Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen"

Transkript

1 Übngsafgaben Mathematik MST Lösng z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Lösen Sie folgende Differentialgleichngen nd Anfangswertprobleme drch mehrfaches Integrieren nach y(x) af! a) '' = x y e + x +, y(0)=0, y (0)= b) y = 4sin(x) Lösng: Z a) y x integrieren ergibt die allgemeine Lösng y allg (x) der Dgl y =e -x +x+: y' = y' ' dx = ( e + x + ) dx = e + x + x +, R () y ( x) = y' dx = ( e + x + x + ) dx = e + x + x + x +, R () al lg, Wie lösen nn das Anfangswertproblem, indem wir die Lösng as der allgemeinen Lösng herasschen, welche die AB y(0=)0 nd y (0)= erfüllt: Lat () ist y(0)= + =! 0 = - Lat () ist y (0) = + = = 0 Somit latet die Lösng nseres Anfangswertproblems: ( ) = x y x e + x + x Z b) x integrieren von y (x) ergibt die allgemeine Lösng y allg (x) der Dgl. y = 4sin(x) : 4 y ''( x) = y' '' dx = sin(x) dx = cos(x) + y '( x) = y'' dx = ( cos(x) + ) dx = sin(x) + x + y al lg ( x) = y' dx = ( sin(x) + x + = cos(x) + x + x +, 6 ) dx,, R

2 Z Afgabe ) Geben Sie jeweils eine einzige spezielle Lösng y(x) folgender Differentialgleichngen an! Hinweis: Überlegen Sie sich daz znächst, welchen Typ diese spezielle Lösng hat (Polynom, Schwingng, e-fnktion sw.), machen Sie daz einen entsprechenden parametrischen Ansatz für y(x), d.h. eine Ansatz, der noch von nbekannten Parametern abhängt nd bestimmen Sie diese Parameter drch Einsetzen Ihres Ansatzes in die Dgl.! a) y '' + 6y' + 0y = x b) y +6y = x c) y -y = sin(5x) d) y (x) = y(x) e) y - y = Z a) Wir machen einen geeigneten Ansatz für y(x), so dass der Typ der Fnktion af der LS der Dgl mit dem Typ (gerade) der rechten Seite übereinstimmt: Wir setzen also für y(x) ach eine Gerade an: Ansatz: y(x) = ax+b Zr Berechnng der nbekannten Parameter a nd b setzten wir y(x) in die Diffgl. ein nd machen einen Koeffizientenvergleich mit der rechten Seite: y(x) = ax+b y (x) =a nd y (x) = 0 y + 6y + 0y = x 6a+0ax+0b = x (6a + 0b) + 0a x = x (6a + 0b) = 0 nd 0 a = 6 a =, b = 0 00 Also ist eine spezielle Lösng der Dgl. die Gerade y (x) = 6 x. 0 00

3 Z b) Wir bestimmen eine spezielle Lösng der inhomogenen Differentialgleichng y +6y = x. Daz machen wir znächst einen geeigneten Ansatz: Wir müssen, damit die Fnktionstypen der linken nd der rechten Seite übereinstimmen, ein Polynom. Grades ansetzen: y(x) = ax +bx+c y (x) =a x +b nd y (x) = a y + 6y = x a+6ax + 6b = x (a + 6b) = 0 nd 6a = a =, b = 6 6 (c ist beliebig wählbar, z.b. c=0). Eine spezielle Lösng der gegebenen inhomogenen Diff.gleichng latet folglich: y(x) = x 6 6 x Z c) Hier würde der Lösngsansatz passen: y(x) = a sin(5x) (af der LS nd der RS steht dann jeweils der Fnktionstyp sins ) Zr Berechnng der Unbekannten Konstanten a setzen wir y(x) in die Diffgl. ein nd machen einen Koeffizientenvergleich mit der rechten Seite: y(x) =a sin(5x) y (x) = 5a cos(5x) nd y (x) = - 5a sin(5x) y -y = sin(5x) -5 a sin(5x) a sin(5x) = sin(5x) -8 a sin(5x) = sin(5x) -8a = a = 4 Eine spezielle Lösng der gegebenen inhomogenen Diff.gleichng latet folglich: y(x) = - 4 sin(5x)

4 Z d) Die Differentialgleichng y (x) = y(x) wird offensichtlich von einer e-fnktion erfüllt. Wir machen deshalb den Ansatz : y(x) = a e bx, a 0, b 0. Zr Berechnng der Unbekannten a nd b setzen wir y(x) in die Diffgl. ein nd machen einen Koeffizientenvergleich mit der rechten Seite: y(x) = a e bx y (x) = ab e bx nd y (x) = ab e bx y = y ab e bx = a e bx / : ae bx b = b = oder b = (a beliebig ngleich 0, z.b. a=) Damit löst z.b. die folgende Fnktion die Dgl: y = y: y ( x) = x e Z e) Wir müssen, damit die Fnktionstypen der linken nd der rechten Seite der Dgl. y y = übereinstimmen, eine Konstante ansetzen: y(x) = a y (x) = 0 y - y = - a= a= - Eine spezielle Lösng der gegebenen Diff.gleichng latet folglich: y(x) = - für alle reellen x-werte. 4

5 Z Afgabe ) In folgendem R--Stromkreis (Tiefpass) sind der Wiederstand R, die Kapazität nd die angelegte Spannng a (t) bekannt. Gescht ist der Spannngsverlaf c (t) am Kondensator! a) Stellen Sie eine Differentialgleichng. Ordnng für (t) af, die aßer der Kondensatorspannng (t) nd ihrer ersten Ableitng nr noch die gegebenen Größen R,, a (t) enthält! (Hinweis: Schreiben Sie sich znächst alle in der o.g. Masche geltenden Gesetze af: Maschengleichng für die Spannngen, Baelementegleichngen (Ohmsches Gesetz, Kondensatorgleichng) für Wiederstand nd Kondensator nd bringen sie diese Gleichngen in die geschte Beziehng!) b) Lösen Sie die in a) erhaltenen Differentialgleichng nach (t) für folgendes Anfangswertproblem: Der Kondensator ist zr Zeit t=0 afgeladen, d.h. (0) = Uo, nd es wird eine keine Spannng angelegt, d.h. a (t) = 0. Skizzieren Sie den Verlaf der erhaltenen Spannngskrve (t). Lösng : Z a) Wir schreiben znächst alles af, was wir z dieser Masche wissen : Es gilt : Maschenregel: R + = a () (Smme der Spannngen in einer Masche =0, Richtng beachten!) Ohm sches Gesetz: = R i( t) () R i( t) dt Kondensatorgleichng : = bzw. ɺ = i( t) () Nn stellen wir daras eine Gleichng af, die nr noch die geschten nd gegebenen Größen R,, a (t) nd (t) enthält : In Gleichng () stört R (t). R (t) kann man aber wegen () nd () drch die Größen R, nd (t) darstellen. Wir setzen daz die Gleichng () in () ein nd erhalten R = R ɺ (4) Setzen wir (4) in () ein, so erhalten wir die geschte Beziehng, die eine Differentialgleichng. Ordnng in (t) darstellt : R ɺ + = a 5

6 Z b) Z lösen ist die Dgl : R ɺ + = 0 mit der Anfangsbedingng (0) = Uo Wir bestimmen znächst die allgemeine Lösng der Dgl. Diese Dgl. kann man wie folgt afschreiben: ɺ =. R Lösngen dieser Dgl. Sind offensichtlich vom Typ her nr e-fnktionen. Wir machen deshalb den Ansatz : Bt = Ae, nd bestimmen A nd B, indem wir diesen Ansatz in die Dgl. Einsetzen nd daras die möglichen Werte für A nd B ermitteln. Wir erhalten als Ergebnis dieses Vorgehens: Die Dgl. ɺ = wird drch alle Fnktionen des Typs : R = Ae t R, A R, gelöst. As dieser allgemeinen Lösng bestimmen wir nn diejenige, die die Anfangsbedingng Uc(0) = Uo erfüllt. Es ist 0 R ( 0 = Ae = A= U! o Demzfolge ist die Spannngskrve am Kondensator die folgende Fnktion : = U 0 e t R Skizze : 6

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol.

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol. Einführng in FEM Motivationsbeispiel Berechnngsbeispiel COMSO Mltiphysics: Elastizitätsberechnng eines F Frontflügels. www.comsol.de Originalgeometrie CAD-Modell mit Berechnngsgitter FEM Ergebnis der Aslenkng

Mehr

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält.

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält. 5 0. Die Kgel 0. Die Kgelgleichng Def. Unter der Kgel k mit Mittelpnkt M nd adis verstehen wir die Menge aller Pnkte P, die vom Mittelpnkt M einen vorgegebenen abstand haben, für die also gilt: MP MP oder

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngsssteme Lineare Gleichngsssteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; m Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME Dr.-Ing. Tatjana Lange Fachhochschle für Technik nd Wirtschaft Fachbereich Elektrotechnik AUFGABENSAMMLUNG ZUM LEHRGEBIET AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME. Differentialgleichngen Afgabe.:

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grndlagen Ein Oszilloskop ist ein elektronisches Messmittel zr grafischen Darstellng von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellng

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III Walter Strampp AUFGABEN ZUR WIEDERHOLUNG Mathematik III Differenzialgleichungen erster Ordnung Aufgabe.: Richtungsfeld und Isoklinen skizzieren: Wie lauten die Isoklinen folgender Differenzialgleichungen:

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

Schaltungen mit nichtlinearen Widerständen

Schaltungen mit nichtlinearen Widerständen HOCHSCHLE FÜ TECHNIK ND WITSCHAFT DESDEN (FH) niversity of Applied Sciences Fachbereich Elektrotechnik Praktikm Grndlagen der Elektrotechnik Versch: Schaltngen mit nichtlinearen Widerständen Verschsanleitng

Mehr

Musterlösungen Serie 9

Musterlösungen Serie 9 D-MAVT D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Serie 9 1. Frage 1 Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : x sin x als Lösung besitzt. Welche der folgenden

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen 6. Vektorra Ein Vektorra oder linearer Ra ist eine algebraische Strktr die in fast allen Zweigen der Matheatik erwendet wird. Eingehend betrachtet werden Vektorräe in der Linearen Algebra. Die Eleente

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Differentialgleichungssysteme Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 DGlSysteme - Zusammenfassung Allgemeine Differentialgleichungssysteme.Ordnung

Mehr

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt Michael Bhlmann Mathematik > Vektorrechnng > Krezprodkt Einleitng a Für zwei Vektoren a a nd gelten im dreidimensionalen reellen Vektorram a neen der Addition Vektoraddition) nd der Mltiplikation mit einer

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Aufgabensammlung zur Systemtheorie und Regelungstechnik

Aufgabensammlung zur Systemtheorie und Regelungstechnik Afgabensammlng zr Systemtheorie nd egelngstechnik Dr. S. Krase Prof. Dr. B. Fapel 3. Jni 206 Wiederholng nd Grndlagen. Berechnen Sie (ohne Taschenrechner) die folgenden Asdrücke. Es bezeichne lg = log

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Aufgaben zu Exponentialgleichungen

Aufgaben zu Exponentialgleichungen www.mathe-afgaben.com Afgaben z Eponentialgleichngen Definition Logarithms: b a b a Logarithmengesetze. Logarithmengesetz: ( y) () (y) b b. Logarithmengesetz: b( ) b() b(y) y. Logarithmengesetz: ( ) m

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Man erkennt, dass an der Induktivität die Spannung unendlich groß wird, wenn der Strom einen Sprung

Man erkennt, dass an der Induktivität die Spannung unendlich groß wird, wenn der Strom einen Sprung nverät Stttgart Intt für engselektronk nd Elektrsche Antrebe Abt. Elektrsche Energewandlng Prof. Dr.-Ing. N. Parspor Enschwngvorgänge Wenn n enem elektrschen Netzwerk en oder mehrere Energe spechernde

Mehr

. Die Differenz zwischen den Umschaltpunkten nennt man Hysterese u H. -u T- (t): Eingangssignal. (t): Ausgangssignal

. Die Differenz zwischen den Umschaltpunkten nennt man Hysterese u H. -u T- (t): Eingangssignal. (t): Ausgangssignal sind Komparatorschaltngen mit Mitkopplng Sie werden haptsächlich zr Implsformng nd echteckwandler eingesetzt Im Gegensatz zr konventionellen Komparatorschaltng wird die eferenzspannng nicht fest vorgegeben,

Mehr

Formfunktionen (Interpolation): Bedeutung und praktischer Einsatz

Formfunktionen (Interpolation): Bedeutung und praktischer Einsatz Formfnktionen (Interpolation): Bedetng nd praktischer Einsatz Dr.-Ing. Martin Zimmermann Lehrsthl für Konstrktionslehre nd CAD Universität Bayreth Einleitng, Problem nd Motivation Knoten Steifigkeit Elemente

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Universität Stuttgart. Bild Prof. Dr.-Ing. J. Roth-Stielow

Institut für Leistungselektronik und Elektrische Antriebe. Universität Stuttgart. Bild Prof. Dr.-Ing. J. Roth-Stielow niversität Stttgart Institt für Leistngselektronik nd lektrische Antriebe rof. Dr.-Ing. J. Roth-Stielo K + K M M M K + M + I A D HC H? I J? I J 8 A H> H= K? D A H Bild -3. nterlagen zr Vorlesng Leistngselektronik

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Quellen und Senken als Feldursachen

Quellen und Senken als Feldursachen Kapitel 2 Qellen nd Senken als Feldrsachen Wir sprechen von Qellenfeldern nd Wirbelfeldern. Beide nterscheiden sich grndlegend voneinander. Wir wollen deswegen beide Feldarten getrennt besprechen, m deren

Mehr

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines Prakikm Grndlagen der Elekroechnik Versch: Schalvorgänge Verschsanleing. Allgemeines Eine sinnvolle Teilnahme am Prakikm is nr drch eine ge Vorbereing af dem jeweiligen Soffgebie möglich. Von den Teilnehmern

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ PHYSIKALISCHE GRUNDLAGEN Wichtige Grndbegriffe: ermspannng, ermelement, ermkraft, Astrittsarbeit, Newtnsches Abkühlngsgesetz Beschreibng eines ermelementes: Ein ermelement besteht as zwei Drähten verschiedenen

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

2.2.6 Betafunktion: Behandlung von Teilchenstrahlen als Vielteilchensystem

2.2.6 Betafunktion: Behandlung von Teilchenstrahlen als Vielteilchensystem ..6 Betafnktion: Behandlng von Teilchentrahlen al Vielteilchenytem Literatr: K. Wille, Phyik der Teilchenbechleniger nd Synchrotrontrahlngqellen, Unterkapitel 3. bi 3.3 Vor-nd Nachteile der Bahnberechnng

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Lösen von Differentialgleichungen durch Reihenentwicklung

Lösen von Differentialgleichungen durch Reihenentwicklung Lösen von Differentialgleichungen durch Reihenentwicklung Thomas Wassong FB17 Mathematik Universität Kassel 30. April 2008 Einführung Reihen in der Mathematik Reihen zum Lösen von Differentialgleichungen

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion.

Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion. rof. Dr. H. Brenner Osnabrück SS 200 Mathematik II Vorlesung 34 Wir erinnern an den Begriff einer rationalen Funktion. Definition 34.. Zu zwei olynomen,q K[X], Q 0, heißt die Funktion D K, z (z) Q(z),

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Phasenseparation (Entmischung) in binären, homogenen Mischungen

Phasenseparation (Entmischung) in binären, homogenen Mischungen Phasenseparation (Entmischng) in binären homogenen Mischngen Exkrs: Tangenten an molare Zstandsfnktionen In einer binären Mischng (enthält 2 Komponenten) seien Teilchen der orte nd Teilchen der orte vorhanden.

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

Testvorbereitung: Integrierender Faktor

Testvorbereitung: Integrierender Faktor Testvorbereitung: Integrierender Faktor Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien,.02.2007 Voraussetzung: Kenntnis der exakten Differentialgleichungen! Theoretische Grundlagen Eine nicht exakte

Mehr

Lineare Differenzen- und Differenzialgleichungen

Lineare Differenzen- und Differenzialgleichungen Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen

Mehr

Betriebsverhalten des Z-Source-Wechselrichters

Betriebsverhalten des Z-Source-Wechselrichters Betriebsverhalten des Z-Sorce-Wechselrichters Wlf-Toke Franke *, Malte Mohr +, Friedrich W. Fchs # * hristian Albrecht niversität z Kiel, Kaiserstr., 443 Kiel, tof@tf.ni-kiel.de + hristian Albrecht niversität

Mehr

Musterlösung Nachklausur Gundlagen der Regelungstechnik WS0506 vom

Musterlösung Nachklausur Gundlagen der Regelungstechnik WS0506 vom Msterlösng Nachklasr Gndlagen der Regelngstechnik WS0506 vom 4.0.006 Afgabe : Das folgende Blockschaltbild ist z vereinfachen nd zsammenzfassen: G G G Schritt : G nd G zsammenfassen soie die Smmationsstelle

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Ansicht 10 P. Aufsicht 12 P m m 12 P 2 P 4 P 4 P 4 P m 7.50 m

Ansicht 10 P. Aufsicht 12 P m m 12 P 2 P 4 P 4 P 4 P m 7.50 m Berechnng FEMrämlichen Fachwerks eines Beisiel zr ehrveranstaltng Ein der Finite Elemente Methode Grndlagen Systembeschreibng Geometrie nd Abmessngen des Systems.... Materialarameter................. Skizzen

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Umdruck IV: Transformatoren. 1 Idealer, festgekoppelter und realer Transformator

Umdruck IV: Transformatoren. 1 Idealer, festgekoppelter und realer Transformator Universität Stttgart Institt für Leistngselektronik nd lektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow ÜBUG ZU LKTRISCH RGITCHIK II Hinweis zr Pfeilng der Spannngen nd zr Festlegng des Wickelsinnes:

Mehr

Dreiphasen-Wechselrichter: Steuerzyklen der Ventile 1 bis 6:

Dreiphasen-Wechselrichter: Steuerzyklen der Ventile 1 bis 6: Dreiphasen-Wechselrichter: Steerzyklen er Ventile bis 6: a) Zweistfen-Wechselrichter (-mrichter): Die as er Gleichspannng gespeisten Ventile bis 6 können ie Asgangsleitngen, V,W zwischen en beien Potentialen

Mehr

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis Vorlesungen: 16.1. 2006 30.1. 2006 7 Differentialgleichungen Inhaltsverzeichnis 7 Differentialgleichungen 1 7.1 Differentialgleichungen 1. Ordnung...................... 2 7.1.1 Allgemeine Bemerkungen zu

Mehr

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II am 5.8.25, Zeit: 2 Minuten Aufgabe (3 Punkte Eine Bakterienkultur hat eine stetige Wachstumsrate von % pro Stunde. Wie

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression

Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 6 Februar 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Die Fläche T im R 3 sei gegeben als T : {x,y,z

Mehr

9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3

9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3 MAPLE_Mini_09_V1-0.doc 9-1 9 Gleichungen 9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3 Beispiel 2: Lösen Sie die Gleichung

Mehr

Elektronik für den Maschinenbau

Elektronik für den Maschinenbau Höchstfreqenzelektronk Prof. Dr.-Ing. Andreas Thede Warbrger Str. 3398 Paderborn am P.4. Fon 5 5. 6-3 4 Fax 5 5. 6-4 6 E-Mal thede@pb.de Web grops.pb.de/hfe Vorlesng Elektronk für den Maschnenba A. Thede

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbndstdiengang Wirtschaftsingenierwesen (Bachelor) Praktikm Grndlagen der Elektrotechnik nd Elektronik ersch 4 Transformator Teilnehmer: Name orname Matr.-Nr. Datm der erschsdrchführng: Transformator

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Priv.-Doz. Dr. P. C. Kunstmann Dipl.-Math. Sebastian Schwarz SS 6.4.6 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Musterlösungen Online Zwischentest - Serie 10

Musterlösungen Online Zwischentest - Serie 10 D-MAVT, D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Online Zwischentest - Serie 10 Frage 1 [Prüfungsaufgabe Frühling 2011)] Sei das Vektorfeld in R 3, ( x v(x,y,z) = 2, x+y ),0 2 und der

Mehr

8 (z.b.) (1 P.) z. (0.5 P.) (0.5 P.) x. (z.b.) (0.5 P.) z

8 (z.b.) (1 P.) z. (0.5 P.) (0.5 P.) x. (z.b.) (0.5 P.) z Gymnasim Bämlihof Matritätsprüfngen 9 Seite 1 on 1 fgabe 1 Ramgeometrie 15 P. a) k CS CS CS 4 4 9 7 CS ( 4) 7 74 8.65... 8.6 1.5 P. b) c) Variante: Direkt in Distanzformel einsetzen. x 6 g : y 4 s 4 4

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

3 Einige konkrete Probleme der Höheren Mathematik

3 Einige konkrete Probleme der Höheren Mathematik 3 Einige konkrete Probleme der Höheren Mathematik Übersicht 3. Bestimmung der Extremalstellen bei Funktionen in einer Variable........ 7 3. Bestimmung der Extremalstellen bei Funktionen in zwei Variablen........

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

1 Über die allgemeine komplexe und reelle Lösung

1 Über die allgemeine komplexe und reelle Lösung Lösen von Differentialgleichungen Inhaltsverzeichnis 1 Über die allgemeine komplexe und reelle Lösung 1 2 Integrierender Faktor 5 2.1 Eine Beispielrechnung.................... 5 2.2 Das allgemeine Vorgehen..................

Mehr

(X ) (X ) g [L X ] (X ) X (X ) dx g [L X ]X () Vershiebngsgradient (X ) nd materieller Deformationsgradient. (X ) F Veshiebngsgradient (X ) ist als pa

(X ) (X ) g [L X ] (X ) X (X ) dx g [L X ]X () Vershiebngsgradient (X ) nd materieller Deformationsgradient. (X ) F Veshiebngsgradient (X ) ist als pa - Msterlosng Hasafgaben von Vergleih des Prinzips vom Minimm des Gesamtpotenzials nd dem Prinzip der virtellen 4........................................... 9 Vershiebngen. Normalspannngsfeld (X ) eine

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr