Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der"

Transkript

1 Eigentlich löst man n Gleichungen mit n Unbekannten (die normalerweise eindeutig lösbar sind) am besten mit Hilfe der Determinantenmethode (die aber in den Schulen nicht mehr gelernt wird) bzw. am allerschnellsten mit dem Taschenrechner. In der Schule wird das Gauß-Verfahren gelehrt, das auch zum Invertieren von Matrizen verwendbar ist. Natürlich gibt es auch dazu schon jede Menge kostenloser und guter Videos z.b. unter oder Man spricht von linearen Gleichungssystemen, weil die Unbekannten nur in der ersten Potenz auftreten. Quadratische oder kubische Systeme sind schon wesentlich schwieriger auf zu lösen. Bekannt sind die Mitternachtsformeln (mit und ohne Mondschein) zur allgemeinen Auflösung einer Gleichung zweiten Grades. Während eine Gleichung vierten Grades gerade noch durch eine Formel lösbar ist oder wäre (wurde aber noch nie in der Schule verlangt), geht das für Gleichungen noch höhere Grades überhaupt nicht mehr. Ich verweise auf die vielen kostenlosen Videos, die sich im weltweiten Web schon befinden und empfehle bcklearning (in Suchmaschine eingeben) oder Prof. Christian Spannagel an der PH Heidelberg: Übersicht über alle Videos und Materialien unter / 10

2 Gleichungen mit einer Unbekannten Die Algebra (x-rechner) beschreibt die Auflösung von Gleichungen mit Unbekannten. Haben wir etwa die Gleichung 3x 5 = 2x + 5 dann werden wir erst mal Ordnung schaffen und die Terme mit x zusammenfassen; also etwa auf beiden Seiten der Gleichung 2x subtrahieren: 3x 5-2x = 2x+5-2x also x - 5 = 5 somit ist x = 10 Haben wir allerdings nun zwei unbekannte Größen x und y, wie beispielsweise 2x +3y - 3 = x -2y +7 Dann schaffen wir hier erst mal Ordnung und fassen zusammen, was man zusammenfassen kann: 2x +3y - 3 = x + 2y +7 - x x +3y - 3 = -2y +7-2y x + y -3 = 7 +3 x + y = 10 oder y = -x +10 Wir können für eine solche Gleichung zweier Variablen keine eindeutige Lösung finden, denn es gibt unendlich viele Paare (x, y), welche die Gleichung erfüllen: Diese liegen alle auf einer Geraden, dem Graphen der linearen Funktion. Das Schaubild dieser Funktion ist eine Gerade mit dem y-achsenabschnitt b=10 und mit der Steigung -1 (d.h. wenn man von einem Geradenpunkt ausgeht, muss man um eins nach rechts und m nach oben - bei negativem m wie hier um m nach unten gehen, da es sich dann um eine fallende Gerade handelt) / 10

3 Da (0, 10) ja ein Punkt der Geraden ist, gehen wir von dort aus um 1 in x- Richtung und um 1 nach unten. Die Gerade durch diese beiden Punkte enthält alle Lösungspaare dieser Gleichung als Koordinaten der auf ihr liegenden Punkte. Allgemein: Die Geradengleichung 1 ist y= mx +b: b ist Achsenschnitt (für x = 0 wird y = b) und m die Steigung: Bei einem Schritt nach rechts, ersetzt man x durch x+1 und erhält einen um m größeren y-wert: Der Zuwachs ist also konstant m. Die Steigung ist der Tangens des Steigungswinkels α der Geraden zur horizontalen x-achse m = tan α 1 Die allgemeine Geradengleichung ax+by = c beinhaltet außer den Geraden der Form y= mx +b auch noch die Grenzfälle unendlicher Steigung mit der Gleichung x = a - 3/ 10

4 Durch zwei Punkte ist eine Gerade eindeutig festgelegt. Für zwei beliebige Geradenpunkte P (x P /y P ) und Q (x Q / y Q ) ist dnie Steigung m = (y P -y Q ) /(x P -x Q ) der Differenzen-Quotient Q (x Q ; y Q ) Ankathete x = x P -x Q Die Gerade durch P und Q hat die Steigung m = y / x = Gegenkathete zu Ankathete im Steigungsdreieck = Tangens des Steigungswinkels α Lässt man P ( x P / y P ) für beliebige Punkte P variabel d.h. x P = x und y P = y, dann ist wegen m = (y-y P ) /(x-x P )= (y-y Q ) /(x-x Q ) (y-y Q ) /(x-x Q ) = (y P -y Q ) /(x P -x Q ) die sog. Zweipunkteform der Geradengleichung. Für zwei Unbekannte x und y brauchen wir zur eindeutigen Auflösung also zwei Gleichungen (bzw. zwei Geraden, die sich schneiden müssen). Dann ist der Schnittpunkt (sofern sie sich schneiden) dieser beiden - 4/ 10

5 Geraden die eindeutige Lösung der beiden Gleichungen mit zwei Unbekannten x und y. Nehmen wir zu unserer oberen noch eine zweite Gleichung hinzu I: x + y = 10 II: x - y = 2 addieren wir beide Gleichungen I +II x+x = x = 12 x = 6 Einsetzen in eine der Gleichungen (beide müssen ja denselben Wert y ergeben) 6 + y = 10 also ist y = 4 Die eindeutige Lösung {x=6 ^ y=4} ist zugleich der Schnittpunkt S(6; 4) der beiden durch I und II beschriebenen Graphen der Funktionen in der folgenden Abbildung / 10

6 Haben wir drei Unbekannte x, y und z, dann beschreibt analog dazu die Lösungsmenge einer Gleichung eine Ebene im Raum und zwei Gleichungen stellen zwei Ebenen deren, deren gemeinsame Lösungen die Schnittgerade 2 der beiden Ebenen ist. Erst eine dritte Gleichung (eine weitere Ebene) kann eine eindeutige Lösung des Gleichungssystems liefern (diese Ebene kann die Schnittgerade der beiden anderen ebenen in einem Punkt schneiden). Abb. 5: Schnittpunkt S(6, 4) Achsenschnitte von y = x-2 bei x=2 und y=-2 2 sofern sie sich schneiden; sie könnte ja auch parallel liegen, dann gibt es gar keine Lösung; oder wenn sie identisch sind, gibt es unendlich viele Lösungen / 10

7 Abb. 6: Auch im dreidimensionalen Raum ist das Schnittgebilde Lösung der beiden Ebenen von zwei Gleichungen allerdings mit drei Unbekannten x, y und z Es gibt aber unendlich viele Lösung ( hier x=6, y=4 und z beliebig!), die auf deren Schnittgeraden liegen. Für eine eindeutige Lösung braucht man nun drei Gleichungen! - 7/ 10

8 Abb. 7: Drei Gleichungen mit drei Unbekannten haben als Lösung den Schnittpunkt ihrer drei Ebenen Für n verschiedene Unbekannt brauchen wir entsprechen auch n Gleichungen um eine eindeutige Lösung erhalten zu können. Das Prinzip des Auflösens des Gleichungssystems ist stets, aus den n Gleichungen mit n Unbekannte n-1 Gleichungen mit nur noch n-1 Unbekannten zu machen. Wiederholtes Anwenden dieser Strategie liefert dann letztlich eine Gleichung mit einer Unbekannten. Dann rollt man alles rückwärts auf um durch Einsetzen die andern Unbekannten sukzessive zu ermitteln. Dazu gibt es verschiedene Verfahren, wie etwa das Gauß-Verfahren oder die Determinanten-Methode. Letztere verwenden die Computer zur Berechnung / 10

9 Eine elegante Methode das Schaubild einer (sog. linearen) Gleichung darzustellen, oder die Funktionsgleichung aus ihren Schnittpunkten mit den Koordinatenachsen zu ermitteln, ermöglicht die Achsenabschnittsform x 1 /a 1 + x 2 /a 2 + x 3 /a 3 + = 1 bei der alle Achsenschnitte im Nenner einfach abzulesen sind. Dies gilt nun sowohl für Geraden in einer Ebene als aber auch für Ebenen im Raum oder für Hyper-Ebenen des n-dimensionalen Raums. Beispiel: Die Gerade der I. Gleichung x + y = 10 können wir als x/10+y/10 = 1 umschreiben, weshalb beide Achsen bei 10 geschnitten werden (Abb. 5). Die Gleichung II x - y = 2 bringen wir durch Division mit 2 in die Achsenabschnittsform x/2 +y/(-2) = 1 Der Achsenschnitt mit der x-achse ist bei / 10

10 und derjenige mit der y-achse bei -2 (Abb. 5). Die Ebene mit der Koordinatengleichung z = x-3y+9 hat als Achsenabschnittsform -x/9 +y/3 +z/9 = 1 und schneidet also die z-achse bei 9 (Abb. 7) sowie die x-achs bei - 9, und die y-achse bei / 10

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Lineare Gleichungssysteme mit zwei Variablen

Lineare Gleichungssysteme mit zwei Variablen Lineare Gleichungssysteme mit zwei Variablen Anna Heynkes 4.11.2005, Aachen Enthält eine Gleichung mehr als eine Variable, dann gibt es unendlich viele mögliche Lösungen und jede Lösung besteht aus so

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte (c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3

Mehr

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse.

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse. Geraden Eine Gerade wird durch eine Gleichung der Form y = mÿx + b bzw. f(x) = mÿx + b beschrieben. Die Schreibweise f(x) = wird teils erst in der Oberstufe verwendet. b ist der y- Achsenabschnitt, d.h.

Mehr

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung Lineare Funktionen Eine kurze Wiederholung Mathematik Einführungsphase Eine lineare Funktion ist zunächst einmal eine Funktion, d.h. eine eindeutige Zuordnung, bei der jedem x-wert aus einem Definitionsbereich

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 9..8 Linearen Funktion Aus der Sekundarstufe I sind Ihnen die Graphen linearer Funktionen als Geraden bekannt und deren Funktionsgleichungen als Geradengleichungen.

Mehr

Lernkontrolle Relationen, Funktionen, lineare Funktionen

Lernkontrolle Relationen, Funktionen, lineare Funktionen Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Direkt und indirekt proportionale Größen

Direkt und indirekt proportionale Größen 8.1 Grundwissen Mathematik Algebra Klasse 8 Direkt und indirekt proportionale Größen Direkte Proportionalität x und y sind direkt proportional, wenn zum doppelten, dreifachen,, n-fachen Wert für x der

Mehr

Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen

Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geradengleichungen und lineare Funktionen Lese- und Lerntext für Anfänger Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geraden schneiden Auch über lineare Gleichungssystem

Mehr

1.5 lineare Gleichungssysteme

1.5 lineare Gleichungssysteme 1.5 lineare Gleichungssysteme Inhaltsverzeichnis 1 Was ist ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten? 2 2 Wie lösen wir ein lineares Gleichungssystem mit zwei Unbekannten?

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion

Mehr

Grundlegende Aufgaben zu Tangenten. Teil 1: Alle wichtigen Methoden ausführlich erklärt Spezielle Methoden für CAS-Rechner

Grundlegende Aufgaben zu Tangenten. Teil 1: Alle wichtigen Methoden ausführlich erklärt Spezielle Methoden für CAS-Rechner Grundlegende Aufgaben zu angenten ANALYSIS Ganzrationale Funktionen eil : Alle wichtigen Methoden ausführlich erklärt Spezielle Methoden für CAS-Rechner eil : rainingsaufgaben mit sehr ausführlichen Lösungen

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

7 Aufgaben im Dokument. Aufgabe P5/2010

7 Aufgaben im Dokument. Aufgabe P5/2010 Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

4.1. Aufgaben zu linearen Funktionen

4.1. Aufgaben zu linearen Funktionen .. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben. Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Lineare Gleichungssysteme Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Pflichtteilaufgaben (ohne GTR) Aufgabe : Löse die folgenden linearen Gleichungssysteme:

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten.

Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. DIE ELLIPSE Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. Die Ellipse besteht aus allen Punkten, für die die Summe der Abstände von zwei festen Punkten - den

Mehr

6 Gleichungen und Gleichungssysteme

6 Gleichungen und Gleichungssysteme 03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Tipps und Tricks für die Abschlussprüfung

Tipps und Tricks für die Abschlussprüfung Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 118 7 Lineare Gleichungssysteme Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftlichen Problemen auf; zum Beispiel beim Lösen von Differentialgleichungen, bei Optimierungsaufgaben,

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Lineare Funktion Aufgaben und Lösungen

Lineare Funktion Aufgaben und Lösungen Lineare Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. November 0 Inhaltsverzeichnis Ursprungsgerade. y = m x...................................................... Aufgaben.................................................

Mehr

KOMPETENZHEFT ZU LINEAREN FUNKTIONEN

KOMPETENZHEFT ZU LINEAREN FUNKTIONEN KOMPETENZHEFT ZU LINEAREN FUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Gib die Gleichung der dargestellten Gerade in Normalform an. a) b) Aufgabe 1.2. Ein Skatepark ist ein speziell für Skater/innen eingerichteter

Mehr

2. Schulaufgabe aus der Mathematik Lösungshinweise

2. Schulaufgabe aus der Mathematik Lösungshinweise 2. Schulaufgabe aus der Mathematik Lösungshinweise Gruppe A (a) Allgemein ist eine Geradengleichung in der Form g(x) = m x+b gegeben, wobei m die Steigung der Geraden und b der y-achsenabschnitt, also

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Lineare Gleichungssysteme Basis

Lineare Gleichungssysteme Basis Lineare Gleichungssysteme Basis Graphische Lösung von Gleichungen Regel Gegeben sind zwei Gleichungen von zwei Funktionen. Die Lösung dieses Systems ist gleich dem Schnittpunkt beider Graphen. Verlaufen

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

Gleichungen und Gleichungssysteme 5. Klasse

Gleichungen und Gleichungssysteme 5. Klasse Gleichungen und Gleichungssysteme 5. Klasse Andrea Berger, Martina Graner, Nadine Pacher Inhaltlichen Grundlagen zur standardisierten schriftlichen Reifeprüfung Inhaltsbereich Algebra und Geometrie (AG)

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10 Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5

Mehr

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt.

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 6 4. Darstellung der Ebene 4. Die Parametergleichung der Ebene einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 0 2 r uuur

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

Mathematische Funktionen

Mathematische Funktionen Mathematische Funktionen Viele Schüler können sich unter diesem Phänomen überhaupt nichts vorstellen, und da zusätzlich mit Buchstaben gerechnet wird, erzeugt es eher sogar Horror. Das ist jedoch gar nicht

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

A.22 Schnittwinkel zwischen Funktionen

A.22 Schnittwinkel zwischen Funktionen A.22 Schnittwinkel 1 A.22 Schnittwinkel zwischen Funktionen A.22.01 Berühren und senkrecht schneiden ( ) Wenn sich zwei Funktionen berühren, müssen sie im Berührpunkt den gleichen y-wert haben. Wenn sich

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Skript Mathematik Klasse 10 Realschule

Skript Mathematik Klasse 10 Realschule Skript Mathematik Klasse 0 Realschule Das vorliegende Skript wurde erstellt durch: Marco Johannes Türk marco.tuerk@googlemail.com Die aktuellste Version dieses Skriptes ist online auf www.marco-tuerk.de

Mehr

TEIL 1: Die Gerade 1. "Normalform" oder "Steigungsform"

TEIL 1: Die Gerade 1. Normalform oder Steigungsform Lineare Gleichungen TEIL 1: Die Gerade 1. "Normalform" oder "Steigungsform" Steigungsform: y = mx + b x = unabhängige Variable y = abhängige Variable m = Steigung der Geraden b = Achsenabschnitt auf der

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

Mathematik - Arbeitsblatt Lineare Funktionen

Mathematik - Arbeitsblatt Lineare Funktionen Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des

Mehr

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass V. Geradengleichungen in Parameterform 5. Definition ---------------------------------------------------------------------------------------------------------------- x 3 v a x x x Definition und Satz :

Mehr

Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 -

Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 - - Seite von 7 -. Wie lautet die allgemeine Geradengleichung? (Mit Erklärung). Ein Telefontarif kostet 5 Grundgebühr und pro Stunde 8 cent. Wie lautet allgemein die Gleichung für solch einen Tarif? (Mit

Mehr

Die projektive Ebene Was sind unendlich ferne Punkte?

Die projektive Ebene Was sind unendlich ferne Punkte? Die projektive Ebene Was sind unendlich ferne Punkte? Prof. Dr. Hans-Georg Rück Fachbereich Mathematik/Informatik Universität Kassel Heinrich-Plett-Str. 40 34132 Kassel Zusammenfassung: Wir konstruieren

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

WM.3.1 Die Polynomfunktion 1. Grades

WM.3.1 Die Polynomfunktion 1. Grades WM.3.1 Die Polynomfunktion 1. Grades Wenn zwischen den Elementen zweier Mengen D und W eine eindeutige Zuordnungsvorschrift vorliegt, dann ist damit eine Funktion definiert (s. Abb1.), Abb1. wobei D als

Mehr

Aufgabenpool zur Quereinstiegsvorbereitung Q1

Aufgabenpool zur Quereinstiegsvorbereitung Q1 Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analytischen Geometrie (). Dezember 0 Inhalt: Die Lagebeziehungen zwischen

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 8 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Parabeln - quadratische Funktionen

Parabeln - quadratische Funktionen Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer

Mehr

1. Funktionale Zusammenhänge

1. Funktionale Zusammenhänge 1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge. 1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen

Mehr