Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Größe: px
Ab Seite anzeigen:

Download "Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld"

Transkript

1 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb Verknüpfung von elektrischem Strom und Magnetfeld Θ= Š Hdr = ni (3..-) mit Θ = Magnetische Durchflutung (Magnetische Spannung) H = Magnetische Feldstärke r = Radius n = Anzahl der Leiterschleifen I = elektrischer Strom für die einfache geometrische Anordnung gilt: Θ= H2π r = ni ni H = 2π r (3..-2 bis 3) Das Magnetfeld von Permanentmagneten hat seine Ursache in den Spins der Elektronen, ist also mit atomar kleinen Kreisströmen verbunden Die magnetische Flussdichte B B = µ H = µ µ H mit 0 r µ = Magnetische Permeabilität µ 0 = Magnetische Permeabilität im Vakuum µ 0 =, Vs/Am (3..2-)

2 38 3 Transformatoren 3..3 Der magnetische Fluss φ φ = BdA (3..3-) für konstante Flussdichte B durch eine senkrecht dazu stehende Fläche A (Flächenvektor parallel zur Richtung von B) gilt: φ = BA A B (3..3-2) Abb Der magnetische Widerstand R m Für homogene Flussdichten kann man auch einen magnetischen Widerstand definieren Rm l = (3..4-) µ A 3..5 Das Ohmsche Gesetz für Magnetkreise Für magnetische Kreise mit konstanter Flussdichte gilt: Θ= φ R m (3..5-) 3..6 Fremdinduktion Befindet sich eine Leiterschleife in einem sich ändernden Magnetfeld, so wird in der Leiterschleife eine elektrische Spannung induziert, die induzierte Spannung ist proportional zur zeitlichen Änderung des magnetischen Flusses eines externen (fremden) Magnetfeldes. B u ind (t) Abb Externe Flussdichte und daraus resultierende induzierte Spannung in einer Spule

3 3. Magnetfeldgleichungen 39 dφ uind () t = dt φ = BdA (3..6-) (3..6-2) B = µh (3..6-3) mit φ = Magnetischer Fluss B = Magnetische Flussdichte µ = Magnetische Permeabilität Es wird auch eine Spannung in der Leiterschleife induziert, wenn diese im konstanten Magnetfeld mit konst. Winkelgeschwindigkeit rotiert. Die Leiterschleife sieht dabei eine zeitlich cosinusförmige (sinusförmige) Änderung des magnetischen Flusses. Bildet man dφ / dt, folgt eine sinusförmige (cosinusförmige) induzierte Spannung Selbstinduktion Ändert sich in einer Leiterschleife der Strom, so induziert diese Änderung ebenfalls eine Spannung: di() t uind () t = L (3..7-) dt Die induzierte Spannung ist proportional zur Induktivität L der Leiterschleife und zur Geschwindigkeit der Stromänderung. Den Vorgang der Selbstinduktion kann man sich durch ein Analogon mit einem Wasserstrom in einer Rohrleitung erklären: I W Überdruck Unterdruck p di W /dt p -di W /dt Abb Selbstinduzierter Überdruck in einer Wasserleitung, in der der Wasserstrom gesperrt wird Bremst man den Wasserstrom durch Einfügen eines Schiebers aus, so entsteht auf der einen Seite des Schiebers ein Überdruck und auf der anderen Seite ein Unterdruck, weil das Wasser wegen seiner Trägheit weiterfließen möchte.

4 40 3 Transformatoren Überdruck Unterdruck Abb Wasserkreislauf mit Pumpe und Schieber Beim elektrischen Strom bremst man durch Öffnen eines Schalters Ladungsträger aus. Dadurch entsteht ein Ladungsträgerstau auf der einen Seite des Schalters, was eine Überspannung verursacht (induziert) und auf der anderen Seite des Schalters eine Unterspannung induziert. Überspannung Kontakt geschlossen Kontakt geöffnet Unterspannung i Überspannung = U 0 u ind Unterspannung Leitungsinduktivität Abb Entstehung der Selbstinduktionsspannung im elektrischen Stromkreis Das Vermögen, den Stromfluss aufrecht zu erhalten, wird durch die Leitungsinduktivität dargestellt.

5 3. Magnetfeldgleichungen 4 Beispiel: Der Strom beträgt vor Öffnen des Schalters 0 A und der Strom geht linear innerhalb einer Millisekunde beim Schalten auf Null. Die Leitungsinduktivität beträgt 0 mh. Die induzierte Spannung errechnet sich dann di() t 0A uind ( t) = L = 0mH = 00V dt ms Das lässt sich auch grafisch darstellen: I 0 i(t) U 0 ms t u ind Abb Selbstinduktionsspannung durch Stromänderung in einer Spule Wird zum Beispiel ein Strom im Bordnetz abgeschaltet, treten am Verbraucher hohe Spannungsspitzen auf! Misst man die Spannung (Abb ) vor dem Schalter (zwischen Punkt und Masse) kehrt die Induktionsspannung ihr Vorzeichen um: u ind I 0 i(t) u(t) U 0 ms Abb Induktionsspannung im Bordnetz t Das nachfolgende Scopebild zeigt die Messung von Strom (div = 00 A) und Spannung (div = 00 V) bei der Trennung eines Kurzschlussstroms durch einen pyrotechnischen Schalter am Pluspol einer Autobatterie.

6 42 3 Transformatoren Nach Gleichung kann man aus der Messung der Stromänderung I, der Schaltzeit t und der induzierten Spannungsspitze U ind die Induktivität eines Schaltkreises ermitteln. Schaltvorgang mit I 450 A exponentieller Stromanstieg 280 V Spannungspeak Abb Oszilloskopie eines Schaltvorgangs im KFZ-Bordnetz Aus dem Scopebild ergibt sich ein näherungsweise linearer Stromabfall von I = 450 A in einer Zeit t = 20 µs mit einem resultierenden Spannungspeak von 280 V. Daraus berechnet sich die Bordnetzinduktivität zu: Uind 280V 20µ s L = = = 2, 44µH I 450A t 3.2 Gekoppelte Spulen Ein Transformator besteht aus zwei Spulen, welche über ein magnetisches Wechselfeld miteinander gekoppelt sind. i w i 2 w 2 w = Windungszahl der Primärseite u u 2 w 2 = Windungszahl der Sekundärseite φ Abb Zwei über das Magnetfeld gekoppelte Spulen bilden einen Transformator

7 3.2 Gekoppelte Spulen 43 Eine Seite des Transformators wird von einem Wechselstrom gespeist, dieser Strom verursacht ein magnetisches Wechselfeld, welches wiederum die andere Spule durchdringt und dort eine Wechselspannung induziert. Wird ein Verbraucher angeschlossen, fließt ein entsprechender Strom Idealer Übertrager Ist die magnetische Kopplung perfekt und treten keinerlei Verluste auf, so spricht man vom idealen Übertrager. Beim idealen Übertrager werden Spannungen und Ströme gemäß u w = = ü (3.2.-) u w 2 2 i w2 = = (3.2.-2) i2 w ü transformiert Transformator mit Streufluss Bei einem realen Transformator wird ein Teil des Magnetfeldes gestreut. Man unterscheidet zwischen Streufluss und Hauptfluss. Der Hauptfluss durchdringt beide Spulen gleichermaßen, der Streufluss durchdringt nur eine Spule. u i Streufluss der Primärspule i 2 u 2 Hauptfluss Streufluss der Sekundärspule Abb Streufluss und Hauptfluss in einem Transformator Das Verhältnis von Streufluss zu Hauptfluss definiert die Streuziffer σ Streufluss σ = (3.2.2-) Hauptfluss

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

Praktikum II TR: Transformator

Praktikum II TR: Transformator Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 30. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

Inhalt. Kapitel 4: Magnetisches Feld

Inhalt. Kapitel 4: Magnetisches Feld Inhalt Kapitel 4: Magnetische Feldstärke Magnetischer Fluss und magnetische Flussdichte Induktion Selbstinduktion und Induktivität Energie im magnetischen Feld A. Strey, DHBW Stuttgart, 015 1 Magnetische

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator

Mehr

V11 - Messungen am Transformator

V11 - Messungen am Transformator V11 - Messungen am Transformator Michael Baron, Frank Scholz 21.12.2005 Inhaltsverzeichnis 1 Aufgabenstellung 1 2 Physikalischer Hintergrund 1 3 Versuchsaufbau 3 4 Versuchsdurchführung 3 4.1 Leerlauf-Spannungs-Übersetzung................

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan

Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan TECHNOLOGISCHE GRUNDLAGEN INDUKTION, EINPHASEN-WECHSELSTROM REPETITIONEN INDUKTION DER RUHE 1 RE 2. 21 Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 30 Windungen. Ihr magnetischer

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 23. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 23. 06.

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Der Transformator - Gliederung. Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen

Der Transformator - Gliederung. Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen Der Transformator Der Transformator - Gliederung Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen Der Transformator - Aufgaben Transformieren

Mehr

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Der Transformator Aufbau Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Wirkungsweise Zwei Spulen teilen sich den magnetischen Fluss Primärspule : Es liegt eine

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

Cusanus-Gymnasium Wittlich. Physik Die Induktion. Die Kraft auf einen stromdurchflossenen Leiter

Cusanus-Gymnasium Wittlich. Physik Die Induktion. Die Kraft auf einen stromdurchflossenen Leiter Die Kraft auf einen stromdurchflossenen Leiter I F B - + I B F Grundversuch 1 zur Induktion lat: inductio -Einführung Bewegt man einen Magneten (ein Magnetfeld) relativ zu einer Spule (zu einem Leiter),

Mehr

Physikalisches Grundpraktikum E6 - T ransformator. E6 - Transformator

Physikalisches Grundpraktikum E6 - T ransformator. E6 - Transformator E6 - Transformator Aufgabenstellung: Ermitteln Sie das Strom- und Spannungsübertragungsverhältnis eines Transformators für zwei verschiedene Sekundärwindungszahlen mittels Leerlauf- und Kurzschlussschaltung.

Mehr

TR - Transformator Praktikum Wintersemester 2005/06

TR - Transformator Praktikum Wintersemester 2005/06 TR - Transformator Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr Torsten Hehl Tübingen, den 5. November 5 Theorie Leistung in Stromkreisen Für die erbrachte Leistung P eines

Mehr

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man: Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld Kapitel Pearson Folie: Kapitel 5 Das stationäre Folie: 2 Lernziele Kapitel Pearson Folie: 3 5. Magnete Kapitel Pearson Folie: 4 5. Magnete Kapitel Pearson S N Folie: 5 5.2 Kraft auf stromdurchflossene

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische

Mehr

TR - Transformator Blockpraktikum - Herbst 2005

TR - Transformator Blockpraktikum - Herbst 2005 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort

Mehr

Elektrostaitische Felder

Elektrostaitische Felder Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Elektromagnetische Induktion

Elektromagnetische Induktion Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt

Mehr

Magnetischer Kreis eines Rechteckkernes

Magnetischer Kreis eines Rechteckkernes Magnetischer Kreis eines Rechteckkernes Seite 1 von 21 Führer, Heidemann, Nerreter, Grundgebiete der Elektrotechnik, Band 1 R 1 und R 2 sind die ohmschen Widerstände der Wicklungen, Kupfer- oder Aluminium-Leiter

Mehr

Diplomvorprüfung WS 2009/10 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung WS 2009/10 Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2009/10

Mehr

Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft):

Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): Wiederholung: 1 r F r B Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): = r q v q = Ladung des Teilchens v = Geschwindigkeit des Teilchens B = magnetische Kraftflussdichte Rechte Hand Regel

Mehr

3. Klausur in K1 am

3. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am.. 0 Achte auf gute Darstellung und vergiss nicht Geg., Ges., Formeln herleiten, Einheiten, Rundung...! 9 Elementarladung:

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.2 1 19. Februar 23 Aufgaben Aufgabe 1 In einer magnetfelderzeugenden Spule fließt ein periodisch sich ändernder Strom I (siehe nebenstehendes Schaubild) mit der für jede Periode geltenden

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

Magnetismus. Prof. DI Michael Steiner

Magnetismus. Prof. DI Michael Steiner Magnetismus Prof. DI Michael Steiner www.htl1-klagenfurt.at Magnetismus Natürlicher Künstlicher Magneteisenstein Magnetit Permanentmagnete Stabmagnet Ringmagnet Hufeisenmagnet Magnetnadel Temporäre Magnete

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2003-2004

Mehr

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Versuch: Induktions - Dosenöffner Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Der schwebende Supraleiter (idealer Diamagnet) Supraleiter B ind Magnet B Magnet

Mehr

Ersatzschaltbild und Zeigerdiagramm

Ersatzschaltbild und Zeigerdiagramm 8. Betriebsverhalten des Einphasentransformators Seite Ersatzschaltbild und Zeigerdiagramm Jeder Transformator besteht grundsätzlich aus zwei magnetisch gekoppelten Stromkreisen. Bild 8.-: Aufbau und Flusslinien

Mehr

5 t % = 0, j = 0 entstehen. Für diese gelten die Gleichungen E = % 0. E = 0 Eds = 0 (5.2) B = 0 Bd A = 0 (5.3) j Bds = µ 0 I (5.

5 t % = 0, j = 0 entstehen. Für diese gelten die Gleichungen E = % 0. E = 0 Eds = 0 (5.2) B = 0 Bd A = 0 (5.3) j Bds = µ 0 I (5. 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas!

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas! Zeitlich veränderliche Felder: Elektrodynamik Die Maxwell-Gleichungen im statischen Fall (1) 1 E d = ρdv E = V( ) (2) B d = B = etwas! (3) E dr = E = (4) Integralform ε Hier fehlt noch Differentialform

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 18. 06. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 18. 06. 2009

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.1 2 15. Januar 2003 Aufgaben Aufgabe 1 Ein Elektron wird mit der Geschwindigkeit v = 10 7 m s 1 von A aus unter 45 in ein begrenztes Magnetfeld geschossen. Der Geschwindigkeitsvektor

Mehr

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L.

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 20. Februar 2016 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ein Widerstand... u i Ohmsches Gesetz

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Lösung der Problemstellung 1

Lösung der Problemstellung 1 Lösung der Problemstellung 1 1. Zunächst untersuchen wir die Wechselwirkung nach dem Thomson-Modell: Da das α Teilchen sehr viel kleiner als das Goldatom ist, sehen wir es als punktförmig an. Das Goldatom

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21.

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. Wechselstrom Versuche: Induktion: Handdynamo und Thomson-Transformator Diamagnetismus:

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

i 2 (t) = 400 V 100 V = 4 f = 50 Hz A Fe 1. Wie groß müssen unter der Voraussetzung sinusförmiger Spannungen die ober- und unterspannungsseitigen

i 2 (t) = 400 V 100 V = 4 f = 50 Hz A Fe 1. Wie groß müssen unter der Voraussetzung sinusförmiger Spannungen die ober- und unterspannungsseitigen Aufgabe Ü1 Aus einem vorhandenen Blechkern mit dem wirksamen Eisenquerschnitt A Fe 80 cm soll ein Wechselstromtransformator mit einer Nennleistung von S N 5 kva und dem Übersetzungsverhältnis ü U 1 /U

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

E2: Wärmelehre und Elektromagnetismus 20. Vorlesung

E2: Wärmelehre und Elektromagnetismus 20. Vorlesung E2: Wärmelehre und Elektromagnetismus 20. Vorlesung 28.06.2018 Barlow-Rad Heute: Telefon nach Bell - Wechselstrom - Transformatoren - Leistungsverluste - R, L, C im Wechselstromkreis 28.06.2018 https://xkcd.com/2006/

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Elektromagnetische Induktion

Elektromagnetische Induktion E44 Name: Elektromagnetische Induktion Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine

Mehr

Physikalisches Grundpraktikum für Chemiker/innen. Magnetismus und Transformator

Physikalisches Grundpraktikum für Chemiker/innen. Magnetismus und Transformator Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Chemiker/innen Magnetismus und Transformator WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/

Mehr

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:

Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2004-2005

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 08.03. bzw. 12.03.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat

Mehr

E 3 Elektromagnetische Induktion

E 3 Elektromagnetische Induktion E 3 1. Aufgaben 1. Man mache sich mit der Handhabung von Oszilloskop und Funktionsgenerator vertraut. 2. Der zeitliche Verlauf der Induktionsspannung U i = f(t) an der Sekundärspule eines Lufttransformators

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld

Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld 5b Induktion Zusammenfassung Induktion ist ein physikalisches Phänomen, bei der eine Spannungspuls in einem Leiter oder einer Spule induziert wird, wenn sich der Leiter in einem Magnetischen Feld befindet.

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

Physik LK 12, 3. Kursarbeit Induktion - Lösung

Physik LK 12, 3. Kursarbeit Induktion - Lösung Physik K 1, 3. Kursarbeit Induktion - ösung.0.013 Aufgabe I: Induktion 1. Thomson ingversuch 1.1 Beschreibe den Thomson'schen ingversuch in Aufbau und Beobachtung und erkläre die grundlegenden physikalischen

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Strom durch Bewegung

Strom durch Bewegung 5 Induktion 1 Strom durch ewegung Stromimpuls ei ewegung des Stabmagneten wird eine Spannung erzeugt kein Stromimpuls Ohne ewegung des Stabmagneten wird keine Spannung erzeugt Stromimpuls ei ewegung des

Mehr

Bachelorprüfung in. Grundlagen der Elektrotechnik

Bachelorprüfung in. Grundlagen der Elektrotechnik Bachelorprüfung in Grundlagen der Elektrotechnik für Wirtschaftsingenieure und Materialwissenschaftler Montag, 24.03.2015 Nachname: Vorname: Matrikelnr.: Studiengang: Bearbeitungszeit: 90 Minuten Aufg.-Nr.

Mehr

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte)

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik III WS 014/015 Prof Dr A Shnirman Blatt 8 Dr B Narozhny Lösungen 1 Elektromagnetische Induktion:

Mehr

Induktivität einer Ringspule Berechnen Sie die Induktivität einer Ringspule von 320 Windungen, 2. Der Spulenkern sei:

Induktivität einer Ringspule Berechnen Sie die Induktivität einer Ringspule von 320 Windungen, 2. Der Spulenkern sei: TECHNOLOGISCHE GRUNDLAGEN INDUKTION, EINPHASEN-WECHSELSTROM PETITIONEN SELBSTINDUKTION, INDUKTIVITÄT UND ENERGIE IN DER SPULE 1 1.581 24 Induktivität einer Ringspule Berechnen Sie die Induktivität einer

Mehr

Magnetische Induktion

Magnetische Induktion Dr. Angela Fösel & Dipl. Phys. Tom Michler Revision: 12.10.2018 Abbildung 1: Historischer Induktionsapparat aus dem Physikunterricht Unter elektromagnetischer Induktion versteht man das Entstehen einer

Mehr

Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis

Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis Praktikum Klassische Physik I Versuchsvorbereitung: P1-83,84: Ferromagnetische Hysteresis Jingfan Ye Gruppe Mo-11 Karlsruhe, 23. November 2009 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer

Mehr

Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan

Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan TECHOLOGISCHE GRUDLAGE LÖSUGSSATZ IDUKTIO, EIPHASE-WECHSELSTROM REPETITIOE IDUKTIO DER RUHE RE. Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 30 Windungen. Ihr magnetischer Fluss

Mehr

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte: Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

Die Linien, deren Tangenten in Richtung des Magnetfeldes laufen, heißt magnetische Feldlinien. a) Das Magnefeld eine Stabmagneten

Die Linien, deren Tangenten in Richtung des Magnetfeldes laufen, heißt magnetische Feldlinien. a) Das Magnefeld eine Stabmagneten I. Felder ================================================================== 1. Das magnetische Feld Ein Raumgebiet, in dem auf Magnete oder ferromagnetische Stoffe Kräfte wirken, heißt magnetisches Feld.

Mehr