Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn

Größe: px
Ab Seite anzeigen:

Download "Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn"

Transkript

1 Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch, der Dezimeter, der Diagonale, die Differenz, die Dividend, der Additionen, die Ar, zwei Basen, die Beträge, die Binome, die Brüche, die Bruchstriche, die Deckflächen, die Dekagramm, zwei Deltoide, die Dezimalbrüche, die Dezimeter, zwei Diagonalen, die Differenzen, die Dividenden, die dividiert Division, die Divisor, der Divisionen, die Divisoren, die drei Dreieck, das dreiseitige Prisma, das Dreiecke, die dreiseitigen Prismen, die dreißig dreizehn Drittel, ein Durchschnitt, der ebene Figur, die Drittel, zwei Durchschnitte, die ebenen Figuren, die 1

2 echte Bruch, der eckige Klammer, die echten Brüche, die eckigen Klammern, die eins elf erhabene Winkel, der Faktor, der Flächeninhalt, der erhabenen Winkel, die Faktoren, die Flächeninhalte, die fünf fünfzig ganze Zahl, die gemischte Zahl, die geometrische Grundbegriffe (pl) Gerade, die gerade natürliche Zahl, die geschwungene Klammer, die gestreckte Winkel, der gleichschenklige Dreieck, das gleichseitige Dreieck, das Gleichung, die Grad, der Gramm, das Grundfläche, die Grundrechnungsart, die Halbes, ein Hektar, das Hochzahl, die hundert Hundertstel, ein Intervall, das ganzen Zahlen, die gemischten Zahlen, die geometrische Grundbegriffe Geraden, die geraden natürlichen Zahlen, die geschwungenen Klammern, die gestreckten Winkel, die gleichschenkligen Dreiecke, die gleichseitigen Dreiecke, die Gleichungen, die Grad, zwei Gramm, zwei Grundflächen, die Grundrechnungsarten, die Halbe, zwei Hektar, zwei Hochzahlen, die hundert Hundertstel, zwei Intervalle, die ist Element von ist gleich 2

3 ist größer als ist größer gleich ist kein Element von ist kein Teiler von ist kleiner als ist kleiner gleich ist rund ist Teiler von ist Teilmenge von ist ungleich Kegel, der Kilogramm, das Kilometer, der Komma, das Körper, der Kreis, der Kreisring, der Kreissektor, der Kubikdezimeter, der Kubikmeter, der Kugel, die leere Menge, die Kegel, die Kilogramm, zwei Kilometer, zwei Kommata, die / Kommas, die Körper, die Kreise, die Kreisringe, die Kreissektoren, die Kubikdezimeter, zwei Kubikmeter, zwei Kugeln, die leeren Mengen, die mal Maß, das Menge, die Meter, das Milliarde, eine Meter, das Million, eine Minuend, der Maße, die Mengen, die Meter, zwei Milliarden, zwei Meter, zwei Millionen, zwei Minuenden, die minus 3

4 Minute, die Monom, das Multiplikation, die natürliche Zahl, die Nenner, der Minuten, die Monome, die Multiplikationen, die natürlichen Zahlen, die Nenner, die neun neunzig normale Geraden (pl.) normale Geraden null Nullwinkel, der Oberfläche, die Oktaeder, der parallele Geraden (pl.) Parallelogramm, das Nullwinkel, die Oberflächen, die Oktaeder, die parallele Geraden Parallelogramme, die plus Polynom, das Potenz, die Produkt, das Prozent, das Punkt, der Pyramide, die Quader, der Quadrat, das Quadratdezimeter, der Quadratkilometer, der Quadratmeter, der Quadratmillimeter, der Quadratwurzel aus a, die Quadratzentimeter, der Quotient, der Radius, der Polynome, die Potenzen, die Produkte, die Prozente, die / Prozent, zwei Punkte, die Pyramiden, die Quader, die Quadrate, die Quadratdezimeter, zwei Quadratkilometer, zwei Quadratmeter, zwei Quadratmillimeter, zwei Quadratwurzeln, die Quadratzentimeter, zwei Quotienten, die Radien, die 4

5 rationale Zahl, die Raute, die rechte Winkel, der Rechteck, das rechtwinkelige Dreieck, das reelle Zahl, die runde Klammer, die Scheitel, der Schenkel, der Schnittpunkt, der rationalen Zahlen, die Rauten, die rechten Winkel, die Rechtecke, die rechtwinkeligen Dreiecke, die reellen Zahlen, die runden Klammern, die Scheitel, die Schenkel, die Schnittpunkte, die sechs sechzig sechsseitiges Prisma, das Seite, die Sekunde, die sechsseitigen Prismen, die Seiten, die Sekunden, die sieben siebzig spitze Winkel, der spitzwinkelige Dreieck, das Strahl, der Strecke, die stumpfe Winkel, der stumpfwinkelige Dreieck, das Stunde, die Subtrahend, der Subtraktion, die Summand, der Summe, die Tag, der spitzen Winkel, die spitzwinkelige Dreieck, das Strahlen, die Strecken, die stumpfen Winkel, die stumpfwinkeligen Dreiecke, die Stunden, die Subtrahenden, die Subtraktionen, die Summanden, die Summen, die Tage, die tausend Tausendstel, ein Tausendstel, zwei 5

6 Term, der Tetraeder, der Tonne, die Trapez, das Umfang, der unechter Bruch, der ungerade natürlich Zahl, die Ungleichung, die Vereinigung, die Terme, die Tetraeder, die Tonnen, die Trapeze, die Umfänge, die unechten Brüche, die ungeraden natürlichen Zahlen, die Ungleichungen, die Vereinigungen, die vier Viertel, ein Viertel, zwei vierzig volle Winkel, der Volumen, das Würfel, der Zahl, die Zähler, der zehn Zehntel, ein Zeichen, das Zentimeter, der vollen Winkel, die Volumina, die Würfel, die Zahlen, die Zähler, die zehn Zehntel, zwei Zeichen, die Zentimeter, zwei zwanzig zwei zwölf Zylinder, der Zylinder, die 6

acute angle, the spitze Winkel, der spitzen Winkel, die acute triangle, the spitzwinkelige Dreieck, das spitzwinkelige Dreieck, das

acute angle, the spitze Winkel, der spitzen Winkel, die acute triangle, the spitzwinkelige Dreieck, das spitzwinkelige Dreieck, das Englisch Deutsch Plural a cubed (a to the power of 3) a hoch 3 a squared a zum Quadrat acute angle, the spitze Winkel, der spitzen Winkel, die acute triangle, the spitzwinkelige Dreieck, das spitzwinkelige

Mehr

a hoch 3 a cubed (a to the power of 3) Addition, die Additionen, die addition, the Bruch, der Brüche, die fraction, the

a hoch 3 a cubed (a to the power of 3) Addition, die Additionen, die addition, the Bruch, der Brüche, die fraction, the Deutsch Plural Englisch a hoch 3 a cubed (a to the power of 3) a zum Quadrat acht achtzig a squared eight eighty Addition, Additionen, addition, the Ar, das Ar, zwei are, the Basis, Basen, base, the Betrag,

Mehr

Natürliche Zahlen, besondere Zahlenmengen

Natürliche Zahlen, besondere Zahlenmengen Natürliche Zahlen, besondere Zahlenmengen A5_01 Menge der natürlichen Zahlen N = {1, 2, 3,...} Menge der natürlichen Zahlen mit der Null N 0 = {0, 1, 2,...} Primzahlen: Eine Primzahl hat genau zwei Teiler,

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Grundwissen Seite 1 von 11 Klasse5

Grundwissen Seite 1 von 11 Klasse5 Grundwissen Seite 1 von 11 Klasse5 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen Beispiele: 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Kopfrechenphase Wo ist das A? vorne, links, oben. (vorne, rechts) 2. Was wurde markiert? Fünf von sechs Teilen sind farbig. Also fünf Sechstel

Kopfrechenphase Wo ist das A? vorne, links, oben. (vorne, rechts) 2. Was wurde markiert? Fünf von sechs Teilen sind farbig. Also fünf Sechstel Kopfrechenphase 1 1. Wo ist das A? vorne, links, oben (vorne, rechts) 2. Was wurde markiert? Fünf von sechs Teilen sind farbig. Also fünf Sechstel 3. Fehler gesucht! a) 1kg sind 1000g b) 1m hat 1000mm

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Schrägbilder von Körpern Quader

Schrägbilder von Körpern Quader Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme

Mehr

Alan Flächeninhalt, der Flächeninhalte, die. Altiyüzlü Prizma sechsseitige Prisma, das sechsseitigen Prismen, die

Alan Flächeninhalt, der Flächeninhalte, die. Altiyüzlü Prizma sechsseitige Prisma, das sechsseitigen Prismen, die Türkisch Deutsch Plural a nin karesi a zum Quadrat a nin küpü a hoch 3 Alan Flächeninhalt, der Flächeninhalte, die Alti, 6 sechs Altiyüzlü Prizma sechsseitige Prisma, das sechsseitigen Prismen, die Altkümesidir

Mehr

MTG Grundwissen Mathematik 5.Klasse

MTG Grundwissen Mathematik 5.Klasse MTG Grundwissen Mathematik 5.Klasse Umgang mit großen Zahlen Beispiel: 47.035.107.006 = 4 10 10 + 7 10 9 + 3 10 7 + 5 10 6 + 10 5 + 7 10 3 + 6 10 0 A1: Schreibe 117 Billionen 12 Milliarden vierhundertsiebentausendsechzig

Mehr

Deutsch Plural Türkisch. acht Sekiz,8. achtzig Seksen, 80. Addition, die Additionen, die Toplama. Ar, das Ar, zwei Ar. Basis, die Basen, die Temel,

Deutsch Plural Türkisch. acht Sekiz,8. achtzig Seksen, 80. Addition, die Additionen, die Toplama. Ar, das Ar, zwei Ar. Basis, die Basen, die Temel, Deutsch Plural Türkisch a hoch 3 a zum Quadrat a nin küpü a nin karesi acht Sekiz,8 achtzig Seksen, 80 Addition, die Additionen, die Toplama Ar, das Ar, zwei Ar Basis, die Basen, die Temel, Betrag, der

Mehr

Wie heißen die römischen Zahlzeichen für 1, 5, 10, 50, 100, 500 und 1000?

Wie heißen die römischen Zahlzeichen für 1, 5, 10, 50, 100, 500 und 1000? Wie heißen die Teile der Addition? Summand plus Summand = Summe Wie heißen die Teile der Subtraktion? Minuend minus Subtrahend = Differenz Wie heißen die Teile der Multiplikation? Multiplikand mal Multiplikator

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

alaplap Grundfläche, die Grundflächen, die alapművelet Grundrechnungsart, die Grundrechnungsarten, die átlag Durchschnitt, der Durchschnitte, die

alaplap Grundfläche, die Grundflächen, die alapművelet Grundrechnungsart, die Grundrechnungsarten, die átlag Durchschnitt, der Durchschnitte, die Ungarisch Deutsch Plural a a köbön a hoch 3 a a négyzeten a zum Quadrat abszolút érték Betrag von a, der Beträge, die alap Basis, die Basen, die alaplap Grundfläche, die Grundflächen, die alapművelet Grundrechnungsart,

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

Stoffverteilungsplan Mathematik Klasse 5

Stoffverteilungsplan Mathematik Klasse 5 Stoffverteilungsplan Mathematik Klasse 5 Lehrwerk: Mathematik heute; Schroedel Zeitraum Themen/Inhalte Begriffe/Bemerkungen Lehrbuch/KA Leitidee/Kompetenzen Weitere Hinweise 6 Wochen Natürliche Zahlen

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Mathematik 5. Klasse. 1. Grundlagen der Algebra. Zahlenmengen

Mathematik 5. Klasse. 1. Grundlagen der Algebra. Zahlenmengen Mathematik 5. Klasse Diese Stoffübersicht ist in drei Hauptteile gegliedert: 1. Grundlagen der Algebra (Zahlenmengen, Rechenarten, Rechengesetze); 2. Geometrie; 3. Darstellung und Kombinatorik Quellen:

Mehr

Deutsch Plural Ungarisch. Addition, die Additionen, die összeadás. Betrag von a, der Beträge, die abszolút érték

Deutsch Plural Ungarisch. Addition, die Additionen, die összeadás. Betrag von a, der Beträge, die abszolút érték Deutsch Plural Ungarisch a hoch 3 a zum Quadrat acht achtzig a a köbön a a négyzeten nyolc nyolcvan Addition, die Additionen, die összeadás Ar, das Ar, zwei ár Basis, die Basen, die alap Betrag von a,

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 In dieser Anfangsphase sollen die Schülerinnen und Schüler keine Wiederholung des Grundschulstoffs durchmachen, sondern bereits

Mehr

Mathematik Sekundarstufe I Index des Begleitheftes 1

Mathematik Sekundarstufe I Index des Begleitheftes 1 Mathematik Sekundarstufe I Index des Begleitheftes 1 Begriff abrunden x Das Runden 1 3b 46 absolute Häufigkeit x Die absolute und die relative Häufigkeit 1 5 62 Achsenspiegelung x Die Abbildung 1 1c 8

Mehr

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf * Rechnen und Mathematik Crash kurs Ein Übungsbuch für Ausbildung und Beruf Duden Crashkurs Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf Dudenverlag Mannheim Leipzig Wien Zürich Bibliografische

Mehr

I. Zahlen. Zahlensysteme 2035= Zahlenmengen 2035=5 407= Teilbarkeitsregeln. Runden Z H T

I. Zahlen. Zahlensysteme 2035= Zahlenmengen 2035=5 407= Teilbarkeitsregeln. Runden Z H T I. Zahlen Zahlensysteme Unser Zahlensystem besteht aus den Ziffern 0 bis 9 (Dezimalsystem) und ist ein Stellenwertsystem; die Stelle einer Ziffer bestimmt ihren Wert in der Zahl. Das römische Zahlensystem

Mehr

Addition. Lehrsatz. Höhenschnittpunkt. Mathematik. Umkreismittelpunkt. Grieche. Schwerpunkt 3,14. Plusrechnen. Kreisformel.

Addition. Lehrsatz. Höhenschnittpunkt. Mathematik. Umkreismittelpunkt. Grieche. Schwerpunkt 3,14. Plusrechnen. Kreisformel. Pythagoras Eulersche Gerade Lehrsatz Mathematik Grieche Höhenschnittpunkt Umkreismittelpunkt Schwerpunkt Addition Pi Plusrechnen 3,14 Zusammenrechnen Kreisformel Zahlen Zylinderformel Regelmäßiges Vieleck

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158 Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis. zwei gleiche Binome 132 zwei gleiche Binome mit unterschiedlichen Vorzeichen 133

Stichwortverzeichnis. Symbole. Stichwortverzeichnis. zwei gleiche Binome 132 zwei gleiche Binome mit unterschiedlichen Vorzeichen 133 Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 37, 89 (Wurzelzeichen) 36, 84 (Multiplikations-Zeichen) 36 * (Multiplikations-Zeichen) 36 + (Plus-Zeichen) 36, 43, 99, 120 - (Minus-Zeichen)

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Grundwissen Mathematik 6. Klasse

Grundwissen Mathematik 6. Klasse Themen Brüche Eigenschaften Besonderheiten - Beispiele Ein Bruchteil ist stets ein Teil eines Ganzen, zum Beispiel eine Hälfte, ein Drittel oder drei Viertel. Bruchteile stellt man mithilfe von Brüchen

Mehr

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens. 1 Reelle Zahlen - Quadratwurzeln Wir kennen den Flächeninhalt A = 49 m 2 eines Quadrats und möchten seine Seitenlänge x berechnen Es ist also jene Zahl x zu ermitteln, die mit sich selbst multipliziert

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010)

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010) M 6.1 Brüche Brüche beschreiben Bruchteile. Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent angegeben. Prozent heißt

Mehr

Inhaltsverzeichnis / Modul 1

Inhaltsverzeichnis / Modul 1 Inhaltsverzeichnis / Modul 1 i Der Taschenrechner - Einführung 1 Der Taschenrechner - 2 Besonderheiten 2 Der Taschenrechner - 3 Übungen 3 Stellenwerte- 1 Addition 4 Stellenwerte - 2 Subtraktion 5 10, 100,

Mehr

Deutsch Kroatisch. Deutsch Plural Kroatisch

Deutsch Kroatisch. Deutsch Plural Kroatisch Deutsch Plural Kroatisch a hoch 3 a na kub a zum Quadrat a na kvadrat acht osam achtzig osamdeset Addition, Additionen, zbirajanje, adicija Ar, Ar, zwei ar Basis, Basen, baza Betrag, der Beträge, iznos

Mehr

MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM

MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM Dieses Heft gehört: I. RATIONALE ZAHLEN 1. Brüche, Bruchteile 1.1. Bruchteile von Größen Der Bruchteil z n eines Ganzen bedeutet: Teile das Ganze

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b.

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1 Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1, 1, 1 usw. Diese Brüche bezeichnet man als Stammbrüche. 2 2 Der Stammbruch

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Vorkurs der Ingenieurmathematik

Vorkurs der Ingenieurmathematik Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben

Mehr

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26 E1 E E3 E4 E5 E6 E7 Lösungen 1 Mein Wissen aus der 1. Klasse z. B., 1 F angemalt im Plan Da sie in unterschiedlichen Abteilungen des Flugzeugs saßen (Business-Class + Economy-Class), konnten sie einander

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010)

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010) M 6.1 Brüche Brüche beschreiben Bruchteile. Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Erweitern und Kürzen Durch Erweitern und Kürzen ändert sich der Wert des Bruches

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6 Bildungsplan 2004 Bildungsstandards für Mathematik Kern- und Klassen 5 und 6 Max-Planck-Gymnasium Böblingen 1 UE 1: Rechnen mit großen Zahlen UE 2: Messen und Auswerten natürliche Zahlen einfache Zehnerpotenzen

Mehr

Seite 1 von 6 Standardaufgaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Menge IN der natürlichen Zahlen

Seite 1 von 6 Standardaufgaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Menge IN der natürlichen Zahlen Seite 1 von 6 Standardaufaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Mene IN der natürlichen Zahlen 5 ist eine natürliche Zahl: der folenden Mene in jeweils einer

Mehr

Wenn wir in diesen Term für x = 2 einsetzen, entsteht eine Division durch Null!

Wenn wir in diesen Term für x = 2 einsetzen, entsteht eine Division durch Null! 4.1. Bruchterm (.6.) Seite 9 Bruchterme mit Variablen im Nenner sind nicht immer definiert, da unter Umständen der Nenner 0 sein kann. 4 x Wenn wir in diesen Term für x = einsetzen, entsteht eine Division

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen () 6. Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Zahlen und Mengen 1.8

Zahlen und Mengen 1.8 Zahlen und Mengen.8 0 N - Z Q R _ ist als Bruch eine rationale Zahl Q und R als negative Zahl gehört zu Z, Q und R. π ist irrational und gehört daher nur zu R. 0 ist eine natürliche Zahl und gehört daher

Mehr

GRUNDWISSEN MATHEMATIK KLASSENSTUFEN 5 UND 6 1. ZAHLEN. 1.1 Zahlenmengen. 1.2 Teiler und Vielfache. 1.3 Teilbarkeitsregeln

GRUNDWISSEN MATHEMATIK KLASSENSTUFEN 5 UND 6 1. ZAHLEN. 1.1 Zahlenmengen. 1.2 Teiler und Vielfache. 1.3 Teilbarkeitsregeln 1.1 Zahlenmengen 1. ZAHLEN { } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen 1.2 Teiler und Vielfache Teiler: 4 32, also 4 ist Teiler von 32, d. h.

Mehr

Inhaltsbezogene Kompetenzen 1 Klasse 5 und 6 Curriculum Klasse 5 Schulcurriculum für alle Kompetenzen: Üben und Vertiefen

Inhaltsbezogene Kompetenzen 1 Klasse 5 und 6 Curriculum Klasse 5 Schulcurriculum für alle Kompetenzen: Üben und Vertiefen Curriculum Mathematik Klasse 5 und 6 SCHÖNBUCH-GYMNASIUM HOLZGERLINGEN Natürliche Zahlen natürliche Zahlen dezimales Stellenwertsystem Zweiersystem (Schulcurriculum) Primzahlen, Primfaktoren Teilbarkeitsregeln

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet.

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.2 Erkläre wie man ein Parallelogramm in ein Rechteck verwandeln kann und somit auch dessen Fläche berechnen kann. 90X.3 Erkläre wie man

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

Längen (km m dm cm mm) umrechnen. Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen. Rauminhalte (m³ dm³ cm³ mm³) umrechnen

Längen (km m dm cm mm) umrechnen. Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen. Rauminhalte (m³ dm³ cm³ mm³) umrechnen 1 Längen (km m dm cm mm) umrechnen Längen (mm - µm nm) Zeitspannen (d h min s) umrechnen Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen Rauminhalte (m³ dm³ cm³ mm³) umrechnen Gewichte (t kg g mg) umrechnen

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Brüche. Prozentschreibweise

Brüche. Prozentschreibweise M 6. Brüche Brüche beschreiben Bruchteile. 4 00 = 00 = (00 4) = = 7 4 Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil 4 M 6. Prozentschreibweise Anteile werden häufig in

Mehr

Brüche. Brüche beschreiben Bruchteile. M = = =25 3=75

Brüche. Brüche beschreiben Bruchteile. M = = =25 3=75 M 6.1 Brüche Brüche beschreiben Bruchteile. 3 4 100=1 100 3=100 4 3=5 3=75 4 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil 1 14 M 6. Prozentschreibweise Anteile werden

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Stichwortverzeichnis. 3-D siehe Dreidimensionalität D-Grafiker 303

Stichwortverzeichnis. 3-D siehe Dreidimensionalität D-Grafiker 303 3-D siehe Dreidimensionalität 289 3-D-Grafiker 303 A Additionsregel 61, 332 Ähnliche Dreiecke 234 Anwendung 240 Beweis 239, 240 Eigenschaften 238 Voraussetzungen 235, 237, 238 Winkel-Winkel-Satz 236 Ähnlichkeit

Mehr

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) KK/Werkjahr mit Mindeststandards [Druckversion] Leitdeen/Richtziele Stundentafeln Sprache Geometrisches Zeichnen Mensch und Umwelt Gestalten und Musik Sport Individuum und Gemeinschaft Niveaus E P Links

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen Schulcurriculum Mathematik Hauptschule Klassse 8 Hauptschule Lehrwerk: Maßstab Band 8 Verlag: Schrödel ISBN: 3-507-84304-8 Inhalte Medien e gemäß Kerncurriculum Thema 1 LB S. 8-21 Zahlen und Größen Addition

Mehr

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

absolutní hodnota a Betrag von a, der Beträge, die celé číslo ganze Zahl, die ganzen Zahlen, die centimetr Zentimeter, der Zentimeter, zwei

absolutní hodnota a Betrag von a, der Beträge, die celé číslo ganze Zahl, die ganzen Zahlen, die centimetr Zentimeter, der Zentimeter, zwei Tschechisch Deutsch Plural a na druhou a zum Quadrat a na třetí a hoch 3 absolutní hodnota a Betrag von a, der Beträge, die ar Ar, das Ar, zwei bod Punkt, der Punkte, die celé číslo ganze Zahl, die ganzen

Mehr

Unterrichtsinhalte Mathematik Klasse 5

Unterrichtsinhalte Mathematik Klasse 5 Schulinternes Curriculum Jahrgangsstufen 5-9 Mathematik Phoenix-Gymnasium Dortmund Fachschaft Mathematik Unterrichtsinhalte Mathematik Klasse 5 Ziel des Unterrichts ist es, die Mathematikkenntnisse aus

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.1 Brüche Brüche beschreiben Bruchteile bzw. Anteile (s. auch 6.10) Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent

Mehr

MatheBlatt (Version 2)

MatheBlatt (Version 2) MatheBlatt (Version 2) Bilder und Formvorlagen für Mathe-Arbeitsblätter / Inhaltsverzeichnis Copyright Hans Zybura Software, 2008. Alle Rechte vorbehalten. Formatvorlagen aus Word-Zeichnen Elementen und

Mehr

Basiswissen 5. Klasse

Basiswissen 5. Klasse Basiswissen 5. Klasse 1. Daten Zur Darstellung von Daten werden oft Strichlisten, Figurendiagramme oder Säulen- und Strichdiagramme verwendet. Strichliste: Alter Strichliste Anzahl 5-10 Jahre 3 10-15 Jahre

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n M M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. Inhaltsverzeichnis Grundwissen Brüche Erweitern und Kürzen von Brüchen Prozentschreibweise Rationale Zahlen Dezimalschreibweise

Mehr

Grundwissen Seite 1 von 17 Klasse6

Grundwissen Seite 1 von 17 Klasse6 Grundwissen Seite 1 von 17 Klasse6 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche Zahl kurz:

Mehr

5 Grundwissen der 5. Klasse

5 Grundwissen der 5. Klasse Gymnasium bei St. Anna, Augsburg Seite 1 Grundwissen 5. Klasse 5 Grundwissen der 5. Klasse 5.1 Natürliche Zahlen und ganze Zahlen Definition: 1. Alle natürlichen Zahlen 1, 2, 3, 4,... fasst man zur Zahlenmenge

Mehr

360-stupňový uhol volle Winkel, der vollen Winkel, die. celé číslo ganze Zahl, die ganzen Zahlen, die. centimeter Zentimeter, der Zentimeter, zwei

360-stupňový uhol volle Winkel, der vollen Winkel, die. celé číslo ganze Zahl, die ganzen Zahlen, die. centimeter Zentimeter, der Zentimeter, zwei Slowakisch Deutsch Plural 360-stupňový uhol volle Winkel, der vollen Winkel, die a na druhú a zum Quadrat a na tretiu a hoch 3 absolútna hodnota Betrag von a, der Beträge, die ár Ar, das Ar, zwei bod Punkt,

Mehr