Faktoren zur Fehleranalyse beim Sachrechnen

Größe: px
Ab Seite anzeigen:

Download "Faktoren zur Fehleranalyse beim Sachrechnen"

Transkript

1 Faktoren zur Fehleranalyse beim Sachrechnen sprachlich-syntaktische Struktur sprachliche Gestaltung der Aufgabe kann Fehler oder Schwierigkeiten bedingen, z.b. Schlüsselwörtern im Text wie halb so viele oder jetzt sind es... mehr werden falsche Rechenoperationen zugeordnet Art der Frage variiert semantische Struktur Stolpersteine in einer Sachaufgaben können sein: Bekanntheit von Begriffen, Realitätsbezug, eigene Erfahrungen zum Sachverhalt oder zusätzliche Angaben, die zum Rechnen nicht benötigt werden mathematische Struktur Art und Anzahl der Rechenschritte bzw. Rechenaufwand (durch Größe der Zahlen bedingt)

2 Fehlerursachen beim Lösen von Sachaufgaben 1. kontextbedingte Fehler o Kontext wird ausgeblendet - Schulerfahrung der Kinder lässt sie zu der Erkenntnis kommen: eine Aufgabe muss eine Lösung haben 2. Fehler in Folge einer oberflächlichen Bearbeitung von Aufgaben o Schüler lassen sich beim Lösen einer Sachaufgabe oft von Oberflächenmerkmalen leiten, z.b. von Signalwörtern wie mehr entspricht + oder von Zahlenverhältnissen wie Große Zahlen werden addiert. (würden sie multipliziert, würde die Zahl ja noch größer) 3. Fehler bei der Modellbildung o mathematisches Modell zur Aufgabenlösung kann nicht gefunden werden, weil die Kinder den Text nicht gut genug lesen nur einzelne Informationen entnehmen und diese in Rechenoperationen überführen oder indirekte Angaben nicht beachten

3 Fehlertypen Identifikationsfehler falsche Operation oder zusätzliche Angaben werden in die Rechnung aufgenommen - Signalwörter werden als Hinweis auf die Rechenoperation verstanden - irrelevante Angaben werden in die Rechnung einbezogen - die angewandte Rechenoperation wurde im Unterricht vorher ausführlich behandelt Fehler beim Strukturieren des Lösungsplanes - Zahlenangaben im Text stehen nicht in der Reihenfolge, wie sie für die Rechnung erforderlich ist - vorherige Teillösungen werden vergessen bei mehrschrittigen Aufgaben wird der Lösungsplan verkürzt - Überlesen von Angaben - unvollständiges Erfassen der Situation Fehler bei der Antwort - Nichtbeachtung der Fragestellung - fehlerhafte Interpretation der mathematischen Lösung

4 Beispiele aus verschiedenen Untersuchungen zum Themenkomplex Fehlertypen Untersuchung von Schindler, 1997 (aus Franke (2003), S. 101) Ines feiert bald ihren Geburtstag. Dafür kauft sie 2 Schachteln Schokoküsse für 1,60 DM, eine Packung bunte Luftballons für 3,80 DM und 8 Honiglutscher für 0,50 DM. Wie alt wird Ines? L.: J.: S.: L.: J.: L.: J.: Warum wird die Ines 11 Jahre alt? Das haben wir uns gedacht. Weil alles zusammen 11 Mark kostet. Wir wussten nicht genau, ob wir alles zusammen rechnen sollen und dann haben wir gedacht, wir rechnen alles zusammen und wissen dann, wie alt sie ist. Kann man mit Geld ausrechnen, wie alt jemand wird? Nö. Warum habt ihr s dann gemacht? Weil wir keine andere Möglichkeit gefunden haben.

5 Im Winterschlussverkauf hat ein Hersteller 340 Strumpfpaare verkauft. Das sind 65 Strumpfpaare weniger als vor einem Jahr. nur 28 % der Drittklässler lösten die Aufgabe richtig, die anderen rechneten Wirkung des Signalwortes weniger Beim Sportfest sollen 248 Schüler aus Klasse 3 und 272 Schüler aus Klasse 4 gemeinsame Turnübungen durchführen. Dazu werden die Schüler in Gruppen aufgeteilt. Zu jeder Gruppe gehören 8 Schüler. Wie viele Gruppen entstehen? im 4. Schuljahr gab es immer noch Kinder, die die beiden großen Zahlen bzw. alle Zahlen miteinander addierten, z.b bzw Wirkung von Zahlenverhältnissen große Zahlen muss man addieren, die kann man nicht noch multiplizieren

6 Tom und Anne haben zusammen 8 Bücher. Anne hat 5 Bücher. Wie viele Bücher hat Tom? Erfolgsquote bei Schulanfängern: 56 % Tom und Anne haben zusammen 8 Bücher. Davon gehören 5 Bücher Anne. Wie viele Bücher hat Tom? Erfolgsquote bei Schulanfängern: 70 % Kindern werden 5 Vögel und 3 Würmer gezeigt sie werden gefragt: Wie viele Vögel sind es mehr als Würmer? nur 17 % der Vorschulkinder und 64 % der Erstklässler könnten die Aufgabe bewältigen Frage wurde verändert: Wie viele Vögel bekommen keinen Wurm? 83 % der Vorschulkinder und 100 % der Erstklässler konnten die Aufgabe lösen

7 Bei den Bundesjugendspielen zählen Uta, Meike und Silke ihre weitesten Würfe zusammen und kommen zusammen auf 80 m. Silke hat 29 m weit geworfen. Das ist 3 m weiter als Meikes Wurf und auch mehr als Utas weitester Wurf. Wie weit hat Meike, wie weit hat Uta geworfen? Fam. Becker fährt zu Verwandten. Sie wohnen 583 km entfernt. Bis jetzt ist die Fam. schon 270 km gefahren. Wie viele km muss sie noch zurücklegen? Fam. Becker fährt zu Verwandten. Bis jetzt haben sie 270 km zurück gelegt. Die Verwandten wohnen 583 km entfernt. Wie viel km muss die Fam. noch fahren? Peter fährt mit 3 Freunden mit der Bahn nach Hannover und kauft für alle die Fahrkarten.

1.7 Lösen von Sachaufgaben Schwierigkeiten & Lösungshilfen

1.7 Lösen von Sachaufgaben Schwierigkeiten & Lösungshilfen Schwierigkeiten & Lösungshilfen Fehlerursachen Orientierung an Oberflächenmerkmalen Zahlen und vermuteter Rechenaufwand Signalwörter Orientierung am unterrichtlichen Kontext Besondere Ursachen beim Modellieren

Mehr

6 Sachrechnen. 6.1 Was heißt Sachrechnen heute? 6.2 Aufgaben zum Sachrechnen. 6.3 Lösen von Sachaufgaben. 6.4 Gestaltung des Sachrechenunterrichts

6 Sachrechnen. 6.1 Was heißt Sachrechnen heute? 6.2 Aufgaben zum Sachrechnen. 6.3 Lösen von Sachaufgaben. 6.4 Gestaltung des Sachrechenunterrichts 6 Sachrechnen 6.1 Was heißt Sachrechnen heute? 6.2 Aufgaben zum Sachrechnen 6.3 Lösen von Sachaufgaben 6.4 Gestaltung des Sachrechenunterrichts Lösen von Sachaufgaben Weil die Sach- und Fachstrukturen

Mehr

Sachrechnen (Grundschule)

Sachrechnen (Grundschule) Sachrechnen (Grundschule) 6. Schwierigkeiten beim Lösen von Sachaufgaben, 1 Probleme beim Lösen von Sachaufgaben Veröffentlicht in: MDMV 20, 2012, S. 235 2 6.1 Hauptursachen für Schwierigkeiten von SuS

Mehr

Didaktik des Sachrechnens 4. Probleme von SuS beim Lösen von Sachaufgaben

Didaktik des Sachrechnens 4. Probleme von SuS beim Lösen von Sachaufgaben Didaktik des Sachrechnens 4. Probleme von SuS beim Lösen von Sachaufgaben 1 Probleme beim Lösen von Sachaufgaben Veröffentlicht in: MDMV 20, 2012, S. 235 2 4. Probleme von SuS beim Lösen von Sachaufgaben

Mehr

Nutzen des Sachrechnens

Nutzen des Sachrechnens Sachrechnen Nutzen des Sachrechnens Sachverhalte als vertrauter Kontext für den Zugang zu mathematischen Inhalten (Prinzip der Veranschaulichung und Lebensnähe) Sachverhalte als Motivation für mathematische

Mehr

Sachaufgaben auf der Spur

Sachaufgaben auf der Spur Sachaufgaben auf der Spur Lehrgang zur Förderung von Sach- und Textverständnis 60 Arbeitsblätter Lösungsheft von Anne Lenze und Helga Schubert illustriert von Barbara Stachuletz Übersicht Tipps Lerner-Mini

Mehr

Sprachsensible Unterrichtsbeispiele

Sprachsensible Unterrichtsbeispiele Sprachsensible Unterrichtsbeispiele Mathematik: Textaufgaben verstehen/grundrechenarten Die vorgestellte Unterrichtsstunde behandelt die Grundrechenarten und geht auf das Verständnis von Textaufgaben ein.

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 4/2010

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 4/2010 Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 4/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenz (Kap. 3.1) Inhaltsbezogene

Mehr

9T 5Z 5T 2E 1T 7H 3E 73,15 Š 15,80 Š. Name: Klasse: Datum: LSE Phase I Seite 1 von 3. Auswertung. Beschrifte den Zahlenstrahl.

9T 5Z 5T 2E 1T 7H 3E 73,15 Š 15,80 Š. Name: Klasse: Datum: LSE Phase I Seite 1 von 3. Auswertung. Beschrifte den Zahlenstrahl. Name: Klasse: Datum: LSE Phase I Seite von Beschrifte den Zahlenstrahl. Fehler Trage die Zahlen,, und in den Zahlenstrahl ein. x x x x Fehler Schreibe die Zahlen. H Z E = H Z = Z = H E = Fehler Schreibe

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6 Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (

Mehr

Sachaufgaben für die 4. Klasse

Sachaufgaben für die 4. Klasse Sachaufgaben für die 4. Klasse Inhaltsverzeichnis 1. Beim Sport, Sachaufgaben zum schriftlichen Addieren und Subtrahieren, Zahlenraum bis 1000, Begriffe doppelt so viele und halb so viele, 6 Seiten 2.

Mehr

Mathematische Zusammenhänge beschreiben und begründen

Mathematische Zusammenhänge beschreiben und begründen 2 Mathematik Mathematische Zusammenhänge beschreiben und begründen 1 Einführung Vergleiche auch die Tipps zum Verfassen von Sachtexten! In deiner neuen Schule und vielleicht schon im Probeunterricht wird

Mehr

Große Anzahlen schätzen. 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind.

Große Anzahlen schätzen. 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind. Große Anzahlen schätzen 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind. Ich schätze, es sind Menschen. Wie weiß man, wie viele Menschen das ungefähr sind? Kennst du

Mehr

52 Sachaufgaben. Textaufgaben 2. Klasse Heike Hünemann-Rottstegge. Übungsprogramm mit Lösungen für die 2. Grundschulklasse

52 Sachaufgaben. Textaufgaben 2. Klasse Heike Hünemann-Rottstegge. Übungsprogramm mit Lösungen für die 2. Grundschulklasse 52 Sachaufgaben Textaufgaben 2. Klasse Heike Hünemann-Rottstegge Übungsprogramm mit Lösungen für die 2. Grundschulklasse Inhaltsverzeichnis Vorwort... erste Seite Zahlen bis 20 Aufgabennummern Im Tierpark...

Mehr

Beispiele Um einen ersten Eindruck zu vermitteln, wie solche Probleme aussehen, sollen uns die folgenden zwei Beispiele Aufschluss geben:

Beispiele Um einen ersten Eindruck zu vermitteln, wie solche Probleme aussehen, sollen uns die folgenden zwei Beispiele Aufschluss geben: Definition Unter Dyskalkulie ( dys- schwierig, schwer, -kalkulie (be-) rechnen, überlegen) werden beständige Minderleistungen im Lernstoff des arithmetischen Grundlagenbereiches (Mächtigkeitsverständnis,

Mehr

Malnehmen Multiplizieren

Malnehmen Multiplizieren . Malnehmen Multiplizieren Lademannbogen 5, 9 Hamburg; Postfach 6 05 00, Hamburg 5 = Als Multiplikation bezeichnet man das Malnehmen. Man multipliziert die Stellen der Zahlen einzeln miteinander und addiert

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http//brinkmann-du.de Seite 1 09.02.2013 SEK I Lösungen zu rechnen mit Brüchen I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Bruchrechnung I Einfache Bruchaufgaben zur Vorbereitung

Mehr

8.1 Entwicklung mathematischen Wissens am Beispiel der Arbeit mit Textaufgaben

8.1 Entwicklung mathematischen Wissens am Beispiel der Arbeit mit Textaufgaben WS 2015/2016 Mi 08-10 Audimax 8.1 Entwicklung mathematischen Wissens am Beispiel der Arbeit mit Textaufgaben 28. 10. V 1 Sach-und Textaufgaben im Überblick 04. 11. V 2 Wissensentwicklung beim Sachrechnen

Mehr

Arbeit an Sachsituationen. Mathematisches Modell

Arbeit an Sachsituationen. Mathematisches Modell Arbeit an Sachsituationen Teil 5: Mathematisches Modell Sachproblem Situationsmodell Bearbeitungshilfe Lösung Mathematisches Modell Worum geht es? Mathematischer Bezug Das Situationsmodell in ein mathematisches

Mehr

Lektion Modellieren: Dokumentation der Unterrichtseinheit: Fermi-Fragen

Lektion Modellieren: Dokumentation der Unterrichtseinheit: Fermi-Fragen Lektion Modellieren: Dokumentation der Unterrichtseinheit: Fermi-Fragen Klassensituation Die Schülerinnen und Schüler der 4. Klasse haben schon in unterschiedlichen Zusammenhängen (im Mathematikunterricht,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe zum Schmunzeln: Keine Angst vor Textaufgaben

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe zum Schmunzeln: Keine Angst vor Textaufgaben Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe zum Schmunzeln: Keine Angst vor Textaufgaben Das komplette Material finden Sie hier: School-Scout.de Dieses Heft gehört: Nimm

Mehr

Eingangstest Modul 4: Messen und Größen

Eingangstest Modul 4: Messen und Größen Eingangstest Modul 4: Messen und Größen AUFGABEN Kreuze an, welche Einheit zu den Bildern passt. Kleiner Stein Sack Kartoffeln Eimer Wasser g l mm kg min l km h Straße Kassenzettel Uhr t ct km kg ml h

Mehr

Unterrichtseinheit 1.3

Unterrichtseinheit 1.3 Unterrichtseinheit 1.3 1 Unterrichtseinheit 1.3 Ca. 60 Minuten Aufgabenart Mathematischer Inhalt Materialien Zielsetzungen Fahrtkosten Überbestimmt: beinhaltet mehr Angaben als benötigt Leitidee Zahl Leitidee

Mehr

Wie muss der Term für die Berechnung des Aufenthalts lauten? Kreuze an: Terme sind Rechenausdrücke, die aus Zahlen, Variablen, Klammern und

Wie muss der Term für die Berechnung des Aufenthalts lauten? Kreuze an: Terme sind Rechenausdrücke, die aus Zahlen, Variablen, Klammern und Eine Ferienwohnung in Spanien kostet 45 pro Tag. Hinzu kommt eine Gebühr von einmalig 25 für die Reinigung am Ende des Aufenthalts. Berechne jeweils den Preis für einen Aufenthalt von 7, 0, 4 und 20 Tagen.

Mehr

DOWNLOAD VORSCHAU. Lebensnahe Sachaufgaben. rund ums Geld. zur Vollversion. Arbeitsmaterialien für Schüler mit sonderpädagogischem Förderbedarf

DOWNLOAD VORSCHAU. Lebensnahe Sachaufgaben. rund ums Geld. zur Vollversion. Arbeitsmaterialien für Schüler mit sonderpädagogischem Förderbedarf DOWNLOAD Christina Barkhausen, Vanessa Murfino Lebensnahe Sachaufgaben rund ums Geld Arbeitsmaterialien für Schüler mit sonderpädagogischem Förderbedarf Bergedorfer Unterrichtsideen Christina Barkhausen

Mehr

1 a) = 6 2 b) = 9 3 c) = 2 a) = 4 5 b) = 4 8 c) = 3 a) a) 6 a) 7 2 = 7 a) 25 5 =

1 a) = 6 2 b) = 9 3 c) = 2 a) = 4 5 b) = 4 8 c) = 3 a) a) 6 a) 7 2 = 7 a) 25 5 = PA Teste dein Können a) 2 + = 2 + = c) 2 + = 2 a) 2 = = c) = 2 2 a) 00 2 2 a) 2 0 0 + 2 + 2 c) 2 d) 2 2 2 2 a) + + 2 = + + = 2 + + = + 2 + = a) 2 = 2 = 2 = 0 = 0 c) = 0 0 = 0 = 20 2 0 = 0 = a) 2 = = 0

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Wie stellt man eine Gleichung um?

Wie stellt man eine Gleichung um? Wie stellt man eine Gleichung um? Umstellen von Gleichungen stellt für manche immer wieder ein Problem dar. Daher soll hier versucht werden, das Umstellen zu systematisieren. Ich empfehle, sich folgende

Mehr

Prozent- und Promillerechnung

Prozent- und Promillerechnung Prozent- und Promillerechnung Name: Probearbeit Mathematik (M 8). Für die Ausfertigung des Bauplans und die Bauausführung berechnet ein Architekt 4,5 % der Bausumme. Sein Honorar beträgt 6 200. 2. Herr

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Kleines. Kleines MATHE-LEXIKON MATHE-LEXIKON. von. von

Kleines. Kleines MATHE-LEXIKON MATHE-LEXIKON. von. von Kleines Kleines MATHE-LEXIKON MATHE-LEXIKON von von Schriftliche Addition: Schriftliche Addition: Große Zahlen, die man nur schwer im Kopf rechnen kann, rechnest Du schriftlich. Dabei ist es sehr wichtig,

Mehr

Multiplikation und Division - Division

Multiplikation und Division - Division Multiplikation und Division - Division Qualifizierungseinheit Multiplikation und Division Lernziele: Wenn Sie diese Qualifizierungseinheit bearbeitet haben, können Sie ganze Zahlen multiplizieren und dividieren

Mehr

3.1 Die Einführung endlicher Dezimalbrüche

3.1 Die Einführung endlicher Dezimalbrüche 3.1 Die Einführung endlicher Dezimalbrüche 3.1.1 Vorbemerkungen (1) Dezimalbruchrechnung in Schulbüchern Standard bisher: Brüche und Dezimalbrüche wurden als getrennte Blöcke thematisiert. Tendenz: Verquickung

Mehr

Unterwegs mit den Rechendetektiven Matheo und Mathea Strategien entwickeln für Rechenrätsel, Sach- und Knobelaufgaben VORANSICHT

Unterwegs mit den Rechendetektiven Matheo und Mathea Strategien entwickeln für Rechenrätsel, Sach- und Knobelaufgaben VORANSICHT 1 von 20 Unterwegs mit den Rechendetektiven Matheo und Mathea Strategien entwickeln für Rechenrätsel, Sach- und Knobelaufgaben Ein Beitrag von Dr. Sibylle Maier, Hengersberg Zeichnungen von Bettina Weyland,

Mehr

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : =

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : = Anhang 5 Eingangstest I 1. Berechnen Sie: 63,568 1000 = 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3. Wie groß ist die Summe von 4 3 und 6 5? 8 4 4. Berechnen Sie: : = 35 15 5. Berechnen Sie:

Mehr

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26 28

Mehr

Kopfrechnen (Dezember 2010)

Kopfrechnen (Dezember 2010) Kopfrechnen (Dezember 2010) Folgend sind einige Tipps und Tricks für ein sicheres, schnelles Kopfrechnen zusammengestellt. Neben den aufgeführten Tricks existieren aber noch viele weitere Methoden. Sollte

Mehr

Mathematik 1 -Arbeitsblatt 1-6: Prozentrechnung und Schlussrechnung. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB PROZENTRECHNUNG

Mathematik 1 -Arbeitsblatt 1-6: Prozentrechnung und Schlussrechnung. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB PROZENTRECHNUNG PROZENTRECHNUNG Der Begriff Prozent taucht im Alltag häufig auf und wird oft intuitiv richtig verwendet. Was ist aber nun 1 Prozent (Schreibweise: %) wirklich? Dies sei nun an einem einfachen Beispiel

Mehr

Trage passende Zahlen in das Hunderterfeld ein. Suche dann Rechnungen dazu!

Trage passende Zahlen in das Hunderterfeld ein. Suche dann Rechnungen dazu! Ich zeige, was ich kann! Name: 3. Klasse / EC 1 Trage passende Zahlen in das Hunderterfeld ein. Suche dann Rechnungen dazu! 2 3 Rechenrätsel: Denke an das Hunderterfeld! Die Zahl steht unter der Zahl mit

Mehr

Erfinde nun selbst eine Rechengeschichte und rechne! Mein Osterbüchlein Klasse 3

Erfinde nun selbst eine Rechengeschichte und rechne! Mein Osterbüchlein Klasse 3 Erfinde nun selbst eine Rechengeschichte und rechne! Mein Osterbüchlein Klasse 3 12 Die Osternester Wie teuer ist ein Nest? Wie schwer ist ein Nest? Der Hase versteckt heute die Nester für die Kinder der

Mehr

Kinder beim Lösen von Sachaufgaben begleiten (Mo C III, 240) 14 ( ) Klausur (nur Sonderpädagogen mit fachdidaktischem Bereich Mathematik)

Kinder beim Lösen von Sachaufgaben begleiten (Mo C III, 240) 14 ( ) Klausur (nur Sonderpädagogen mit fachdidaktischem Bereich Mathematik) WS 08/09 Kinder beim Lösen von Sachaufgaben begleiten (Mo 14 16 C III, 240) Material: DIN A4 Heft ohne Linien (Reisetagebuch) 1 (20. 10.) Frühes operatives Denken beim Bearbeiten von Sachaufgaben 2 (27.

Mehr

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 20. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 20. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen

Mehr

ownload Mit Brüchen rechnen 9 Stationen mit Lösungen für die Klasse 6 Marco Bettner, Erik Dinges Downloadauszug aus dem Originaltitel:

ownload Mit Brüchen rechnen 9 Stationen mit Lösungen für die Klasse 6 Marco Bettner, Erik Dinges Downloadauszug aus dem Originaltitel: ownload Marco Bettner, Erik Dinges Mit Brüchen rechnen 9 Stationen mit Lösungen für die Klasse 6 Downloadauszug aus dem Originaltitel: 9 Stationen mit Lösungen für die Klasse 6 Dieser Download ist ein

Mehr

SINUS an Grundschule Saarland Offene Aufgaben zur Leitidee Größen und Messen

SINUS an Grundschule Saarland Offene Aufgaben zur Leitidee Größen und Messen Aufgabe 5 Idee und Aufgabenentwurf: Nicole Mai, Mellin-Schule, Sulzbach, Klasse 3 (Januar 2013) Dein Kinderzimmer ist mit Spielsachen überfüllt. Deine Mutter macht dir einen Vorschlag, die Spielsachen,

Mehr

Bruchrechnen in Kurzform

Bruchrechnen in Kurzform Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Textaufgaben l(e)ösen lernen Schuljahr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Textaufgaben l(e)ösen lernen Schuljahr Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Textaufgaben l(e)ösen lernen - 5.-6. Schuljahr Das komplette Material finden Sie hier: School-Scout.de Inhalt Seiten Vorwort 4 Einleitung

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler...

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler... I Natürliche Zahlen 1. Zählen und darstellen stellen Beziehungen zwischen Zahlen und Größen in Tabellen bzw. Diagrammen (Säulendiagramm, Balkendiagramm) dar, lesen Informationen aus Tabellen und Diagrammen

Mehr

Eingangstest Mathematik Jgst.11

Eingangstest Mathematik Jgst.11 SINUS-Set Projekt F3 Erfinden Sie zu dem abgebildeten Graphen eine Sachsituation, die durch den Graphen dargestellt wird. Gehen Sie dabei auch auf den Verlauf des Graphen ein! Zeit in F4 In der Abbildung

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr

Zur Anwendung heuristischer Hilfsmittel beim Lösen von Sachaufgaben im Mathematikunterricht der Grundschule

Zur Anwendung heuristischer Hilfsmittel beim Lösen von Sachaufgaben im Mathematikunterricht der Grundschule Naturwissenschaft Stefanie Kahl Zur Anwendung heuristischer Hilfsmittel beim Lösen von Sachaufgaben im Mathematikunterricht der Grundschule Examensarbeit Zur Anwendung heuristischer Hilfsmittel beim Lösen

Mehr

Orientierungsarbeiten 2004 Mathematik Jahrgangsstufe 3 Hinweise zur Durchführung, Korrektur und Auswertung

Orientierungsarbeiten 2004 Mathematik Jahrgangsstufe 3 Hinweise zur Durchführung, Korrektur und Auswertung Orientierungsarbeiten 2004 Mathematik Jahrgangsstufe 3 Hinweise zur Durchführung, Korrektur und Auswertung 1. Termin: 16. Juni 2004, 2. Stunde Sofern die Geheimhaltung sichergestellt ist, sind Abweichungen

Mehr

Sachrechnen/Größen WS 14/ Gestaltung des Unterrichts

Sachrechnen/Größen WS 14/ Gestaltung des Unterrichts 1.8 Gestaltung des Unterrichts Gestaltungsprinzipien 1. Sachrechnen als eigener Inhaltsbereich 2. Auswahl der Aufgaben mit Blick auf die Schülerinnen und Schüler 3. Methodische Gestaltung 4. Aus Fehlern

Mehr

Kerncurriculum gymnasiale Oberstufe Mathematik. Mathematisch argumentieren (K1)

Kerncurriculum gymnasiale Oberstufe Mathematik. Mathematisch argumentieren (K1) Kerncurriculum gymnasiale Oberstufe Mathematik Matrix Kompetenzanbahnung Kompetenzbereiche, Bildungsstandards und Themenfelder Durch die Auseinandersetzung mit den inhaltlichen Aspekten der Themenfelder

Mehr

Fachorientierte Sprachförderstunde: Mathematik

Fachorientierte Sprachförderstunde: Mathematik Universität Duisburg-Essen Bereich DaZ/DaF Seminar: Fachorientierte Sprachförderkurse Fachorientierte Sprachförderstunde: Mathematik Daniela Höhne Katrin Jahn Susanne Zerebecki Rahmenbedingungen Klasse

Mehr

Orientierungsarbeit Mathematik

Orientierungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 8 für Kultus an Mittelschulen Schuljahr 2002/2003 Orientierungsarbeit Mathematik Hauptschulbildungsgang Allgemeine Arbeitshinweise Die Orientierungsarbeit

Mehr

F o r s t l i c h e s A u s b i l d u n g s z e n t r u m M a t t e n h o f. Stand: 06/15

F o r s t l i c h e s A u s b i l d u n g s z e n t r u m M a t t e n h o f. Stand: 06/15 F o r s t l i c h e s A u s b i l d u n g s z e n t r u m M a t t e n h o f Kooperation Überbetriebliche Ausbildung und Berufsschule HAUS- UND LANDWIRTSCHAFTLICHE SCHULEN OFFENBURG Stand: 06/15 Allgemeines:

Mehr

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik V e r l ä s s l i c h e G r u n d s c h u l e Hauptstraße 5 30952 Ronnenberg-Weetzen 05109-52980 Fax 05109-529822 2.Schuljahr Schuleigener Arbeitsplan für das Fach Mathematik Kompetenzbereiche, erwartete

Mehr

Inhalte des Schulbuches Kompetenzen und Inhalte Erweiterte Materialien aus dem Lehrwerksverbund

Inhalte des Schulbuches Kompetenzen und Inhalte Erweiterte Materialien aus dem Lehrwerksverbund Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S. 10 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien

Mehr

DOWNLOAD VORSCHAU. die Zeit. zur Vollversion. Arbeitsmaterialien für Schüler mit sonderpädagogischem Förderbedarf

DOWNLOAD VORSCHAU. die Zeit. zur Vollversion. Arbeitsmaterialien für Schüler mit sonderpädagogischem Förderbedarf DOWNLOAD Christina Barkhausen, Vanessa Murfino Lebensnahe Sachaufgaben rund um die Zeit Arbeitsmaterialien für Schüler mit sonderpädagogischem Förderbedarf Bergedorfer Unterrichtsideen Christina Barkhausen

Mehr

Kantonale Prüfungen 2013. Mathematik II Prüfung für den Übertritt aus der 8. Klasse

Kantonale Prüfungen 2013. Mathematik II Prüfung für den Übertritt aus der 8. Klasse Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:

Mehr

Wie viel Geld haben die Kinder?

Wie viel Geld haben die Kinder? 1 Wie viel Geld haben die Kinder? Aleksandra Dominik Florian Sarah 4 2 42 Cent Antwort: Dominik hat! Florian hat! Sarah hat...! 2 Rechnen mit Cent 65 c + 5 c = 36 c + = 39 c 60 c - 4 c = 93 c + 7 c = 73

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Bruchrechnung in kleinen Schritten 2. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Bruchrechnung in kleinen Schritten 2. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Bruchrechnung in kleinen Schritten 2 Das komplette Material finden Sie hier: School-Scout.de Bergedorfer Unterrichtsideen Kathrin

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Zahlensystem und Grundrechnen Rechnen mit Klammern. Klammern werden benötigt, um die Reihenfolge von Rechenschritten zu bestimmen.

Zahlensystem und Grundrechnen Rechnen mit Klammern. Klammern werden benötigt, um die Reihenfolge von Rechenschritten zu bestimmen. SZ Förderkonzept Seite 1 M 1.9 Klammern werden benötigt, um die Reihenfolge von Rechenschritten zu bestimmen. Beispiel1 Supermarktkasse An der Supermarktkasse legt Frau Schulze einzelne Bierflaschen zu

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Sie sehen: Diese beiden Mauern sind das 8-fache bzw. 6-fache der Ausgangsmauer, die Steine enthalten nur Zahlen der 8er- bzw. der 6er-Reihe.

Sie sehen: Diese beiden Mauern sind das 8-fache bzw. 6-fache der Ausgangsmauer, die Steine enthalten nur Zahlen der 8er- bzw. der 6er-Reihe. Liebe Zahlenbuch-Profis! Muster bilden bekanntlich einen hervorragenden Nährboden für das aktiv-entdeckende Lernen, denn dahinter verbergen sich immer reichhaltige mathematische Strukturen. Man kann nämlich

Mehr

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler GS Rethen Kompetenzorientierung Fach: Mathematik Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler - verwenden eingeführte mathematische Fachbegriffe sachgerecht. - erläutern

Mehr

DOWNLOAD. Einfache Würfelspiele Zahlenraum bis 10. Motivierend und schnell einsetzbar. Ruth Hölken. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Einfache Würfelspiele Zahlenraum bis 10. Motivierend und schnell einsetzbar. Ruth Hölken. Downloadauszug aus dem Originaltitel: DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Würfelspiele im Zahlenraum bis Bitte der Reihe nach! Arabische

Mehr

Kompetenztest für Schülerinnen und Schüler der Klassenstufe 3 an Grundschulen und Förderzentren mit dem Bildungsgang der Grundschule.

Kompetenztest für Schülerinnen und Schüler der Klassenstufe 3 an Grundschulen und Förderzentren mit dem Bildungsgang der Grundschule. Kompetenztest für Schülerinnen und Schüler der Klassenstufe 3 an Grundschulen und Förderzentren mit dem Bildungsgang der Grundschule Fach Mathematik Schuljahr 2004/2005 Lehrermanual Inhalt: - Korrekturhinweise

Mehr

Tausenderschritte ZR 10 000 1

Tausenderschritte ZR 10 000 1 Tausenderschritte ZR 10 000 1 Ordne folgende Zahlen der Größe nach! Beginne bei der kleinsten Zahl! a) 3 000, 5 000, 2 000, 4 000, 6 000 b) 4 000, 6 000, 5 000, 2 000, 3 000 c) 9 000, 10 000, 3 000, 5

Mehr

Wiederholung aus der Volksschule

Wiederholung aus der Volksschule Testen und Fördern bs3p3y Audio Audio bs3p3y Name: Klasse: Datum: 1) Du hörst Zahlen. Schreibe diese in Ziffernschreibweise auf. a) b) c) d) e) 2) Welche Zahl ist hier beschrieben? Lies dir die Zahl leise

Mehr

Proportionale und antiproportionale Zuordnungen

Proportionale und antiproportionale Zuordnungen Proportionale und antiproportionale Zuordnungen Proportionale und antiproportionale Zuordnungen findet man in vielen Bereichen des täglichen Lebens. Zum Beispiel beim Tanken oder beim Einkaufen. Bei proportionalen

Mehr

Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden

Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden Bei allen Operationen gilt für größere Zahlen die gleiche Strategie: schrittweise rechnen Schreibweisen werden

Mehr

Daten, Häufigkeiten, Wahrscheinlichkeiten

Daten, Häufigkeiten, Wahrscheinlichkeiten Daten, Häufigkeiten, Wahrscheinlichkeiten Ein neuer Bereich im Lehrplan Mathematik Die acht Bereiche des Faches Mathematik Prozessbezogene Bereiche Problemlösen / kreativ sein Inhaltsbezogene Bereiche

Mehr

Gleichungssysteme ersten Grades lösen

Gleichungssysteme ersten Grades lösen Gleichungssysteme ersten Grades lösen Zwei Gleichungen mit zwei Unbekannten Einsetzungsmethode 18=10a + b 2=0a + b Durch Isolieren von b in der ersten Gleichung ergibt sich b =18 10a. b wird nun in der

Mehr

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Hinweise für Schülerinnen und Schüler:

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Hinweise für Schülerinnen und Schüler: VOLKSSCHULEN KANTONE BASEL-LANDSCHAFT SOLOTHURN Primarschule 5. Klasse Name Vorname Schuljahr 2010/2011 Datum der Durchführung 28. Oktober 2010 ORIENTIERUNGSARBEIT Primarschule Mathematik Hinweise für

Mehr

9 = c) a) = b) = c) = d) =

9 = c) a) = b) = c) = d) = A Grundrechnungsarten. Rechnen mit Brüchen Addieren und Subtrahieren von Brüchen Addiere und subtrahiere die Brüche. a) 0 0 0 b) - 0...... Brüche mit gleichem Nenner werden addiert, indem du die Zähler

Mehr

Wahrnehmung entwickeln. Kommunizieren: Mathematische Fachbegriffe sachgerecht verwenden. Wahrnehmung entwickeln. Kreativ mit Zahlen umgehen

Wahrnehmung entwickeln. Kommunizieren: Mathematische Fachbegriffe sachgerecht verwenden. Wahrnehmung entwickeln. Kreativ mit Zahlen umgehen Arbeitsplan Mathematik 1 1. Schuljahr Raum und Form 1.1. Lagebeziehungen links / rechts, oben - unten anwenden: - Rechts und links am eigenen Körper erfahren - Begriffe verstehen und anwenden Würfelgebäude

Mehr

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28.

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28. Demoseiten für Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil Grundlagen Teil 2 Anwendungen Datei Nr. 055 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Erläuterungen zu den Teilaufgaben: Würfelsummen

Erläuterungen zu den Teilaufgaben: Würfelsummen AB I: Reproduzieren Die Schülerinnen lösen die Aufgabe, indem sie ihr Grundwissen einbringen und Routinetätigkeiten des Mathematikunterrichts ausführen. AB II: Zusammenhänge herstellen Die Schülerinnen

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik (3. Klasse) A. Rechenstrategien Addition

Mehr

Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS

Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS Monat Lehrstoff Lehrplan Inhaltsbereich Handlungsbereiche September Ein neuer Anfang 1 Natürliche Zahlen 1.1 Zählen und Zahlen 1.2

Mehr

Lehrplan Mathematik 3. Hinweise (Methoden mögliche Anschauungsmittel, evtl.schwierigkeiten) Lernziele / Inhalte. I. Zahlenraum bis 1000 beherrschen

Lehrplan Mathematik 3. Hinweise (Methoden mögliche Anschauungsmittel, evtl.schwierigkeiten) Lernziele / Inhalte. I. Zahlenraum bis 1000 beherrschen Lehrplan Mathematik 3 I. Zahlenraum bis 1000 beherrschen - sich im Zahlenraum bis 1000 orientieren - Zahlvorstellungen entwickeln - Gröβenbegriffe - Zahlen darstellen - Rechnen mit Geld - aus Texten mathematische

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen Zum Gleichheitszeichen Materialien im Anfangsunterricht

Mehr

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name:

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Für unsaubere Darstellung gibt es Abzug Die angegebenen Punkte gelten unter Vorbehalt. Aufgabe 1 (6 Punkte): Hier ist eine Zahl mit Plättchen

Mehr

Werkstatt Mathematik Rechnen im ZR Million Zahlraumerfassung bis

Werkstatt Mathematik Rechnen im ZR Million Zahlraumerfassung bis Werkstatt Mathematik Rechnen im ZR Million Zahlraumerfassung bis 1 000 000 Diese Lernwerkstatt für das 4. Schuljahr enthält vielfältige, motivierende Angebote, die den Schülern eine intensive Auseinandersetzung

Mehr

3. Stegreifaufgabe aus der Mathematik Lösungshinweise

3. Stegreifaufgabe aus der Mathematik Lösungshinweise Schuljahr 08/09 3. Stegreifaufgabe aus der Mathematik Lösungshinweise Gruppe A Aufgabe 1 (a) Es gilt: Zwei Brüche werden multipliziert, indem man den Zähler des ersten Bruchs mit dem Zähler des zweiten

Mehr

LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1

LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1 LINEARE GLEICHUNGSSYSTEME 1. Ein kurzes Vorwort Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie 2 x 1 + 2 x 2 = 3 6 a + 4 b = 3 (a) (b) 4 x 1 + 3 x 2 = 8 3 a + 2

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 1. Semester ARBEITSBLATT 4 DIE RATIONALEN ZAHLEN. 1) Einleitung

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 1. Semester ARBEITSBLATT 4 DIE RATIONALEN ZAHLEN. 1) Einleitung ARBEITSBLATT DIE RATIONALEN ZAHLEN 1) Einleitung Wie wir schon bei der Erweiterung von der Menge der natürlichen Zahlen auf die Menge der ganzen Zahlen gesehen haben, ist es ein Ziel der Mathematik, innerhalb

Mehr

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September September 1. Die natürlichen Zahlen Kenntnisse und Fähigkeiten im Umgang mit natürlichen Zahlen vertiefen Vorstellungen mit natürlichen Zahlen verbinden natürliche Zahlen am Zahlenstrahl darstellen und

Mehr

DOWNLOAD VORSCHAU. um Gewichte. zur Vollversion. Arbeitsmaterialien für Schüler mit sonderpädagogischem Förderbedarf

DOWNLOAD VORSCHAU. um Gewichte. zur Vollversion. Arbeitsmaterialien für Schüler mit sonderpädagogischem Förderbedarf DOWNLOAD Christina Barkhausen, Vanessa Murfino Lebensnahe Sachaufgaben rund um Gewichte Arbeitsmaterialien für Schüler mit sonderpädagogischem Förderbedarf Bergedorfer Unterrichtsideen Christina Barkhausen

Mehr

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum

Mehr

Inhaltsverzeichnis: Band 1

Inhaltsverzeichnis: Band 1 Inhaltsverzeichnis: Band 1 0. Einleitung 15 1. Ausgangslage 17 1.1 Situation des deutschen Bildungswesens 17 1.2 Schieflage" des Mathematikunterrichts 19 1.2.1 Ergebnisse deutscher Schülerinnen und Schüler

Mehr

MATHEMATIK. Name: Vorname: maximale Punkte 1 a), b) 4 2 a), b), c) 6 3 a), b) Gesamtpunktzahl 38. Die Experten: 1.

MATHEMATIK. Name: Vorname: maximale Punkte 1 a), b) 4 2 a), b), c) 6 3 a), b) Gesamtpunktzahl 38. Die Experten: 1. Berufsmaturität Kanton Glarus Aufnahmeprüfung 2013 Kaufmännische Berufsfachschule Glarus Kaufmännische Richtung MATHEMATIK Name: Vorname: Note Aufgabe Nr. Teilaufgaben erreichte Punkte maximale Punkte

Mehr

Angewandte Aufgaben für lineare Gleichungen

Angewandte Aufgaben für lineare Gleichungen Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 1/5 Angewandte Aufgaben für lineare Gleichungen Gleichungen sind ein Hilfsmittel, mit dem schwierige Probleme systematisch in lösbare Teilprobleme

Mehr