Einige grundsätzliche Überlegungen:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einige grundsätzliche Überlegungen:"

Transkript

1 Einige grundsätzliche Überlegungen: 1) Die Wahl der Unbekannten, x, y, z, oder a, b, c oder α, β, γ oder m, n, o. etc. richten sich nach den Beispielen und sind so zu wählen, dass sie am besten zu jenen Größen passen, für die sie stellvertretend stehen. Das ist besser, da wir uns leichter die Verbindung der Unbekannten zu jenen Größen, für die sie stehen, vorstellen können. 2) Bei drei Unbekannten sind drei unabhängige Gleichungen nötig. Im Beispiel (Bsp. 8) mit den Fässern gibt es die drei Formeln: x + y + z = 100..gewandelt: x = 100 y z od. y = 100 y x od. z = 100 y x x = y gewandelt: y = x 20 z = y 10 gewandelt: y = z + 10 Es würde nicht reichen, wenn es nur die erste Formel mit Ihren gewandelten Formen gäbe x + y + z = 100 x = 100 y z y = 100 z x z = 100 y x Diese vier Formeln stellen dieselbe Beziehung zwischen den Unbekannten dar und ergeben daher keine Lösung, sondern nur die Angabe wieder. 100 y z z x y x = z 2y 2 x = 100 2z 2y 2 x = 200 / 2 z + y + x = 100..und das ist die ursprüngliche Formel in anderer Reihenfolge Bei diesem Beispiel wäre es auch möglich die drei Unbekannten mit F1 für Fass1, F2 für Fass2 und F3 für Fass3 zu wählen statt x, y, z, die Standartvariablen für Unbekannte.

2 Textgleichungen 1. Zählt man zwei aufeinanderfolgende Zahlen zusammen, erhält man 115. Berechne die Differenz! Bei zwei aufeinanderfolgende Zahlen, z.b. 12, 13 oder 57, 58 oder 1344, 1345, ist die Differenz, also der Unterschied, immer 1, daher ist in der Angabe die Summe der Zahlen eigentlich überflüssig, wenn nicht nach den Zahlen selbst gefragt wird. Wird nach den Zahlen gefragt so handelt es sich um zwei Zahlen, nennen wir sie z.b. x und y. Bei zwei Unbekannten benötig man zwei unabhängige Gleichungen: Der mathematische Ansatz lautet: x + y = 115, y = x + 1, wenn x die Variable der kleineren Zahl ist. Das Einsetzen der zweiten Gleichung in die erste ergibt: x + x + 1 = 115. x + x = x = 114 x= 114/2 = 57 Probe: x = 57, y = 57+1 = 58, x + y = = 115 Auflösung: RICHTIG 2. Die Summe zweier aufeinander folgender ungerader Zahlen ergibt 56. Welche Zahlen sind es? Dabei ist es gut sich die Zahlenreihe vorzustellen. Die Zahlenreiher der ungeraden Zahlen:1, 3, 5, 7, 23, 25, 27, , 45,. Die Differenz zwischen den Zahlen dieser Reihe ist immer 2. Dies gilt auch für Zahlenreiher der geraden Zahlen. Nennen wir die gesuchten Zahlen wieder x, y, dann gibt es zwei Gleichungen: x + y = 56, y = x + 2, wenn x die Variable der kleineren Zahl ist. Das Einsetzen der zweiten Gleichung in die erste ergibt: x + x + 2 = 56. x + x = x = 54 x = 54/2 = 27 Probe: x = 27, y = 27+2 = 29, x + y = = 56 Auflösung: RICHTIG

3 3. Die Summe dreier aufeinander folgender, durch 7 teilbarer Zahlen ist 252. Es sind die Zahlen..-? Auch hier ist es wieder gut sich die Zahlenreihe vorzustellen. Zahlen, die durch 7 teilbar sind ist das Siebener-Ein-mal-Eins, also 7, 14, 21, , 70, 77,. 84, 91 usw. Der Lösungsansatz könnte wie bei vorherigen Beispielen lauten (drei Unbekannte, daher drei Gleichungen): x + y + z = 252, x + 7 = y, y + 7 = z Nun gibt es auch eine einfachere Überlegung. Wenn Unterschied zwischen den Zahlen dieser Reihe immer 7 ist so kann das gleich in einer Formel aufgeschrieben werden. Die kleinste, der drei Zahlen ist x: x + x x + 14 = 252 daraus 3x + 21 = x = weiter x = 231/3 = 77 Die Zahlenreihe: 77, , , 84, 91

4 Bei den nächsten drei Beispielen ist immer nach einer Unbekannten, nennen wir sie z gefragt, daher ist auch immer nur eine Gleichung erforderlich: 4. Es kommt dasselbe heraus, wenn man vom 7-fachen einer Zahl 30 subtrahiert oder ob man zum 3 fachen die Zahl 2 addiert. Lösungsansatz: 7z 30 = 3z + 2 Unbekannte auf eine Seite der Gleichung, Zahlen auf die andere: 7z 3z = z = 32 z = 32/4 = 8 Probe: 7z 30 = 3z = = 26. Auflösung: RICHTIG 5. Das Dreifache einer Zahl erhält man, wenn man von 20 das um 5 verminderte Doppelte der Zahl subtrahiert. Lösungsansatz: 3z = 20 (2z 5) in der Klammer steht das um 5 verminderte Doppelte der Zahl. Die Klammer ist erforderlich, damit mit dem Minus vor der Klammer richtig gerechnet wird (ein Minus vor der Klammer ändert die Vorzeichen in der Klammer bei der Auflösung der Klammer). 3z = 20 (2z 5) 3z = 20 2z + 5 Unbekannte auf eine Seite der Gleichung, Zahlen auf die andere: 3z + 2z = 25 5z = 25 z = 25/5 = 5 Probe: 3z = 20 (2z 5) 15 = 20 (10 5) 15 = = 15 no na net! 6. Das Fünffache einer Zahl, vermindert um 2, gibt das um 8 vermehrte Vierfache der Zahl. Lösungsansatz: 5z 2 = 4z + 8 Unbekannte auf eine Seite der Gleichung, Zahlen auf die andere: 5z 4z = z = 10 Probe: 5z 2 = 4z = = 48..ist keine Ungleichung, daher richtig

5 7. In einer Schule sind 480 SchülerInnen. Es sind um 40 Buben mehr als Mädchen. Wie viele Buben und wie viele Mädchen besuchen diese Schule? Hier gibt es zwei Unbekannte m(ädchen) und b(uben) und daher auch zwei Gleichungen. Der Lösungsansatz: m + b = 480, b = m Es kann b der zweiten Gleichung in die erste eingesetzt werden: m + m + 40 = 480 2m + 40 = 480 2m = = 440 m = 440/2 = 220 (Mädchen) b = m + 40 = = 260 (Buben) Probe: m + b = = 480 Auflösung: RICHTIG 8. In drei Fässer sind zusammen 100 Liter. Im 1.Fass sind um 20 l mehr als im 2. Fass. Im 3. Fass sind um 10 l weniger als im 2. Fass. Wie viel Liter sind in den einzelnen Fässern? In diesem Beispiel sind wieder drei Unbekannte x..1.fass, y..2.fass, z..3.fass und damit auch drei Gleichungen erforderlich: x + y + z = 100, x = y + 20, z = y 10. Die Unbekannten x und z sind durch y definiert daher setzen wir in die erste Gleichung ein: x + y + z = 100 y y + y -10 = 100 3y +10 = 100 3y = = 90 y = 90/3 = 30 Probe: x = y + 20 = 50, z = y 10 = 20 x + y + z = = 100 Auflösung: RICHTIG 9. Simon wird nach seinem Alter gefragt. Wenn ich 4 mal so alt bin, wie jetzt und noch 10 Jahre dazu rechne, dann bin ich 50. Eine so leichte Aufgabe fällt direkt in dieser Sammlung auf! Eine Unbekannte a für Alter. Lösungsansatz: 4a + 10 = 50 4a = = 40 a = 40 /4 = 9, rund 10.

6 In einem Dreieck ist der Winkel Alpha um 24 größer als der Winkel Beta. Der Winkel Gamma ist elf Mal so groß wie der Winkel Beta. Wie groß sind die Winkel Für die Beispiele mit den Dreiecken ist grundsätzlich zu wissen, dass die Summe aller Winkel im Dreieck immer 180 ist, also Es gibt drei Unbekannte (die Winkel und daher sind auch drei unabhängige Gleichungen notwendig. Der Lösungsansatz: Nun kann in die erste Formel für und eingesetzt werden: = = = 156 = 156/13 = 12 Probe: Auflösung: RICHTIG 11. In einem gleichschenkeligen Dreieck ist der Winkel an der Spitze um 8 größer als das Doppelte eines Winkels an der Basis. Wie groß ist ein Winkel an der Basis und wie groß ist der Winkel an der Spitze des Dreiecks? Für die Beispiele mit den Dreiecken ist grundsätzlich zu wissen, dass die Summe aller Winkel im Dreieck immer 180 ist, also und dass beim gleichschenkeligen Dreieck, wenn der Winkel zwischen den gleichen Schenkeln ist (siehe Zeichnung) die Winkel und dann auch gleich groß sein müssen. Der Lösungsansatz: = 2 + 8, Damit ist und durch definiert. Nun kann in die Formel eingesetzt werden: Daraus: = = 2* = 94 Probe: Auflösung: RICHTIG

7 12. In einem rechtwinkeligen Dreieck ist der eine spitze Winkel 23 kleiner als der andere. Wie groß sind die beiden spitzen Winkel? Es gilt wie bei allen Dreiecken:. Wenn ein Winkel 90 hat, ist die Summe der beiden anderen auch 90. In unserer Zeichnung ist der rechte Winkel). n die zweite Gleichung wird eingesetzt, daher der Lösungsansatz: Probe: Auflösung: RICHTIG Anmerkung: Vermutlich ist in der Angabe der Winkel von 23 nicht richtig, da bisher alle Gleichungen ganze Zahlen als Lösung ergaben. Vielleicht sollte es 22 oder 24 lauten? Liebe Grüße euer

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine

Mehr

6,5 34,5 24,375 46,75

6,5 34,5 24,375 46,75 Teste dich! - (/5) Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (0 km; x km) Fahrt als Term dar. 2,5 +,6

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (1/5) 1 Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer 1,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (40 km; x km) Fahrt als Term dar. 2

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Kapitel 7: Gleichungen

Kapitel 7: Gleichungen 1. Allgemeines Gleichungen Setzt man zwischen zwei Terme T 1 und T 2 ein Gleichheitszeichen (=), so entsteht eine Gleichung! Ungleichung Setzt man zwischen zwei Terme T 1 und T 2 ein Ungleichheitszeichen

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

(2 a) (3 + b) = -4a + 2ab + 3b 6. (a 1) (b + 3) = -3a ab + 2b + 6. (2a + 3) (b 2) = 3a + ab b 3

(2 a) (3 + b) = -4a + 2ab + 3b 6. (a 1) (b + 3) = -3a ab + 2b + 6. (2a + 3) (b 2) = 3a + ab b 3 1) Multipliziere die Binome. (2 a) ( + b) = -4a + 2ab + b 6 (a 1) (b + ) = -a ab + 2b + 6 (2a + ) (b 2) = a + ab b 2) Berechne und verbinde Gleichwertiges. a 4b + (-2a) b = 2a b (-a) 2b = a (-2b) (-2a)

Mehr

Klapptest Lineare Gleichungen I

Klapptest Lineare Gleichungen I Klapptest Lineare Gleichungen I (Lösungen als ganze Zahlen) 1. 6(x + 2)(x - 7) = x(6x + 6) - 48 1. x = -1 2. -7(x + 3)(x + 1) = x(-7x - 2) - 255 2. x = 9 3. 4(x - 7)(x + 7) = x(4x - 8) - 156 3. x = 5 4.

Mehr

QUADRATISCHE GLEICHUNGENN

QUADRATISCHE GLEICHUNGENN Schule Bundesgymnasium für Berufstätige Salzburg Thema Mathematik Arbeitsblatt A -.: Quadratische Gleichungen LehrerInnenteam m/ Mag Wolfgang Schmid Unterlagen QUADRATISCHE GLEICHUNGENN Definition: Eine

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

x x

x x Gleichungen und Ungleichungen 10 10 15 10 10 x x 0 10 5 10 10 5,5,5 55 60 10 + 10 + 15 + 10 + 10 + x + x = 0 + 10 + 5 + 10 + 10 + 5 Gleichung, die sich im Gleichgewicht befin det! 55 + x = 60 55 + x =

Mehr

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen Mathematik -Intensivierung * Jahrgangsstufe Lösung von Gleichungen durch Äquivalenzumformungen Musterbeispiel: 5 ( x - ) + x = ( 5 - x ) (Vereinfachen!) 5 x - 0 + x = 0-6 x (Vereinfachen!) 8 x - 0 = 0-6

Mehr

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm². Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen Thema aus dem Bereich Algebra - 1.1 lineare Gleichungen und Ungleichungen Inhaltsverzeichnis 1 allgemeine Gleichungen 2 2 lineare Gleichungen mit einer Variabeln 2 3 allgemeingültige und nichterfüllbare

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Welche Nullstellen hat der Graph der Funktion a)

Welche Nullstellen hat der Graph der Funktion a) Aufgabe 1 Welche Nullstellen hat der Graph der Funktion a) f (x)= (x 7)² (x+3)² Die Nullstellen sind 7 und -3. Beide Nullstellen sind doppelt, d.h. der Graph wechselt nicht die Seite der x-achse. b) Multipliziere

Mehr

Gleichungen - Textaufgaben

Gleichungen - Textaufgaben DX1684_Lineare_Gleichungen_Textaufgaben.wxmx 1 / 20 Gleichungen - Textaufgaben Dokumentnummer: DX1684 Fachgebiet: Lineare Gleichungen Einsatz: 2HAK (erstes Lernjahr) Quelle: Internetseite von Jutta Gut

Mehr

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b Blatt Nr 1906 Mathematik Online - Übungen Blatt 19 Dreieck Geometrie Nummer: 41 0 2009010074 Kl: 9X Aufgabe 1911: (Mit GTR) In einem allgemeinen Dreieck ABC sind a = 18782, c = 1511 und β = 33229 gegeben

Mehr

9x x + 7 = 10a 6 a b 14,5 = ordnen 9x 5x = 10a 12a 6 14,5 + 7b = zusammenfassen 4x a 20,5 + 7b

9x x + 7 = 10a 6 a b 14,5 = ordnen 9x 5x = 10a 12a 6 14,5 + 7b = zusammenfassen 4x a 20,5 + 7b D Gleichungen 1 Terme umformen Terme sind Rechenausdrücke mit verschiedenen/mehreren Rechenzeichen, Zahlen und Variablen (Platzhaltern), z. B. 3 1 2 + 2x 6 4 0,8x. Erst wenn Zahlen für die Variablen eingesetzt

Mehr

Inhaltsverzeichnis. Hinweise für den Benutzer Kopfrechnen Grundwissen... 7 Brüche und Dezimalbrüche (1)... 9 Brüche und Dezimalbrüche (2)...

Inhaltsverzeichnis. Hinweise für den Benutzer Kopfrechnen Grundwissen... 7 Brüche und Dezimalbrüche (1)... 9 Brüche und Dezimalbrüche (2)... Inhaltsverzeichnis Hinweise für den Benutzer... 6 1. Wiederholung 8. Klasse Kopfrechnen Grundwissen... 7 Brüche und Dezimalbrüche (1)... 9 Brüche und Dezimalbrüche (2)... 11 2. Prozent- und Zinsrechnung

Mehr

Grundwissen Klasse 7

Grundwissen Klasse 7 Grundwissen Klasse 7 Zahlenmengen = {1; 2; 3; 4; 5; 6;... } Die Menge der natürlichen Zahlen. = {... 3; 2; 1; 0; + 1; + 2; + 3;...} Die Menge der ganzen Zahlen. Die Menge der rationalen Zahlen. Multiplikation

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

20. Berliner Tag der Mathematik 2015 Klassenstufe 7/8

20. Berliner Tag der Mathematik 2015 Klassenstufe 7/8 Aufgabe 1 Von einem Dreieck ABC ist bekannt: (a) Der Innenwinkel CBA beträgt 45. (b) Ein Punkt P liegt auf der Seite BC so, dass die Strecke PB halb so lang ist wie die Strecke PC. (c) Der Winkel CPA beträgt

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Das Skalarprodukt zweier Vektoren

Das Skalarprodukt zweier Vektoren Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften

Mehr

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis Schule Thema Personen Bundesgymnasium für Berufstätige Salzburg Mathematik -Arbeitsblatt -8: Rechnen mit Potenzen F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB ) Potenzen mit negativer Basis Zur

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist.

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist. I Körper II 33. Umfang und Flächeninhalt eines Kreises Lösungen Ein Blumenbeet hat die Form eines Viertelkreises mit gegebenem Radius. Fertige eine Skizze an. Berechne den Umfang des Beetes. a) r = 3,9

Mehr

Terme und Formeln Umgang mit Termen

Terme und Formeln Umgang mit Termen Terme und Formeln Umgang mit Termen Al Charazmi (* um 780, um 840) war ein persischer Mathematiker, Astronom und Geograph. Vom Titel seines Werkes Al-kitab al-mukhtasar fi hisab al- abr wa l-muqabala (Arabisch

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Dr. H. Macholdt 7. September 2005 1 Motivation Viele Probleme aus dem Bereich der Technik und der Naturwissenschaften stellen uns vor die Aufgabe mehrere unbekannte Gröÿen gleichzeitig

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

1. Schularbeit - Gruppe A M 0 1(1) 6C A

1. Schularbeit - Gruppe A M 0 1(1) 6C A . Schularbeit - Gruppe A M 0 () 6C 3 0 97 A. Ergänze folgende Tabelle: Potenz Bruch / Wurzel numerischer Wert 3-5 n -5 8 0,00 3 5 4 x 3 8 7. Berechne: a) ( x y) ( x + y) 0 = b) 9x 6ax : = 5 4a 3 3. Rechne

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

Kapitel 4: Variable und Term

Kapitel 4: Variable und Term 1. Klammerregeln Steht ein Plus -Zeichen vor einer Klammer, so bleiben beim Auflösen der Klammern die Vorzeichen erhalten. Bei einem Minus -Zeichen werden die Vorzeichen gewechselt. a + ( b + c ) = a +

Mehr

Grundaufgaben der Differenzialrechnung

Grundaufgaben der Differenzialrechnung Grundaufgaben der Liebe Schülerin, lieber Schüler Ein Leitprogramm Oliver Riesen, Kantonsschule Zug Die Blätter, die du jetzt gerade zu lesen begonnen hast, sind ein sogenanntes Leitprogramm. In einem

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Aufnahmeprüfung Mathematik

Aufnahmeprüfung Mathematik Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Seiten 6 / 7 Gleichungen und Ungleichungen. Lösungen Mathematik 3 Dossier 7 Gleichungen. 1 a) x a) (x + 5) ( x 12) = 0 HN (12)

Seiten 6 / 7 Gleichungen und Ungleichungen. Lösungen Mathematik 3 Dossier 7 Gleichungen. 1 a) x a) (x + 5) ( x 12) = 0 HN (12) Seiten / 7 Gleichungen und Ungleichungen Lösungen Mathematik Dossier 7 Gleichungen 1 a) x 4 1 - x = 4 x 1 2 2x = 48 x 1 = 48 x = x = 7 b) x - 19 1 c) x 18 = x - 12 10 18x 114 x = 9x 108 1x - 114 = 9x -

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen und Ungleichungen 1. Erkläre den (oder die) Fehler in folgender Aufgabe und verbessere die Aufgabe! 123 x = 78, G = {2,4,6,8,...}, L = {45} Lösung: 123 x = 78, G = {2,4,6,8,...}, L = {} 2.

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

MATHEMATIK Grundkurs 11m3 2010

MATHEMATIK Grundkurs 11m3 2010 MATHEMATIK Grundkurs 11m3 2010 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Unterricht ab 29. Oktober 2010 Für jede Doppelstunde ein Kapitel 2 Kapitel 1 Doppelstunde 29.10.2010

Mehr

3 heißt 1. Faktor und 4 heißt 2. Faktor. 12 heißt Wert des Produkts. Beispiele : a) 4 5 = = 20. b) 3 12 = = 36

3 heißt 1. Faktor und 4 heißt 2. Faktor. 12 heißt Wert des Produkts. Beispiele : a) 4 5 = = 20. b) 3 12 = = 36 VI. Die Multiplikation und Division natürlicher Zahlen ================================================================= 6.1 Die Multiplikation 3 4 Wir schreiben 4 + 4 + 4 = 3 4 und damit ist 3 4 = 12.

Mehr

A.22 Schnittwinkel zwischen Funktionen

A.22 Schnittwinkel zwischen Funktionen A.22 Schnittwinkel 1 A.22 Schnittwinkel zwischen Funktionen A.22.01 Berühren und senkrecht schneiden ( ) Wenn sich zwei Funktionen berühren, müssen sie im Berührpunkt den gleichen y-wert haben. Wenn sich

Mehr

WADI 7/8 Aufgaben A17 Terme. Name: Klasse:

WADI 7/8 Aufgaben A17 Terme. Name: Klasse: WADI 7/8 Aufgaben A17 Terme 1 Berechne den Wert für x = -1,5. x x + x x + x 1000x c) 10. (10x) d) 100(x 2x) 2 Welche Terme sind äquivalent zu 4x? x + 2(x+1) 2 + 2x c) x + x+ x + x d) 2. (2 x) 3 Sind beim

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

Die Winkelsumme in Vierecken beträgt immer 360.

Die Winkelsumme in Vierecken beträgt immer 360. 98 5 Flächenberechnung Wussten Sie schon, dass (bezogen auf die Fläche) Ihr größtes Organ Ihre Haut ist? Sie hat durchschnittlich (bei Erwachsenen) eine Größe von ca. 1,6 bis 1,9 m2. Wozu brauche ich das

Mehr

/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras

/  Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Wenn wir in diesen Term für x = 2 einsetzen, entsteht eine Division durch Null!

Wenn wir in diesen Term für x = 2 einsetzen, entsteht eine Division durch Null! 4.1. Bruchterm (.6.) Seite 9 Bruchterme mit Variablen im Nenner sind nicht immer definiert, da unter Umständen der Nenner 0 sein kann. 4 x Wenn wir in diesen Term für x = einsetzen, entsteht eine Division

Mehr

Vektoren - Basiswechsel

Vektoren - Basiswechsel Vektoren - Basiswechsel Grundprinzip Für rein geometrische Anwendungen verwendet man üblicherweise die Standardbasis. Damit ergibt sich in den Zahlenangaben der Koordinaten kein Unterschied zu einem Bezug

Mehr

Tipps und Tricks für die Abschlussprüfung

Tipps und Tricks für die Abschlussprüfung Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

x + y = a x 3 + y 3 = a x 5 + y 5 = a.

x + y = a x 3 + y 3 = a x 5 + y 5 = a. Lösungen 1. Prüfung 1. Für die rellen Zahlen x, y, a gelten die folgenden Gleichungen: x + y = a x 3 + y 3 = a x 5 + y 5 = a. Bestimme alle möglichen Werte von a. 1. Lösung: Die Polynome auf der linken

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen inkl. der 0 ganzen Zahlen rationalen

Mehr

2. Schularbeit Mathematik 3 10./11. Dezember 2015

2. Schularbeit Mathematik 3 10./11. Dezember 2015 2. Schularbeit Mathematik 3 10./11. Dezember 2015 Name: Klasse: Wichtige Anmerkungen: Rechne OHNE Taschenrechner! Schreibe alle Rechenwege oder Nebenrechnungen übersichtlich auf! Ergebnisse ohne Nebenrechnung,

Mehr

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b) GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis

Mehr

Wie stellt man eine Gleichung um?

Wie stellt man eine Gleichung um? Wie stellt man eine Gleichung um? Umstellen von Gleichungen stellt für manche immer wieder ein Problem dar. Daher soll hier versucht werden, das Umstellen zu systematisieren. Ich empfehle, sich folgende

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Lösen von Gleichungen Teilbarkeitsregeln ggt kgv Löse die Gleichungen und mache die Probe durch Einsetzen! a) 12 x 1 = 47 b) 2,4 y = 10,368 c) r : 1,2 = 10 Schreibe den Text

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

MSA Probearbeit. 2. Berechnen Sie: Ein Viertel des Doppelten der Summe aus 4 und 8.

MSA Probearbeit. 2. Berechnen Sie: Ein Viertel des Doppelten der Summe aus 4 und 8. MSA Probearbeit www.mathementor.de Stand 22.5.09 1. Fassen Sie die Terme zusammen soweit es geht: x + 10 (4 2x) = (3x + 4)² (x² + 2x + 15) = 4a²b³ : 2a³bz = 5bz 25z² 2. Berechnen Sie: Ein Viertel des Doppelten

Mehr

DOWNLOAD. Terme und Gleichungen 5./6. Klasse. Mathetraining in 3 Kompetenzstufen

DOWNLOAD. Terme und Gleichungen 5./6. Klasse. Mathetraining in 3 Kompetenzstufen DOWNLOAD Brigitte Penzenstadler Terme und Gleichungen 5./6. Klasse Mathetraining in 3 Kompetenzstufen Brigitte Penzenstadler Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel: Mathetraining

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Faktorisierung bei Brüchen und Bruchtermen

Faktorisierung bei Brüchen und Bruchtermen Faktorisierung bei Brüchen und Bruchtermen Rainer Hauser Mai 2016 1 Einleitung 1.1 Rationale Zahlen Teilt man einen Gegenstand in eine Anzahl gleich grosse Stücke, so bekommt man gebrochene Zahlen, die

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt Nullstellen Aufgabe 1 Gegeben ist die folgende quadratische Funktion: Bestimme die Nullstellen. f( x) x² 3 x² 3 : x² 16 16 x² 16 Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt.

Mehr

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8 Inhaltsverzeichnis 1 Flächen Klammern auflösen 4 3 Prozentrechnung 6 4 Zinsrechnung 7 5 Funktionen 8 1 Flächen Quadrat Alle Seiten sind gleich lang und alle Winkel sind rechte Winkel. - 4 Symmentriachsen

Mehr

Gedankenlesen mit Termen und Gleichungen Rätsel lösen. Wolfgang Göbels, Bergisch Gladbach. Mit Termen und Gleichungen umgehen VORANSICHT

Gedankenlesen mit Termen und Gleichungen Rätsel lösen. Wolfgang Göbels, Bergisch Gladbach. Mit Termen und Gleichungen umgehen VORANSICHT S 1 Gedankenlesen mit Termen und Gleichungen Rätsel lösen Wolfgang Göbels, Bergisch Gladbach M 1 Mit Termen und Gleichungen umgehen Zur Erinnerung: Die wichtigsten Gesetze auf einen Blick Für alle rationalen

Mehr

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte 3.C Gruppe A 1. Schularbeit Name: Mo 27.10.97 / Schw 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) 3 + 2 ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 2) Gib die Elemente der Menge A = { x Z / x < 3 } und B = { y Z / -5

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2013 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Mathematik VERA-8 in Bayern Korrekturanweisungen für Testheft C: Gymnasium

Mathematik VERA-8 in Bayern Korrekturanweisungen für Testheft C: Gymnasium Mathematik VERA-8 in Bayern Korrekturanweisungen für Testheft C: Gymnasium Aufgabe 1: LKW-Ladung...3 Aufgabe 2: Katzenfutter...3 Aufgabe 3: Mittig...3 Aufgabe 4: Sonderangebot...4 Aufgabe 5: Quersumme...4

Mehr

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren 1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN 1. Kürzen von Bruchtermen Zunächst einmal müssen wir klären, was wir unter einem Bruchterm verstehen. Definition:

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

1.5 Gleichungen I. 1 Gleichungen 1.Grades mit einer Unbekannten 2. 2 allgemeingültige und nichterfüllbare Gleichungen 4

1.5 Gleichungen I. 1 Gleichungen 1.Grades mit einer Unbekannten 2. 2 allgemeingültige und nichterfüllbare Gleichungen 4 1.5 Gleichungen I Inhaltsverzeichnis 1 Gleichungen 1.Grades mit einer Unbekannten 2 2 allgemeingültige und nichterfüllbare Gleichungen 4 3 Einschub: Rechnen mit physikalischen Zeichen 5 4 Auflösen von

Mehr

Wiederholung Winkel. Berechnung des Winkels zwischen zwei Vektoren

Wiederholung Winkel. Berechnung des Winkels zwischen zwei Vektoren Wiederholung Winkel Das entscheidende Mittel zur Bestimmung von Winkeln ist das Skalarprodukt. Das Skalarprodukt lässt sich nämlich sehr komfortabel koordinatenweise berechnen, zugleich hängt es aber mit

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Sprache und Mathematik

Sprache und Mathematik Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Sprache und Mathematik 1. Begriffsbildung Luisa ist 1 ½ Jahre alt

Mehr

Zahlensystem und Grundrechnen Rechnen mit Klammern. Klammern werden benötigt, um die Reihenfolge von Rechenschritten zu bestimmen.

Zahlensystem und Grundrechnen Rechnen mit Klammern. Klammern werden benötigt, um die Reihenfolge von Rechenschritten zu bestimmen. SZ Förderkonzept Seite 1 M 1.9 Klammern werden benötigt, um die Reihenfolge von Rechenschritten zu bestimmen. Beispiel1 Supermarktkasse An der Supermarktkasse legt Frau Schulze einzelne Bierflaschen zu

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe 1. Ist das Dreieck mit folgenden Maßen konstruierbar? Begründe! b = 6 cm, β = 76, Außenwinkel γ * = 59.. Ein Draht soll zu einem Dreieck gebogen werden. Eine Seite soll 1m lang

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr