α H 0 = {µ 1 µ 2 }: Die Nullhypothese H 0 wird abgelehnt, wenn t > q 1 α

6 U-Test mit Bindungen Wenn mehrere Werte den gleichen Rang aufweisen, spricht man von Bindungen Dann wird jedem Messwert als Rangplatz das arithmetische Mittel der fortlaufend vergebenen Rangplätze zugewiesen und σ muss durch die korrigierte Größe σ korr = ersetzt werden Dabei n 1 n 2 12n (n 1) ( n 3 n K ) (tk 3 t k) k=1 n = n 1 + n 2 K = Anzahl der Messwertgruppen mit gleichen Werten t k = Anzahl der Bindungen in der k-ten Gruppe

7 Beispieldaten Bewertung der Tomaten Sorte A Sorte B Urteil Anzahl Anzahl delikat 2 1 schmackhaft 3 7 genießbar 6 4 ekelig 1 0 Kann man zum Signifikanzniveau α = 0.05 sagen, dass Sorte B bessere Bewertungen bekommt als Sorte A?

8 Beispiel, Fortsetzung Sorte A Sorte B Urteil Rang gemittelt Urteil Rang gemittelt Rangsumme r 1 : Rangsumme r 2 : 135.5

9 Beispiel, Fortsetzung Damit kann man u ausrechnen u = n 1 n 2 + n 1 (n 1 + 1) 2 µ = n 1 n 2 = 72 2 K = 3 r 1 = 57.5 Die Bindungszahlen sind t 1 = 3 t 2 = 10 t 3 = 10

10 Beispiel, Fortsetzung Berechnung des korrigierten σ σ korr = = ( n 3 n n 1 n 2 (t 12 n (n 1) k 3 t k) k= ( ( )) Das unkorrigierte σ ist 300 = Damit K t = u µ = = σ korr ) = = Das Quantil ist q 0.95 = Daher kann die Nullhypothese nicht abgelehnt werden

11 Test für ein Merkmal mit nur zwei Ausprägungen Beispielaufgabe: An der HHU sind 60.6% der Studierenden weiblich. Im Fach Biologie sind 530 von 906 Studierenden weiblich. Das sind 58.5%. Ist der Unterschied beim Anteil weiblicher Studierender signifikant? Für solche Fragestellungen verwendet man einen Chi-Quadrat-Anpassungstest. Diese Tests dienen zur Überprüfung der Gleichheit zweier Verteilungen. Die Beispielaufgabe ist aber untypisch einfach; wir können sie als Binomialtest mit Normalapproximation rechnen.

12 Beispielaufgabe Die Zufallsvariable X ist B 906, p -verteilt mit unbekanntem p Die Nullhypothese ist H 0 = {p = p 0 } für p 0 = Wir machen einen zweiseitigen Binomialtest zum Signifikanzniveau α = 0.05

13 Beispiel, Fortsetzung Der kritischen Wert c 1 und c 2 sind so zu wählen, dass c 1 1 ( n k k=0 c 1 ( n k k=0 c 2 ( n k k=0 c 2 1 k=0 ) p k 0 (1 p 0 ) n k α 2 ) p k 0 (1 p 0 ) n k > α 2 ) p k 0 (1 p 0 ) n k 1 α 2 ( ) n p0 k (1 p k 0 ) n k < 1 α 2

14 Beispiel, Fortsetzung Wir approximieren die erste und die dritte Formel mit der Normalapproximation ( P(X b) = b Φ n p ) 0 n p0 (1 p 0 ) Hier n p 0 = = und n p 0 (1 p 0 ) = 216.3

15 Beispiel, Fortsetzung Also löst c 1 die Gleichung ( ) c / Φ = α Die Gleichung ist äquivalent zu ( ) c Φ = q ist das Quantil der Standardnormalverteilung c = q = q = Daher c 1 = = Gerundet c 1 = 521

16 Beispiel, Fortsetzung Der kritische Bereich ist { 906 K 1 = (x 1,..., x 906 ) x j < c 1 oder j=1 906 } x j > c 2 j=1 c 1 = 521 und c 2 ist auf jeden Fall größer als Bei 906 j=1 x j = 530 kann die Nullhypothese nicht abgelehnt werden Der Frauenanteil in der Biologie entspricht dem Durchschnitt über alle Studierenden der HHU

17 Mendelsche Erbregeln Bei den Mendelschen Erbversuchen tritt das Merkmal Blütenfarbe in drei Ausprägungen auf, nämlich weiß, rosa und rot weiß und rot haben dieselbe Wahrscheinlichkeit, rosa die doppelte 4 Blüten werden beobachtet, alle sind rosa Widerspricht diese Beobachtung den Mendelschen Regeln?

18 Interpretation als Modellannahme: Die Mendelschen Regeln gelten für die untersuchte Situation Das entspricht der Verteilung Nummer Ausprägung Wahrscheinlichkeit 1 weiß 25% 2 rosa 50% 3 rot 25% Zu vergleichen mit der tatsächlichen Verteilung der Blütenfarben in dem Kollektiv Der Stichprobenumfang ist 4 Das ist für praktische Zwecke zu wenig

19 Mendelsche Erbregeln, Fortsetzung Strategie: Ordne die möglichen Ergebnisse mit aufsteigender Wahrscheinlichkeit an Der kritische Bereich besteht dann aus den unwahrscheinlichsten Ergebnissen Dabei werden aus der Liste die obersten Ereignisse genommen, bis die erlaubte Fehlerwahrscheinlichkeit erster Art ausgeschöpft ist

20 Test auf Übereinstimmung zweier Verteilungen Unabhängige Zufallsvariable X 1,..., X n, die alle mit Wahrscheinlichkeit p 1 den Wert w 1, mit Wahrscheinlichkeit p 2 den Wert w 2,..., mit Wahrscheinlichkeit p s den Wert w s annehmen Vergleichswahrscheinlichkeiten π 1, π 2,..., π s mit π 1 + π π s = 1 Nullhypothese und Alternative: H 0 : p 1 = π 1, p 2 = π 2,..., p s = π s H 1 : mindestens ein p j π j

21 Test auf Übereinstimmung zweier Verteilungen: Summenvariable Summenvariable Y 1 = Anzahl aller X j mit X j = w 1 Y 2 = Anzahl aller X j mit X j = w 2. Y s = Anzahl aller X j mit X j = w s Erwartungswerte unter H 0 E(Y 1 ) = n π 1 E(Y 2 ) = n π 2. E(Y s ) = n π s

22 Test auf Übereinstimmung für kleine Stichproben Bestimme für jede mögliche Kombination von Werten von Y 1,..., Y s deren Wahrscheinlichkeit Ordne diese Wahrscheinlichkeiten aufsteigend in einer Liste Der kritische Bereich besteht aus den obersten Zeilen dieser Liste Man nimmt genau so viele Zeilen, dass die erlaubte Fehlerwahrscheinlichkeit erster Art nicht überschritten, aber möglichst gut ausgeschöpft wird

23 Beispiel Mendel: Formalisierung s = 3 X 1 ist die (der Zahlencode der) Blütenfarbe der ersten Blüte, X 2 dasselbe für die zweite Blüte,... Y 1 bezeichnet die Anzahl der weißen, Y 2 die der rosafarbenen und Y 3 die der roten Blüten Dann Y 1 + Y 2 + Y 3 = 4 Im Beispiel Y 1 = 0, Y 2 = 4, Y 3 = 0 Rechne sämtliche Einzelwahrscheinlichkeiten aus

24 Beispiel Mendel: Wahrscheinlichkeiten der Einzelereignisse P(Y 1 = k 1,Y 2 = k 2, Y 3 = k 3 ) ( ) ( ) ( ) 4 4 k1 1 k1 ( ) 1 k2 ( 1 = k 1 k ( ) 4! (4 k 1 )! 1 k1 = k 1! (4 k 1 )! (4 k 1 k 2 )! 4 ( ) 4! 1 k1 ( ) 1 k2 ( ) 1 k3 = k 1! k 2! k 3! ) k3 ( ) 1 k2 2 ( ) 1 k3 4

25 Beispiel Mendel: Tabelle der W keiten der Einzelereignisse k 1 k 2 k 3 P(X 1 = k 1, X 2 = k 2, X 3 = k 3 ) kumulierte Summe

26 Beispiel Mendel: Balkendiagramm 100% 80% 60% (1,2,1) (0,3,1), (1,3,0) (0,2,2), (2,2,0), (1,1,2), (2,1,1) (0,4,0) (0,1,3), (3,1,0) (2,0,2) (1,0,3), (3,0,1) (4,0,0), (0,0,4) 40% 20% 0% Der linke Balken zeigt die kumulierten Werte aus der Tabelle, der rechte die 5%-Schwelle

27 Beispiel Mendel: Ergebnis In den folgenden Fällen kann die Nullhypothese zum Signifikanzniveau α = 0.05 abgelehnt werden 4 weiße oder 4 rote Blüten keine rosa, aber 3 weiße oder 3 rote Blüten Der p-wert des beobachteten Ereignisses 4 rosa Blüten beträgt 18.75%

28 Große Stichprobenumfänge Für große Stichprobenumfänge ist der soeben besprochene Test unpraktikabel Ziel: Zur Realisierung eine Teststatistik berechnen und dann mit einem passenden Quantil vergleichen

29 Teststatistik des Chi-Quadrat-Tests, Fortsetzung Die Teststatistik misst die Abweichung der Realisierungen y 1, y 2,..., y s von den Erwartungswerten t = s (y j n π j ) 2 j=1 n π j Große Werte von t sprechen gegen H 0

30 Teststatistik für Beispiel Mendel k 1 k 2 k 3 P(X 1 = k 1, X 2 = k 2, X 3 = k 3 ) t

31 χ 2 -Verteilung Die Quantile der χ 2 -Verteilung sind die Referenzgröße beim für große Stichprobenumfänge Sprich: Chi-Quadrat Die χ 2 -Verteilung mit n Freiheitsgraden besitzt die Dichte f n (x) = c n e x/2 x n/2 1, x > 0 Dabei ist c n bestimmt durch das Erfordenis, dass 0 f n (x)dx = 1 Die Quantile der χ 2 -Verteilung sind tabelliert

32 Graphen von Dichten von χ 2 -Verteilungen Freiheitsgrad 4 Freiheitsgrade 10 Freiheitsgrade Dichte x

33 Graphen von Verteilungsfunktionen von χ 2 -Verteilungen 100% 80% 60% 40% 20% 0% 1 Freiheitsgrad 4 Freiheitsgrade 10 Freiheitsgrade x

34 Quantile der χ 2 -Verteilung f 90% 95% 97.5% 99% 99.5% 99.9%

35 Der Chi-Quadrat-Test zum Gegeben ein Signifikanzniveau α Berechne Teststatistik s (y j n π j ) 2 t = n π j j=1 Bestimme Quantil χ 2 s 1,1 α der χ2 -Verteilung mit s 1 Freiheitsgraden Falls dann lehne H 0 ab t χ 2 s 1,1 α

36 Bemerkungen zum χ 2 -Test Der χ 2 -Test verwendet eine Approximation Er ist daher nur zulässig, wenn n π 1 5 n π 2 5. n π s 5 Die Zahl der Freiheitgrade beträgt s 1

37 Beispiel zum χ 2 -Test Würfelexperiment aus Aufgabe 1 Blatt Blatt 1, A4 Dreiecksverteilung 0.15 relative Häufigkeit X 1 X 2

38 Beispiel zum χ 2 -Test, Fortsetzung Die Tabelle zeigt die empirische Häufigkeitsverteilung von X 1 X 2 Wir vergleichen mit der Dreiecksverteilung j p j π j j p j π j

39 Beispiel zum χ 2 -Test, Fortsetzung Ziel: Widerlege die Nullhypothese, dass die Daten gemäß der Dreiecksverteilung verteilt sind, zum Signifikanzniveau α = 0.1% Stichprobenumfang n = 1798 j y j n π j j y j n π j s = 11 Der kleinste Wert von n π j ist 49.9 Daher ist der χ 2 -Test zulässig

40 Beispiel zum χ 2 -Test, Fortsetzung t = s (y j n π j ) 2 = n π j j=1 Es gibt 10 Freiheitsgrade Das Quantil ist χ 2 10, = Die Nullhypothese kann abgelehnt werden Die experimentell ermittelte Verteilung ist nicht die Dreiecksverteilung

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 13. Januar 2011 1 Nichtparametrische Tests Ränge Der U-Test Bindungen Ränge Zwei Gruppen von Zufallsvariablen mit

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2010 1 Tests für Erwartungswerte Teststatistik Gauß-Test Zusammenhang zu Konfidenzintervallen t-test

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

10. Die Normalverteilungsannahme

10. Die Normalverteilungsannahme 10. Die Normalverteilungsannahme Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann man

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

Überblick Hypothesentests bei Binomialverteilungen (Ac)

Überblick Hypothesentests bei Binomialverteilungen (Ac) Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Analyse von Kontingenztafeln

Analyse von Kontingenztafeln Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden.

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathemati für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 22. Dezember 2010 1 Binomialtests Einseitiger unterer Binomialtest Zweiseitiger Binomialtest Beispiel BSE Normalapproximation

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

7.3 Chi-Quadrat-Streuungstest und F-Test

7.3 Chi-Quadrat-Streuungstest und F-Test 7.3 Chi-Quadrat-Streuungstest und F-Test Alle bisher besprochenen Statistischen Tests sind sog. Tests über die Mittelwerte; denn ihre Nullhypothesen handeln vom Vergleich entweder zweier Mittelwerte oder

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Mann-Whitney-U-Test für zwei unabhängige Stichproben

Mann-Whitney-U-Test für zwei unabhängige Stichproben Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Testen von Hypothesen:

Testen von Hypothesen: Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

11. Nichtparametrische Tests

11. Nichtparametrische Tests 11. Nichtparametrische Tests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 In Kapitel 8 und 9 haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

THEMA: STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN TORSTEN SCHOLZ WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

5.9. Nichtparametrische Tests Übersicht

5.9. Nichtparametrische Tests Übersicht 5.9. Übersicht Es werden die wichtigsten Rang-Analoga zu den Tests in 5.2.-5.6. behandelt. 5.9.0 Einführung 5.9.1 Einstichprobenproblem (vgl 5.2), 2 verbundene Stichproben (vgl. 5.3) Vorzeichentest, Vorzeichen-Wilcoxon-Test

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament

Mehr

3 Evaluation als Beschreibung von Zuständen

3 Evaluation als Beschreibung von Zuständen Evaluation als Beschreibung von Zuständen 1 Sind die folgenden Aussagen richtig oder falsch? 1.1 In einer Klumpenstichprobe werden systematisch anfallende Cluster von Personen vollständig untersucht. Die

Mehr

Nicht-parametrische Statistik Eine kleine Einführung

Nicht-parametrische Statistik Eine kleine Einführung Nicht-parametrische Statistik Eine kleine Einführung Überblick Anwendung nicht-parametrischer Statistik Behandelte Tests Mann-Whitney U Test Kolmogorov-Smirnov Test Wilcoxon Test Binomialtest Chi-squared

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1

Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1 Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1 Aufgabe 1: Prüfe, welche der folgenden Merkmale qualitativ sind: (a) Blutgruppe (b) Pulsfrequenz (c) Erkrankung an Scharlach (d) Teilnahme an einem

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

Spezielle Eigenschaften der Binomialverteilung

Spezielle Eigenschaften der Binomialverteilung Spezielle Eigenschaften der Binomialverteilung Wir unterscheiden: 1) die Wahrscheinlichkeitsfunktion einer diskreten Variablen 2) die Verteilungsfunktion einer diskreten Variablen. 1) Die Wahrscheinlichkeitsfunktion

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.

Mehr

Probleme bei kleinen Stichprobenumfängen und t-verteilung

Probleme bei kleinen Stichprobenumfängen und t-verteilung Probleme bei kleinen Stichprobenumfängen und t-verteilung Fassen wir zusammen: Wir sind bisher von der Frage ausgegangen, mit welcher Wahrscheinlichkeit der Mittelwert einer empirischen Stichprobe vom

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 7.9. Lösungen zum Hypothesentest II Ausführliche Lösungen: A A Aufgabe Die Firma Schlemmerland behauptet, dass ihre Konkurrenzfirma Billigfood die Gewichtsangabe,

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/453

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/453 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/453 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathemati für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 16. Dezember 2010 1 Allgemeine Hypothesentests Signifianzniveaus 2 Einseitiger oberer Binomialtest Effetive Fehlerwahrscheinlicheit

Mehr

Bivariate Kreuztabellen

Bivariate Kreuztabellen Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

9 Prinzipien der statistischen Hypothesenprüfung

9 Prinzipien der statistischen Hypothesenprüfung 9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr