1 Übungsaufgaben. 1.1 Übungsaufgaben zu Kapitel 1 1 ÜBUNGSAUFGABEN 0

Größe: px
Ab Seite anzeigen:

Download "1 Übungsaufgaben. 1.1 Übungsaufgaben zu Kapitel 1 1 ÜBUNGSAUFGABEN 0"

Transkript

1 ÜBUNGSAUFGABEN Übungsaufgaben In diesem Kapitel sind Übungsaufgaben zusammengestellt, die den Stoff der Vorlesung vertiefen und die für Prüfungen erforderliche Praxis und Schnelligkeit vermitteln sollen. Dem Studierendem wird daher dringend empfohlen zumindest einige der Aufgaben selbstständig zu bearbeiten.. Übungsaufgaben zu Kapitel. Zum Vektor a soll ein Vielfaches des Vektors b addiert werden, so daß die Summe von a und λ b auf dem Vektor c senkrecht steht. Wie muß man λ a) allgemein b) für die Vektoren a = wählen? 2. Gegeben sei a = 2 6, b =, c = 2 5. Bestimmen Sie alle Vektoren v, für die a v = gilt.. Welchen Winkel schließen die beiden Vektoren a = und b = ein? 4. Seien u, v, w unabhängige Vektoren. Sind dann die drei Vektoren u + v, u v und u 2 v + w ebenfalls unabhängig? 5. Man prüfe auf lineare Abhängigkeit bzw. Unabhängigkeit: a) 2,, b) 4 7,,,. 6. Seien a = 2, b =. a) Man berechne a b. b) Welchen Winkel bilden a und b? 7. Gegeben seien die Geraden g und g 2 durch die Punkte (,), (,) bzw. (,2), (2,). a) Ermitteln Sie die Parameterdarstellungen von g und g 2.

2 ÜBUNGSAUFGABEN b) Wie lauten die parameterfreien Gleichungen der Geraden? 8. Gegeben sei eine Ebene E durch die Punkte P = (,2, ), P = (,,) und P 2 = (2,, 2). a) Geben Sie die Parameterdarstellung von E an. b) Man stelle die implizite Gleichung der Ebene E auf. c) Wie lautet die Hesse-Normalform von E? 9. Gegeben seien die Matrizen A = ( ) 2, B = 4 D = (2 ) T. ( ) 4, C = 2 Man berechne, falls möglich, die folgenden Ausdrücke: , a)a 4B b)a+c c)ab d)ac e)ad f)bc g)bd h)cd i)a T j)a T C k)d T A T l)b T A m)d T D n)dd T o)b 2. B sei eine (2,2)-Matrix, die die Gleichung AB = BA für jede beliebige (2,2)-Matrix A erfüllt. Man zeige, daß B dann eine sog. Skalarmatrix ist, d.h. B = ( ) λ λ mit λ IR.. Ein Unternehmen benötigt zur Produktion der Mengen e und e 2 zweier Endprodukte E und E 2 zwei Zwischenprodukte Z und Z 2. Diese werden aus drei verschiedenen Rohstoffen R,R 2 und R hergestellt. Für eine ME e werden 2 ME Z und ME Z 2, für eine ME e 2 werden ME Z und 2 ME Z 2 benötigt. ME von Z entsteht aus ME R, ME R 2 und ME R. ME von Z 2 entsteht aus ME R, 2 ME R 2 und 2 ME R. a) Ermitteln Sie durch Aufstellung geeigneter Matrizen den Rohstoffbedarf für die Herstellung von e = 2 und e 2 = 5 Endprodukten. b) Stellen Sie eine Matrixgleichung auf, aus der man für beliebige Produktionsmengen sofort den Rohstoffbedarf ermitteln kann. c) Gegeben sei nun der Preisvektor p = (p,p 2,p ) = (.5,,.) T (eine ME von R i kostet p i GE). Wie hoch sind die Rohstoffkosten K für obigen Produktionsplan? 2. Gegeben sei eine Diagonalmatrix D n mit Diagonalelementen λ i (i =,...,n). Man beweise: D n ist positiv definit alle λ i >.

3 ÜBUNGSAUFGABEN 2. Wir betrachten wieder das Unternehmen aus Aufgabe??. Es seien nun 9 ME von R sowie 85 ME von R 2 und R vorhanden. a) Welche Endproduktmengen e i, i =,2 (=Produktionsplan) muß der Unternehmer herstellen, um alle Rohstoffe zu verbrauchen? b) Gibt es mehrere Produktionspläne mit totalem Rohstoffverbrauch? (Begründung!) c) Der Unternehmer stellt fest, daß die Rohstoffe R 2 und R identischen Verbrauch haben. Er hält diese daher immer in gleichen Mengen r 2 = r vorrätig. Stellen Sie eine Matrixgleichung auf, aus der sich für beliebige Rohstoffvorräte r i, i =, 2 sofort der Produktionsplan für den Totalverbrauch der Rohstoffe ergibt! Gelten die einfachen Beziehungen e = r r 2 und e 2 = 5 (r 2 8e )? (Begründung!) 4. Man berechne die Inversen der Matrizen 2 a)a = 5 6 b)b = Gegeben seien folgende Matrizen und Vektoren: A = a) Berechnen Sie AB., B = 2.5 λ 2.5 λ 4λ λ, b =, x = b) Wählen Sie λ IR danach so, daß B = A. Lösen Sie (mit diesem λ) das System A x = b. c) Nunmehr sei λ = : Bestimmen Sie rang(b) und lösen Sie das System B x = b. 6. Ist im Aktienportfolio-Beispiel von S. 65 die Auszahlung w = (2,,2) T erreichbar? 7. Ein Wertpapiermarkt mit gegebener s n Auszahlungsmatrix D heißt vollständig, falls jede beliebige Auszahlung w IR s erreichbar ist. a) Welche formale Bedingung muß für D auf einem vollständigen Markt gelten? b) Ist der Markt mit der Matrix D T = vollständig? 2 2 c) Ist der Markt des Beispiels von Seite 65 vollständig? 8. Gegeben sei ein Wertpapiermarkt mit der Auszahlungsmatrix D = x x 2 x x 4 ( und dem Preissystem q T = (,48,8). Ist dann θ = (5, /2,) T ein Arbitrageportfolio? Interpretieren Sie das Ergebnis!. )

4 ÜBUNGSAUFGABEN 9. Gegeben sei ein Wertpapiermarkt mit der Auszahlungsmatrix D = dem Preissystem q T = (,2,7). a) Ist Arbitrage bzgl. der Auszahlung w = e = (,,,) T möglich? b) Ist Arbitrage mit der Auszahlung w = (,,,x) T mit x möglich? c) Ist der Markt vollständig? und.2 Übungsaufgaben zu Kapitel 2. Eine Bank lockt mit dem Angebot Wir verdoppeln ihr Kapital in 2 Jahren!!. a) Welche Verzinsung bietet Ihnen die Bank? b) Nach wievielen Jahren hat sich Ihr Kapital verdreifacht? 2. Beim Diskontieren von Wechseln wird die einfache, vorschüssige Verzinsung benutzt. Sie reichen bei Ihrer Bank einen Wechsel in Höhe von Euro 2 Tage vor Fälligkeit ein. Welchen Betrag erhalten Sie bei einer Verzinsung von 5%?. Gegeben sei ein Startkapital von 2 Euro. a) Welches Endkapital hat man bei stetiger Verzinsung mit % nach zwei Jahren? b) Wie groß müßte der Zins bei exponentieller Verzinsung sein, um nach einem Jahr den gleichen Zinsbetrag zu bekommen wie bei stetiger Verzinsung? 4. Sie haben bei einer Lotterie für 2 Euro ein Los gekauft. Das Los ist scheinbar ein Glückstreffer, denn Sie können zwischen drei Alternativen wählen: A: Sie erhalten Ihren Einsatz sofort zurück. A2: Sie erhalten in einem Jahr Euro, in zwei Jahren 2, Euro. A: Sie erhalten nach einem Jahr 5,5 Euro, nach zwei Jahren 6,5 Euro und, Euro nach drei Jahren. Für welche Alternative entscheiden Sie sich, wenn derzeit ein Marktzins von % herrscht? 5. Auf dem Kapitalmarkt liege das Zinsniveau bei 8,5%. Gegeben sei eine Anleihe mit 8% Zins und 4 Jahre Restlaufzeit, die zum Kurs von getilgt wird. a) Ermitteln Sie den Barwert dieser Anleihe? b) Ein Investor kauft für. Euro diese Anleihe. Über welches Endvermögen kann er verfügen? 6. Gegeben sind die Spot Rates 8%, 8,25% und 8,5% für -,2- und -jährige Fristigkeiten. Wir betrachten eine 9%-Anleihe mit einer Restlaufzeit von Jahren, die zu getilgt wird.

5 ÜBUNGSAUFGABEN 4 a) Berechnen Sie den Barwert dieser Anleihe. b) Ermitteln Sie den Barwert der Anleihe aus den dazugehörigen Diskontierungsfaktoren. c) Ermitteln Sie den Barwert der Anleihe aus den äquivalenten Forward Rates. 7. Gegeben sei eine Anleihe A mit % Nominalzins, einem Preis von 5 und einer Restlaufzeit von 2 Jahren, die zum Kurs von T = getilgt wird. a) Berechnen Sie den Effektivzins der Anleihe A. b) Welche Kuponhöhe müßte bei halbjährlicher Zinszahlung die Anleihe A haben (d.h. zweimal pro Jahr die Hälfte des Zinses), so daß sich ihr ursprünglich berechneter Effektivzins nicht ändert? 8. Die Darlehenssumme beträgt Euro, jedoch behält der Darlehensgeber 5 Euro für Kreditwürdigkeitsprüfung- und Bearbeitungskosten ein, so daß sich der Auszahlungsbetrag des Darlehens auf 95 Euro beläuft. Die Rückzahlung erfolgt wie im ersten Vorlesungsbeispiel,5 Jahre nach der Darlehensaufnahme. Welcher Effektivzins ergibt sich? 9. Die Darlehenssumme S beträgt Euro. Der Darlehensnehmer hat folgende Raten zurückzuzahlen: nach Monaten: 272 Euro, nach 6 Monaten: 272 Euro, nach 2 Monaten: 544 Euro. Stellen Sie die Gleichung zur Bestimmung des Effektivzinses auf.. Berechnen Sie die Duration folgender endfälliger Anleihen mit einem Nennwert von jeweils : a) Anleihe A: k=6%, n=, b) Anleihe B: k=2%, n=5,5. Das derzeitige Zinsniveau am Markt betrage 9%.. Ein Spekulationsgewinn in Höhe von 25. Euro wird zu 5% angelegt. Der Spekulant hebt Jahre lang jährlich nachschüssig jeweils Euro ab. Wie hoch ist das Kapital nach Jahren? 2. a) Jemand erbt eine jährlich vorschüssige, zehnmal zahlbare Rente von Euro. Wie hoch wäre bei einem Zinssatz von 5% seine heutige Abfindung? b) Auf welchen Endwert wachsen Sparraten von jeweils Euro, zahlbar am Anfang eines Jahres, an bei einem Zinssatz von 5%? c) Welcher Endwert ergibt sich, wenn die Sparraten am Ende des Jahres zu zahlen sind?

6 ÜBUNGSAUFGABEN 5. Ein Bankkunde hat ein Guthaben von. Euro. a) Welche jährliche Rentenzahlung könnte er bei einem Zinssatz von 6% p.a. bei ewiger Rente bekommen? b) Wieviele Jahre würde das Guthaben reichen, wenn er die doppelte Rente bekäme? Wie hoch ist dann die letzte Zahlung? 4. Für einen Ratenkredit in Höhe von 8. Euro erhebt die Bank % p.a. a) Wie hoch muß die jährliche Tilgungsrate sein, damit der Kredit in 5 Jahren zurückgezahlt ist? b) Stellen Sie einen Tilgungsplan auf. c) Wie hoch ist der Barwert der Schuldnerbelastung bei einem Marktzins von 6%? 5. Formen Sie den Ratenkredit aus der vorherigen Aufgabe mit gleicher Anfangsschuld, gleichem Zinssatz und gleicher Laufzeit in ein Annuitätendarlehen um und geben Sie den Tilgungsplan an. Ist bei einem unterstellten Marktzins von 6% die Annuitätentilgung dem Ratenkredit vorzuziehen? 6. Bei Annuitätendarlehen wird aus steuerlichen Gründen häufig ein sog. Disagio (synonym: Damnum oder Abgeld) gewählt: man versteht darunter einen prozentualen Abzug vom nominellen Darlehensbetrag. Eine Bank bietet bei einem Disagio von 4,6% ein Annuitätendarlehen zu 5% p.a. Zins an. Bei anfänglicher Tilgung von % wird monatliche Zins- und Tilgungsverrechnung vereinbart. Ein Kreditnehmer benötigt. Euro. a) In welcher Höhe muß der Kredit aufgenommen werden? b) Ermitteln Sie die monatliche Annuität. c) Welche Restschuld ergibt sich nach 5 Jahren? d) Wie hoch ist die Tilgung nach 5 Jahren? e) Wann ist das Darlehen getilgt? 7. Eine Investition sei durch folgende Zahlungsreihe gekennzeichnet: Zeitpunkt t t t 2 t t 4 Einzahlungen Auszahlungen a) Handelt es sich um eine Normalinvestition? b) Ermitteln Sie den Kapitalwert bei einem Kalkulationszins von 8% bzw. 6%. c) Wann ist die Investition sinnvoll? 8. Gegeben sei eine Investition I = ( a,c,c,...,c) mit konstanten Überschüßen c t = c für t =,...,n. a) Vereinfachen Sie die Formel für den Kapitalwert C.

7 ÜBUNGSAUFGABEN 6 b) Wie lautet eine einfache Formel für die Kapitalwertannuität c? c) Gegeben sei nun die Investition Ĩ = ( 2.,.,.,.) und ein Kalkulationszins von 8% p.a. Berechnen Sie C und c mit den in (a) und (b) gefundenen Formeln. d) Welchen durchschnittlichen Übergewinn hat Ĩ? 9. Ein Unternehmer hat die Wahl eine Maschine bei der Firma A zu 75. Euro oder bei der Firma B zu 2. Euro zu kaufen. Voraussichtlich entstehen ihm während der dreijährigen Nutzungsdauer jährliche Wartungskosten von 5. Euro (Firma A) bzw. 25. Euro (Firma B). Die jährlichen Einnahmen belaufen sich auf 8. Euro (Firma A) bzw. 26. Euro (Firma B). Der Unternehmer benutzt zur Beurteilung der potentiellen Investitionen die Annuitätenmethode. Für welche Firma entscheidet er sich bei einem Kalkulationszinssatz von 8%? 2. Eine Investition I von. Euro erbringt nach dem ersten Jahr 2.6 Euro und kostet nach dem zweiten Jahr.65 Euro. Bestimmen Sie den internen Zinsfuß von I. 2. Bestimmen Sie möglichst einfache Formeln für die internen Zinsfüße der folgenden Spezialfälle: a) Investition mit Auszahlung a und einmaligem Einzahlungsüberschuß c n nach n Jahren. b) Investiton I = ( a,c = c,c 2 = c,...,c n = c) mit konstanten Einzahlungsüberschüßen c. Vereinfacht sich die Formel, wenn am Ende (nach n) Jahren noch zusätzlich ein Verkaufserlös von a anfällt, d.h. c n = c+a? c) Investition I = ( a,c,c 2 ). 22. Zeigen Sie, daß bei einer Normalinvestition, bei der zu Beginn lediglich eine einzige Auszahlung auftritt, nur ein positiver interner Zinsfuß existiert.. Übungsaufgaben zu Kapitel. Gegeben sei die Fläche z = x 2 y 2. Skizzieren Sie die Schnittkurven mit den Koordinatenebenen. Wie lautet die Gleichung der Niveaulinie? Skizzieren Sie die Fläche. 2. Existieren die folgenden Grenzwerte? a) lim (x,y) (,) x 2 x2 +y 2 b) lim (x,y) (,) x 2 y x 2 +y 2 x 2 y 2 c) lim (x,y) (,) x 2 +y 2. Berechnen Sie die partiellen Ableitungen.Ordnung der Funktion z = f(x, y) für a)z = e x2 +xy b)z = x y c)z = ln(tan( x y )) d)z = { xy x 2 +y 2 für (x,y) (,) für (x,y) = (,).

8 ÜBUNGSAUFGABEN 7 4. Bestimmen Sie die Gleichung der Tangentialebene im Punkt (2,,) an die Fläche z = x 2 +2y Wie groß ist der Anstiegswinkel α der Tangente parallel zur y, z-ebene an die Fläche z = 9 x 2 y 2 im Punkt (2,,z )? 6. Gegeben seien die Funktion f(x,y) = 2 x2 + xy, sowie die Punkte P = (,2) und P = (.,.9). a) Wo ist f(x, y) differenzierbar? b) Bestimmen Sie die Gleichung der Tangentialebene an die Fläche z = f(x,y) im Punkt P. c) Berechnen Sie in P das totale Differential von f(x,y). Welchen Wert hat das totale Differential für die Zuwächse dx =. und dy =.? Vergleichen Sie diesen Wert mit der Differenz f(p) f(p ). 7. Gegeben sei die Funktion f(x,y) = x 2 + y 2 sowie der Punkt x = (, 8) T und der Richtungsvektor v = (, 8) T. a) Man berechne die Richtungsableitung f T ( x) v. b) Man setze h(t) = f( x+t v) und berechne h (). c) Man zeige, daß jeder Vektor, der die Tangente an die Niveaulinie von f in x repräsentiert, senkrecht zu f( x) ist. d) Man zeichne die Niveaulinien von f und trage alle in a), b) und c) berechneten Größen in die Skizze ein. 8. Berechnen Sie die relativen Minima und Maxima von a) f(x,y) = x +y x 2y+2, b) f(x,y) = x 6xy +y.

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe

Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe Finanzmathematik Kapitel 4 Investitionen Prof. Dr. Harald Löwe Sommersemester 2012 1. Abschnitt INVESTITIONSRECHNUNG Voraussetzungen Investition als Zahlungsstrom Vom Investor zur leistende Zahlungen (Anschaffungen,

Mehr

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Studiengang BWL DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60

Mehr

3.3. Tilgungsrechnung

3.3. Tilgungsrechnung 3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es

Mehr

Finanzwirtschaft. Teil II: Bewertung

Finanzwirtschaft. Teil II: Bewertung Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000. Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

Übungsblatt 13 - Probeklausur

Übungsblatt 13 - Probeklausur Aufgaben 1. Der Kapitalnehmer im Kapitalmarktmodell a. erhält in der Zukunft einen Zahlungsstrom. b. erhält heute eine Einzahlung. c. zahlt heute den Preis für einen zukünftigen Zahlungsstrom. d. bekommt

Mehr

Finanzmathematik mit Excel

Finanzmathematik mit Excel Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz

Mehr

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011 Mathematik-Klausur vom 08.07.20 und Finanzmathematik-Klausur vom 4.07.20 Studiengang BWL DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min

Mehr

Zinsen, Zinseszins, Rentenrechnung und Tilgung

Zinsen, Zinseszins, Rentenrechnung und Tilgung Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins

Mehr

Einführung in die Betriebswirtschaftslehre

Einführung in die Betriebswirtschaftslehre Ernst-Moritz-Arndt- Rechts- und Staatswissenschaftliche Fakultät Lehrstuhl für Betriebswirtschaftslehre, insbesondere Marketing Daniel Hunold Skript zur Übung Einführung in die Betriebswirtschaftslehre

Mehr

Kolloquium zum Modul Finanzierungs- und entscheidungstheoretische Grundlagen der BWL SS 2011

Kolloquium zum Modul Finanzierungs- und entscheidungstheoretische Grundlagen der BWL SS 2011 Kolloquium zum Modul Finanzierungs- und entscheidungstheoretische Grundlagen der BWL SS 2011 Teil II: Investitionstheoretische Grundlagen (KE 3 und KE 4) 1 Überblick 2 Dominanzkriterien 3 Finanzmathematische

Mehr

Mathematik-Klausur vom 4.2.2004

Mathematik-Klausur vom 4.2.2004 Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich

Mehr

Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013

Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013 Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013 Finanzmathematik (TM/SRM/SM) Tutorium Finanzmathematik Teil 1 1 Zinseszinsrechnung Bei den Aufgaben dieses

Mehr

Wirtschaftsmathematik-Klausur vom 04.02.2015 und Finanzmathematik-Klausur vom 27.01.2015

Wirtschaftsmathematik-Klausur vom 04.02.2015 und Finanzmathematik-Klausur vom 27.01.2015 Wirtschaftsmathematik-Klausur vom 04.0.015 und Finanzmathematik-Klausur vom 7.01.015 Bearbeitungszeit: W-Mathe 60 Minuten und F-Mathe 45 Min Aufgabe 1 a) Für die Absatzmenge x in ME) und den Verkaufspreis

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb

Mehr

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe

Mehr

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und

Mehr

Kreditmanagement. EK Finanzwirtschaft

Kreditmanagement. EK Finanzwirtschaft EK Finanzwirtschaft a.o.univ.-prof. Mag. Dr. Christian KEBER Fakultät für Wirtschaftswissenschaften www.univie.ac.at/wirtschaftswissenschaften christian.keber@univie.ac.at Kreditmanagement 1 Kreditmanagement

Mehr

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui Übungsaufgaben zur Einführung in die Finanzmathematik Übungsaufgaben Aufgabe 1: A hat B am 1.1.1995 einen Betrag von EUR 65,- geliehen. B verpflichtet sich, den geliehenen Betrag mit 7% einfach zu verzinsen

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende

Mehr

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren?

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren? Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Mathematik für Prüfungskandidaten und Prüfungskandidatinnen Unterjährliche

Mehr

Übungsaufgaben. zur Vorlesung ( B A C H E L O R ) Teil E Betriebliche Finanzwirtschaft. Dr. Horst Kunhenn. Vertretungsprofessor

Übungsaufgaben. zur Vorlesung ( B A C H E L O R ) Teil E Betriebliche Finanzwirtschaft. Dr. Horst Kunhenn. Vertretungsprofessor Übungsaufgaben zur Vorlesung FINANZIERUNG UND CONTROLLING ( B A C H E L O R ) Teil E Betriebliche Finanzwirtschaft Dr. Horst Kunhenn Vertretungsprofessor Institut für Technische Betriebswirtschaft (ITB)

Mehr

Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010

Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010 Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

Übungsklausur der Tutoren *

Übungsklausur der Tutoren * Übungsklausur der Tutoren * (* Aufgabenzusammenstellung erfolgte von den Tutoren nicht vom Lehrstuhl!!!) Aufgabe 1 - Tilgungsplan Sie nehmen einen Kredit mit einer Laufzeit von 4 Jahren auf. Die Restschuld

Mehr

Lernfeld 11 Finanzierung Musterlösungen zum Modul Finanzierungsbegleitende Buchungen

Lernfeld 11 Finanzierung Musterlösungen zum Modul Finanzierungsbegleitende Buchungen Aufgabe 1 Nennen und erläutern Sie drei Darlehensformen nach den Tilgungsarten und nennen Sie je ein Beispiel. Lösung 1 Hinweis: Leider werden die Begrifflichkeiten in verschiedenen Lehrbüchern u. a. Veröffentlichungen

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Mathematik-Klausur vom 28.01.2008

Mathematik-Klausur vom 28.01.2008 Mathematik-Klausur vom 28.01.2008 Studiengang BWL PO 1997: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang B&FI PO 2001: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang BWL PO 2003: Aufgaben

Mehr

Fakultät für Wirtschaftswissenschaft

Fakultät für Wirtschaftswissenschaft Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Fakultät für Wirtschaftswissenschaft 2. Einsendearbeit zum Kurs 00091: Kurseinheit: Finanzierungs- und entscheidungstheoretische

Mehr

Test 1 (zu den Kapiteln 1 bis 6)

Test 1 (zu den Kapiteln 1 bis 6) Test 1 1 Test 1 (zu den Kapiteln 1 bis 6) Bearbeitungszeit: 90 Minuten Aufgabe T1.1: Bekanntmachung EUR 1.000.000.000,- Anleihe mit variablem Zinssatz der Fix AG von 2003/2013, Serie 111 Zinsperiode: 12.10.2006

Mehr

Eine Übersicht zu unseren Excel-Informationen finden Sie hier: www.urs-beratung.de/toolbox.htm

Eine Übersicht zu unseren Excel-Informationen finden Sie hier: www.urs-beratung.de/toolbox.htm urs toolbox - Tipps für Excel-Anwender Excel - Thema: Finanzmathematik excel yourself Autoren: Ralf Sowa, Christian Hapke Beachten Sie unsere Hinweise und Nutzungsbedingungen. Vorgestellte Musterlösungen

Mehr

Grundlagen der Kursrechnung und Renditeermittlung

Grundlagen der Kursrechnung und Renditeermittlung Grundlagen der Kursrechnung und Renditeermittlung Eingereicht bei Herrn Dipl.-Math. Norman Markgraf von Marco Halver (MaNr. 277035) marco.halver@gmx.net Bonhoefferstraße 13 47178 Duisburg 1 Gliederung

Mehr

1. Einfache Zinsrechnung (lineare Verzinsung)...2. 2. Zinseszinsrechnung (exponentielle Verzinsung)...4. 3. Rentenrechnung...5

1. Einfache Zinsrechnung (lineare Verzinsung)...2. 2. Zinseszinsrechnung (exponentielle Verzinsung)...4. 3. Rentenrechnung...5 Inhalt. Einfache Zinsrechnung (lineare Verzinsung).... Zinseszinsrechnung (exponentielle Verzinsung)...4. Rentenrechnung...5 4. Tilgungsrechnung...6 Die Größe p bezeichnet den Zinsfuß (z.b. 0). Die Größe

Mehr

Übungsblatt 1 Finanzmathematik

Übungsblatt 1 Finanzmathematik Übungsblatt 1 Finanzmathematik 1. Können bei einfacher Verzinsung von 6% und einer Anlagedauer von einem halben Jahr aus 1.000 e mehr als 1.030 e werden? 2. Ein fester Anlagebetrag wird bei der Privatbank

Mehr

Aufgabe 1: Finanzmathematik (20 Punkte)

Aufgabe 1: Finanzmathematik (20 Punkte) Aufgabe 1: Finanzmathematik (20 Punkte) Im Zusammenhang mit der Finanzmarktkrise entschließt sich der Autohersteller LEPO zusätzlich zu der vom Staat unter bestimmten Voraussetzungen bewilligten Abwrackprämie

Mehr

Berechnung des Grundwertes 27. Zinsrechnung

Berechnung des Grundwertes 27. Zinsrechnung Berechnung des Grundwertes 27 Das Rechnen mit Zinsen hat im Wirtschaftsleben große Bedeutung. Banken vergüten Ihnen Zinsen, wenn Sie Geld anlegen oder berechnen Zinsen, wenn Sie einen Kredit beanspruchen.

Mehr

Die Duration von Standard-Anleihen. - Berechnungsverfahren und Einflussgrößen -

Die Duration von Standard-Anleihen. - Berechnungsverfahren und Einflussgrößen - Die Duration von Standard-Anleihen - Berechnungsverfahren und Einflussgrößen - Gliederung Einleitendes Herleitung einer Berechnungsvorschrift Berechnungsvorschriften für Standardfälle Einflussgrößen und

Mehr

Übungsserie 6: Rentenrechnung

Übungsserie 6: Rentenrechnung HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Einsendearbeit 2 (SS 2012)

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche

Mehr

Ak. OR Dr. Ursel Müller. BWL III Rechnungswesen/ Investition und Finanzierung

Ak. OR Dr. Ursel Müller. BWL III Rechnungswesen/ Investition und Finanzierung Ak. OR Dr. Ursel Müller BWL III Rechnungswesen/ Investition und Finanzierung Übersicht Methoden der Investitionsrechnung 3 klassische finanzmathematische Methoden der Investitionsrechnung Der Kapitalwert

Mehr

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Errata in Grundlagen der Finanzierung verstehen berechnen entscheiden Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Stand 10. April 2006 Änderungen sind jeweils fett hervorgehoben.

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung.

Unter einer Rente versteht man eine regelmässige und konstante Zahlung. Anwendungen aus der Finanzmathematik a) Periodische Zahlungen: Renten und Leasing Unter einer Rente versteht man eine regelmässige und konstante Zahlung Beispiele: monatliche Krankenkassenprämie, monatliche

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

Bernd Luderer. Starthilfe Finanzmathematik. Zinsen - Kurse - Renditen. 4., erweiterte Auflage. Springer Spektrum

Bernd Luderer. Starthilfe Finanzmathematik. Zinsen - Kurse - Renditen. 4., erweiterte Auflage. Springer Spektrum Bernd Luderer Starthilfe Finanzmathematik Zinsen - Kurse - Renditen 4., erweiterte Auflage Springer Spektrum Inhaltsverzeichnis 1 Grundlegende Formeln und Bezeichnungen 1 1.1 Wichtige Bezeichnungen 1 1.2

Mehr

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen Übungskatalog WS 13/14 1 Einführung in die Investitionsrechnung Aufgabe 1.1) Definieren Sie den Begriff Investition unter Verwendung des Begriffs Kapitalverwendung und zeigen Sie die Bedeutsamkeit einer

Mehr

0 1 2 T. - Annuitäten, die den gleichen Barwert wie ein in t=t gegebener Geldbetrag haben

0 1 2 T. - Annuitäten, die den gleichen Barwert wie ein in t=t gegebener Geldbetrag haben 2.4 Die Annuität 1.Annuität 2.Annuität T. Annuität 0 1 2 T Bei der Ermittlung der Annuität wird eine beliebige Zahlungsreihe in eine uniforme, äquidistante Zahlungsreihe umgeformt, die äquivalent zur Ausgangszahlungsreihe

Mehr

Übungsaufgaben WFW Finanzierung und Investition handlungsspezifische Qualifikation 2. Tag

Übungsaufgaben WFW Finanzierung und Investition handlungsspezifische Qualifikation 2. Tag 1. Aufgabe Als Assistent der Geschäftsleitung wurden Sie beauftragt herauszufinden, ob die Investition in Höhe von 1.200.000 Euro in eine neue Produktionsanlage rentabel ist. Dafür liegen Ihnen folgende

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

Finanzierung Kapitel 4: Der Zeitwert des Geldes

Finanzierung Kapitel 4: Der Zeitwert des Geldes Kapitel 4: Der Zeitwert des Geldes von Sommersemester 2010 Grundlegendes zur Investitionstheorie Jedes Investitionsprojekt kann abstrakt als eine zeitliche Verteilung von Cash-Flows betrachtet werden.

Mehr

Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und festverzinsliche Wertpapiere

Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und festverzinsliche Wertpapiere Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe Sommersemester 20 Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzierung Inhalte der Klausur Aufgabe Thema Punkte Aufgabe Thema Punkte 1 Investition und Finanzierung allgemein 10 2 Dynamische Verfahren der Investitionsrechnung 20 3 Ersatzinvestitionen

Mehr

Wirtschaftsmathe für W-Ing. Aufgabensammlung Teil 1 Sommersemester 2015

Wirtschaftsmathe für W-Ing. Aufgabensammlung Teil 1 Sommersemester 2015 Wirtschaftsmathe für W-Ing. Aufgabensammlung Teil 1 Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Aufgabe 1 Eine Rechnung über 3.250 wird nicht sofort bezahlt. Daher sind Verzugszinsen

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015 HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.205 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 4 5 6 7 8 gesamt erreichbare P.

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 6 gesamt erreichbare P. 6 10 12 12

Mehr

5. Finanzwirtschaft 5.1 Inhalt und Aufgaben

5. Finanzwirtschaft 5.1 Inhalt und Aufgaben 5. Finanzwirtschaft 5.1 Inhalt und Aufgaben Die Funktionalbereiche der Unternehung und die Eingliederung der Finanzwirtschaft: Finanzwirtschaft Beschaffung Produktion Absatz Märkte für Produktionsfaktoren

Mehr

Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 1244 ff. In Kraft getreten am 1.

Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 1244 ff. In Kraft getreten am 1. Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 44 ff. In Kraft getreten am 1. September 2000 6 Kredite (1) Bei Krediten sind als Preis die Gesamtkosten als jährlicher

Mehr

Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10

Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10 Rentenrechnung 5 Kai Schiemenz Finanzmathematik Ihrig/Pflaumer Oldenburg Verlag 50.Am 0.0.990 wurde ein Sparkonto von 000 eröffnet. Das Guthaben wird vierteljährlich mit % verzinst. a.wie hoch ist das

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Peter Albrecht (Mannheim) Die Prüfung des Jahres 2004 im Bereich Finanzmathematik (Grundwissen) wurde am 09. Oktober 2004 mit diesmal

Mehr

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf?

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Andreas Rieder UNIVERSITÄT KARLSRUHE (TH) Institut für Wissenschaftliches Rechnen und

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen Übungskatalog WS 13/14 1 Einführung in die Investitionsrechnung Aufgabe 1.1) Definieren Sie den Begriff Investition unter Verwendung des Begriffs Kapitalverwendung und zeigen Sie die Bedeutsamkeit einer

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis

Mehr

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN Finanzmathematik Kapitel 3 Tilgungsrechnung Prof. Dr. Harald Löwe Sommersemester 2012 Abschnitt 1 HYPOTHEKENDARLEHEN Festlegungen im Kreditvertrag Der Kreditvertrag legt u.a. folgende Daten fest Kreditsumme

Mehr

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden BspNr: G0010 Themenbereich Finanzmathematik - Rentenrechnung Ziele vorhandene Ausarbeitungen Arbeiten mit geom. Reihen TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzierung - Vorlesung 6 - Prof. Dr. Rainer Elschen Prof. Dr. Rainer Elschen -92 - Die Interne Zinsfußmethode (1) Entscheidungsgröße: Interner Zinsfuß r Entscheidungsregel: r Max u.d.b.

Mehr

Dynamisches Investitionsrechenverfahren. t: Zeitpunkt : Kapitalwert zum Zeitpunkt Null : Anfangsauszahlung zum Zeitpunkt Null e t

Dynamisches Investitionsrechenverfahren. t: Zeitpunkt : Kapitalwert zum Zeitpunkt Null : Anfangsauszahlung zum Zeitpunkt Null e t Kapitalwertmethode Art: Ziel: Vorgehen: Dynamisches Investitionsrechenverfahren Die Kapitalwertmethode dient dazu, die Vorteilhaftigkeit der Investition anhand des Kapitalwertes zu ermitteln. Die Kapitalwertverfahren

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

Inhaltsverzeichnis. Finanzmathe Formelsammlung v.2.3 1

Inhaltsverzeichnis. Finanzmathe Formelsammlung v.2.3 1 Finanzmathe Formelsammlung v.2.3 1 Inhaltsverzeichnis I Zinsrechnung 1 I.1 Jährliche Verzinsung..................................... 1 I.1.1 Einfache Verzinsung................................. 1 I.1.2

Mehr

Fall 1: Barwert, Ertragswert und Rentenbarwertfaktor

Fall 1: Barwert, Ertragswert und Rentenbarwertfaktor 1. Kapitel: Grundkonzeption der Unternehmensbewertung Fall 1: Barwert, Ertragswert und Rentenbarwertfaktor Sachverhalt: Herr Glück kauft im Dezember 2012 von seinem Weihnachtsgeld (5 000 Euro) Lose der

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Mathematik-Klausur vom 16.4.2004

Mathematik-Klausur vom 16.4.2004 Mathematik-Klausur vom 16..200 Aufgabe 1 Die Wucher-Kredit GmbH verleiht Kapital zu einem nominellen Jahreszinsfuß von 20%, wobei sie die anfallenden Kreditzinsen am Ende eines jeden Vierteljahres der

Mehr

Aufgaben zur Finanzmathematik, Nr. 1

Aufgaben zur Finanzmathematik, Nr. 1 Aufgaben zur Finanzmathematik, Nr. 1 1.) Ein Unternehmen soll einen Kredit in Höhe von 800.000 in fünf gleich großen Tilgungsraten zurückzahlen. Der Zinssatz beträgt 6,5 % p. a. Erstellen Sie einen Tilgungsplan!

Mehr

Bernd Kuppinger. Finanzmathematik. WlLEY

Bernd Kuppinger. Finanzmathematik. WlLEY Bernd Kuppinger Finanzmathematik WlLEY 5 Inhalt Einleitung 13 1 Es geht ums Geld 17 1.1 Zeit und Geld 17 1.2 Inflation und Deflation 18 1.3 Barwert und Endwert 21 1.3.1 Nominalwert und Äquivalenzprinzip

Mehr

Fakultät für Wirtschaftswissenschaften. Brückenkurs WS14/15: Investitionsrechnung

Fakultät für Wirtschaftswissenschaften. Brückenkurs WS14/15: Investitionsrechnung Fakultät für Wirtschaftswissenschaften Lehrstuhl BWL III: Unternehmensrechnung und Controlling Prof. Dr. Uwe Götze Brückenkurs WS14/15: Investitionsrechnung Aufgabe 1: Kostenvergleichsrechnung Für ein

Mehr

Finanzmathematik mit Excel 1

Finanzmathematik mit Excel 1 Finanzmathematik mit Excel 1 Einfache Zinsrechnung 2 Folgende Begriffe werden benötigt: Begriff Definition Kapital Geldbetrag, der angelegt oder einem anderen überlassen wird. Laufzeit Dauer der Überlassung.

Mehr

85 = 7,5 r 5 r5 1. r 1 + 100. Aufgaben

85 = 7,5 r 5 r5 1. r 1 + 100. Aufgaben 6.4 Kurs- und Rentabilitätsrechnung 143 6.4 Kurs- und Rentabilitätsrechnung Das Berechnen von Zinssätzen bei regelmäßigen Geldflüssen führt zu Gleichungen höheren Grades, die man meist nur mit Näherungsverfahren

Mehr

Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER

Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER Kirsten Wüst Finanzmathematik Vom klassischen Sparbuch zum modernen Zinsderivat GABLER I Inhaltsverzeichnis VORWORT V INHALTSVERZEICHNIS VII ABBILDUNGSVERZEICHNIS XV TABELLENVERZEICHNIS XVII 1 ZINSFINANZINSTRUMENTE

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methoden CRM / WS 12-13 1 Agenda Teil A: Teil B: Teil C: Finanzmathematisches Basiswissen

Mehr

ein durch die zeitliche Produktionsfunktion R( I)

ein durch die zeitliche Produktionsfunktion R( I) Aufgabe : Ein Investor in einer Zwei-Zeitpunkt-Welt hat im Zeitpunkt t ein Anfangsvermögen von 300 Euro. Bei einem Sachinvestitionsvolumen von I im Zeitpunkt t kann im Zeitpunkt t ein durch die zeitliche

Mehr

Barwertbestimmung und Effektivzins bei Anleihen. von Fanny Dieckmann

Barwertbestimmung und Effektivzins bei Anleihen. von Fanny Dieckmann Barwertbestimmung und Effektivzins bei Anleihen von Fanny Dieckmann Inhalt Definitionen Anleihenstruktur Anleihenbewertung Barwertbestimmung Renditebestimmung Bewertung von Sonderformen Literaturverzeichnis

Mehr

Neo-Institutionalistischer Finanzierungsbegriff

Neo-Institutionalistischer Finanzierungsbegriff Finanzierung: (1) Beschaffung (Zufluss) finanzieller Mittel... (2)... welche in der Folge einen Abfluss liquider Mittel zur Folge Hat/haben kann... Neo-Institutionalistischer Finanzierungsbegriff (3)...unter

Mehr