Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1"

Transkript

1 Vorlesugsuterlage Statstk ud Wahrschelchketstheore für Iformatker (Tel: Deskrptve Statstk) (WS 6/7) vorläufge Fassug Was st Statstk? Deskrptve Statstk (beschrebed, zusammefassed) Iduktve Statstk (vo Stchprobe auf Grudgesamthete) A.Prof. Dr. Erch Neuwrth Uverstät We Isttut für Scetfc Computg Wozu Statstk? We Statstk? Etschedugshlfe Teferes Verstäds be Probleme Plaug Erhebug Befragug (schrftlch, müdlch) Beobachtug Expermet Automatsche Erfassug Aufberetug Aalyse Iterpretato Statstsche Date Statstsche Merkmale Erhobe a Gesamthete, statstsche Masse Agehörge der Masse sd Merkmalsträger Persoe Objekte Zwe Arte vo Masse: Bestadsmasse Eregsmasse Erhobe werde de Werte vo Merkmale, geat Merkmalsauspräguge, a de Merkmalsträger Haarfarbe st e Merkmal, Herr Maer st e Merkmalsträger, blod st see Merkmalsausprägug des Merkmals Haarfarbe Page

2 Statstsche Merkmale Merkmalsskale Qualttatve Merkmale Quattatve Merkmale Nomalskala Ordalskala Itervallskala Verhältsskala Merkmalsskale Emprsche Verteluge Skale sd charaktersert durch zulässge Trasformatoe Nomal - eedeutg Ordal - ordugserhalted Itervall - lear Verhälts - Ählchket Wr habe beobachtete Date (Bespel Körpergröße) Klasseetelug Auszähle der Klassehäufgkete Emprsche Verteluge Emprsche Verteluge Dskrete Merkmale: Ezelwerte Stetge Merkmale: Klasseetelug I bede Fälle werde Häufgkete gezählt Dskretes Merkmal x möglche Werte (=..k) (We de x Zahle sd, da asteged geordet) h Azahl, we oft x auftrtt h heße absolute Häufgkete f = h / heße relatve Häufgkete Achtug, der Regel sd Azahl der möglche Werte ud tatsächlche Azahl der Werte verschede (oft mt k ud bezechet) Page

3 Mehrdmesoale Verteluge Mehrdmesoale Verteluge Nach zwe oder mehrere Merkmale glechzetg klassfzere Darstellug (für zwe Merkmale) als Tabelle mt eem Merkmal zelewese ud eem Merkmal spaltewese Geschl Famstd m w ges. gesch. ledg verh. 3 4 ges. 4 6 Graphsche Darstellug Graphsche Darstellug Balkedagramm (Stabdagram) Maturaote Mathe matk Balkedagramm (Stabdagram) Wchtg: bem Balkedgramm berühre eader de Balke cht Da de y-achse skalert werde ka st de Graphk für absolute ud relatve Häufgkete cht verschede Häufgkete (dskrete Merkmale) Häufgkete (dskrete Merkmale) sge s sge s. 35 H = h j j= Summehäufgkete kumulerte (absolute) Häufgkete Page 3

4 Häufgkete (dskrete Merkmale) Häufgkete (dskrete Merkmale) Absolute Summehäufgket H = h j = Relatve Summehäufgket F = f j = = H sge s. 35 Häufgkete (stetge Merkmale) Graphsche Darstellug Klasse blde Klassegreze x,x,x,...,x k Häufgkete h : Azahl der Werte zwsche x - ud x Dabe wrd der Regel e Wert geau auf der Klassegreze der utere Klasse zugerechet Hstogramm Graphsche Darstellug Häufgkete (stetge Merkmale) Hstogramm Achtug: Balke berühre eader Achtug: be uglech brete Klasse st de Fläche, cht de Höhe, Maß für de Häufgket Daher etsteht de Balkehöhe durch Dsvo vo Häufgket ud Klassebrete Klasse blde Klassegreze x,x,x,...,x k Häufgkete h : Summehäufgkete H h j j = H = Page 4

5 Graphsche Darstellug Graphsche Darstellug Wr zeche Pukte für (x,f ) Wr zeche Pukte für (x,f ) Graphsche Darstellug (stetges Merkmal) Graphsche Darstellug (dskretes Merkmal) Wr zeche Pukte für (x,f ) ud verbde lear Summehäufgketsfukto oder (emprsche) Vertelugsfukto Wr zeche Pukte für (x,f ) Graphsche Darstellug (dskretes Merkmal) Graphsche Darstellug (dskretes Merkmal) Wr zeche Pukte für (x,f ) Wr zeche Pukte für (x,f ) zwsche de Pukte aber waagrechte Strecke Summehäufgketsfukto oder (emprsche) Vertelugsfukto Page 5

6 Graphsche Darstellug (mehrdmesoal) ach Alter Mosacplots Überlebede auf der Ttac ach Geschlecht Graphsche Darstellug (mehrdmesoal) Überlebede auf der Ttac ach Geschlecht ud Alter No Male Yes No Female Yes Chld Adult Male Female Yes Yes Survved Survved No Age Adult No Chld Age Sex Sex Graphsche Darstellug (mehrdmesoal) Summehäufgketsfukto Überlebede auf der Ttac ach Geschlecht, Alter ud Klasse st d 3rd Crew Chld Adult Chld Adult Chld Adult Chld Adult No Male Yes Meda Quartle (Q ud Q 3 ) Zetle, Perzetle Quatle Female Yes No Sex Class Emprsche Verteluge Gletedes Hstogramm Häufgketsverteluge Absolute ud relatve Häufgkete Stabdagramm ud Hstogramm Summehäufgketsfukto (absolut ud relatv) Umgag mt klassfzerte Date Achtug: Be uglech brete Klasse muß de Hstogrammhöhe adjustert werde. De Fläche, cht de Höhe, stellt de Häufgket graphsch dar Bem ormale Hstogramm wrd eer Umgebug des Itervallmttelpukts gezählt, ud deser Wert wrd für alle Pukte des Itervalls verwedet. Bem gletede Hstogramm wrd für jede Pukt seer egee Umgebug gezählt. Page 6

7 Gletedes Hstogramm Gletedes Hstogramm d Halbe Itervallbrete h( x) = Azahl( x : x x d) d Umschrebe: d für x d Kr ( x) = sost K r heßt Rechtecksker Gletedes Hstogramm Gletedes Hstogramm ( ) = r( ) = hx K x x Mt Festerbrete w x x w( ) = w r( ) = w h x K Gletedes Hstogramm Kerschätzer Neue Formelschrebwese Normerugskostate /(w), damt Gesamtfläche Verallgemeerug der gletede Hstogramms, mr ormalerwese stetger Kerfukto, zum Bespel Dreecksker: K d x für x ( x) = sost Page 7

8 Kerschätzer mt Dreecksker Kerschätzer x x w( ) = w d( ) = w h x K Möglch mt belebger Kerfukto Kerfukto sollte folgede Egeschafte habe: K( x) K() st e Maxmum vo K( x) Box Plots Box Plots 3. Quartl Meda Groesse De bede Balke (Whskers) gehe bs zum letzte Pukt, der cht weter als das.5- fache der Box-Brete vo. Bzw. 3. Quartl etfert st. Pukte außerhalb deses Berechs werde ezel dargestellt (Se sd möglcherwese Ausreßer). Quartl 6 5 m Geschlecht m Lagemaße ud Mttelwerte Lagemaße ud Mttelwerte Arthmetsches Mttel x = oder = fx = Dabe bedeute de x etweder de ezele Datewerte oder de Klassemtte oder Klassevertreter k k h x = Geometrsches Mttel Harmosches Mttel Meda Modus Page 8

9 Lagemaße ud Mttelwerte Lagemaße ud Mttelwerte Lagemaße habe folgede Egeschafte: Lege zwsche Mmum ud Maxmum der Date We alle Date derselbe leare Trasformato uterworfe werde, da macht auch das Lagemaß dese Trasformato mt Harmosches ud geometrsches Mttel sd kee Lagemaße m strege S Berechug des Medas (oder allgemeer ees belebge Quatls) be stetge Merkmale: Leare Iterpolato mt Hlfe der Summehäufgketsfukto Allgemees p-mttel Allgemees p-mttel p M p = x = p Egeschafte des p-mttels Mooto chtabehmed p M - harmosches Mttel M (als Grezwert berechet) geometrsches Mttel arthmetsches Mttel M Meda Arthmetsches Mttel Mmalegeschaft bezüglch absoluter Abwechugssumme = x a mmal für a = x Mmalegeschaft bezüglch quadratscher Abwechugssumme = es glt sogar = ( x a) mmal für a = x ( x a) = = ( x x) + ( x a) (Steerscher Verschebugssatz) Page 9

10 Streuugsmaße Streuugsmaße Beatworte de Frage ach der Varabltät der Date We wet lege de Date auseader? Gruddee: Mttlere Abwechug vo der Mtte dabe st de Mtte e Lagemaß, also arth. Mttel oder Meda Streuugsmaße Varaz Varaz bzw. Stadardabwechug σ = ( x x) σ = ( x x) = = Mttlere absolute Abwechug vom Meda x x = Spawete max( x ) m( x ) Semterquartlsdstaz Q3 Q Verschedee Berechugsverfahre Verschebugssatz ( x a) = = = ( x x) + ( x a) Mmalegeschaft des arth. Mttels für Quadratsummeabwechug ( x a) mmal für a = x = = ( x x) = = x x Streuugsmaße Zusätzlche Maßzahl Ivarat uter Verschebuge Equvarat uter Reskalerug (Multplkato mt eem Faktor) Varatoskoeffzet σ x Page

11 Korrelato Korrelato deskrptv Gegebe sd zwe Merkmale, X ud Y Frage: besteht e (learer) Zusammehag zwsche de bede? (x,y ) sd de Datepukte Trete große y gemesam mt große x auf? Ma bldet = ( x x)( y y) Korrelato deskrptv Korrelato deskrptv Korrektur um Beobachtugsazahl Kovaraz st skaleempfdlch Daher eue Maßzahl heßt Kovaraz ( x x)( y y) = r = = ( x x)( y y) ( x x) = = ( y y) Korrelatoskoeffzet Regresso deskrptv Regresso (x,y ) sd de Datepukte Welche Gerade paßt am beste durch dese Datepukte? De Regressosgerade st bestmmt durch y = a + bx b = = a = y bx ( x x)( y y) = ( x x) Page

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Lageparameter (Mittelwerte) und Streuungsparameter

Lageparameter (Mittelwerte) und Streuungsparameter Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Lageparameter (Mttelwerte) ud Streuugsparameter Mttelwerte: Gebe

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

II. Beschreibende Statistik

II. Beschreibende Statistik II. Beschrebede Statstk II. Merkmale ud wchtge Begrffe Aufgabe der beschrebede Statstk: Große ud uüberschtlche Datemege so aufberete, dass wege aussagekräftge Kegröße ud/oder Graphke etstehe, dee de gesamte

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Maßzahlen. 1. Arithmetisches Mittel. Das für quantitative Merkmale am häufigsten verwendete Lokalisationsmaß ist das arithmetische Mittel.

Maßzahlen. 1. Arithmetisches Mittel. Das für quantitative Merkmale am häufigsten verwendete Lokalisationsmaß ist das arithmetische Mittel. J SCHIRA, C MÜLLER / Statstk I / SS 005 Maßzahle 6 Maßzahle Arthmetsches Mttel Das für quattatve Merkmale am häufgste verwedete Lokalsatosmaß st das arthmetsche Mttel Defto: De Größe := = heßt arthmetsches

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Das virtuelle Bildungsnetzwerk für Textilberufe

Das virtuelle Bildungsnetzwerk für Textilberufe Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: 0.0.0033 Sete / 9 Grudlage der Statstk Uter eer Statstk versteht ma ee Aufglederug

Mehr

Maßzahlen zur Beschreibung von Verteilungen

Maßzahlen zur Beschreibung von Verteilungen Programmcode: Lagemaße Maßzahle zur Beschrebug vo Verteluge > c(0,,5,6,3,0,-) > mea() [] > meda() [] > table() - 0 3 5 6 kee drekte Modusfukto 0 zwemal Uvarate Deskrpto ud Eplorato vo Date - Maßzahle zur

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Gliederung des Kurses:

Gliederung des Kurses: Lageparameter Sete Glederug des Kurses: I II Allgemee Grudlage Statstsche Aalyse ees ezele Merkmals Aalyse/Beschrebug ees ezele Merkmals Zel: Verdchtug (Komprmerug) eer uüberschaubare Datemege Komprmerede

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk 1 für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Quantitative Methoden in der klinischen Epidemiologie

Quantitative Methoden in der klinischen Epidemiologie Quattatve Methode der klsche Epdemologe Korrelato ud leare Regresso Lerzele Besteht e fuktoeller Zusammehag zwsche zwe Messuge a eem Patete? Korrelato als Maßzahl für de Stärke ees leare Zusammehages Beschrebe

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Departmet of Sport Scece ad Kesolog Uverstätslehrgag Sports Phsotherap Eführug de Statstk Gerda Strutzeberger Block I Block Mttwoch 5..0 3:00 bs 4:50 Grudlage, Skaleveau 5:05 bs 7:00 Gütekrtere, Hpothese,

Mehr

Einführung in die beschreibende Statistik

Einführung in die beschreibende Statistik Eführug de beschrebede Statstk Alte Katosschule Aarau Fachschaft Mathematk erstellt vo Roger Sa, Roger Keller ud Marae Ste 05, Verso 6 Ihalt Eletug Grudbegrffe 3 3 Darstellug vo Date 6 4 Etelug Klasse

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

WISSENSCHAFTLICHE FORSCHUNG QUANTITATIVE METHODEN

WISSENSCHAFTLICHE FORSCHUNG QUANTITATIVE METHODEN WISSENSCHAFTLICHE FORSCHUNG QUANTITATIVE METHODEN Davd Tobsk UDE.EDUcato College Uverstät Dusburg-Esse Campus Esse dokforum Verso.0 DESKRIPTIVE STATISTIK. Orgasato ud Darstellug vo Date Koderug Um alle

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Folien zur Vorlesung. Statistik für LM- Chemiker und Ernährungswissenschaftler. (Teil 1: Beschreibende Statistik) U. Römisch

Folien zur Vorlesung. Statistik für LM- Chemiker und Ernährungswissenschaftler. (Teil 1: Beschreibende Statistik) U. Römisch Fole zur Vorlesug Statstk für LM- Chemker ud Erährugswsseschaftler (Tel : Beschrebede Statstk) U. Römsch http://www.tu-berl.de/fak3/staff/roemsch/homepage.html Ihaltsverzechs EINLEITUNG. Was versteht ma

Mehr

Regressionsgerade, lineares Modell:

Regressionsgerade, lineares Modell: Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Eführug Durch de Regressosaalyse wrd versucht, de Art des Zusammehags

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial Statstk 4. Vorlesug Test für Varaz Estchprobetest für de Varaz: Hat de Varaz ee bestmmte Wert, bzw. legt er eem bestmmte Berech? Etschedug basert auf dem Ergebs eer ezge Stchprobe. Zwestchprobetest für

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

11. STATISTIK. 11.1. Begriffsbestimmung. Statistik

11. STATISTIK. 11.1. Begriffsbestimmung. Statistik . STATISTIK.. Begrffsbestmmug De Statst st we auch de Wahrschelchetsrechug e Wssesgebet der sogeate Stochast. De Stochast a ma als de Lehre vo zufällge Vorgäge bzw. Eregsse beschrebe. Als zufällge Eregsse

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse Hochschule Müche Fakultät Wrtschaftsgeeurwese Dateaalyse Prof. Dr. Volker Abel Verso. Ihaltsverzechs Ihaltsverzechs. Auswertug ud Modellerug vo Zähldate.... Auswertug vo prozetuale Häufgkete.... Auswertug

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

EINLEITUNG, FEHLERRECHNUNG

EINLEITUNG, FEHLERRECHNUNG Eletug FEHLERRECHNUNG ohe Dfferetalrechug 04.05.006 Blatt 1 EINLEITUNG, FEHLERRECHNUNG Aufgabe des physkalsche Praktkums st es, dem Studerede de Physk durch das Expermet äher zu brge, h mt der Methode

Mehr

Beispiele. Überblick

Beispiele. Überblick Warum Statst? Bespele Statst ursprüglch: Erhebug vo Date (Status Zustad Bespele Aufahme der Wasserstäde des Nl: Progose vo Dürre, Hochwasser Volszähluge, Erfasse vo Ertemege, Steuer bs zu heutgem statstsches

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Folien zur Vorlesung. Statistik für Prozesswissenschaften. (Teil 1: Beschreibende Statistik) U. Römisch

Folien zur Vorlesung. Statistik für Prozesswissenschaften. (Teil 1: Beschreibende Statistik) U. Römisch Fole zur Vorlesug Statstk für Prozesswsseschafte (Tel : Beschrebede Statstk) U. Römsch http://www.lmtc.tu-berl.de/agewadte_statstk_ud_cosultg Ihaltsverzechs EINLEITUNG. Was versteht ma uter Statstk, Bometre,

Mehr

Regressions- und Korrelationsanalyse

Regressions- und Korrelationsanalyse Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme aus der deskrptve Statstk Regressos- ud Korrelatosaalyse Modellaufgabe Übuge Lösuge www.f-lere.de Was bedeutet Regressos-

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

4.3 Statistik des radioaktiven Zerfalls

4.3 Statistik des radioaktiven Zerfalls 4.3 Statstk des radoaktve Zerfalls Stchworte: Radoaktvtät, -, -, -Strahlug, Geger-Müller-Zählrohr, Statstk, Posso- ud Gauß-Vertelug, Stadardabwechug, Rehetszahl, statstsche Aalyse. Theoretsche Grudlage

Mehr

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig Eschlägge Begrffe zur Meßuscherhet /7 Eschlägge Begrffe zur Meßuscherhet Dr. Wolfgag Kessel, Brauschweg De Aufstellug folgt cht der re lexografsch-alphabetsche Aordug. Verwadte Begrffe sd velmehr zu Gruppe

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Statistik Prof. Dr. Axel Jahn SS 2007

Statistik Prof. Dr. Axel Jahn SS 2007 - Statstk Prof. Dr. Axel Jah rof. Dr. Axel Jah FB Iformatk FH Augsburg SS007 -. Eführug de Statstk.. Begrff, Gegestad, Methode Doppelte Verwedug des Begrffs Statstk. Ee Statstk st ee Zusammefassug vo Zahle,

Mehr

Formelsammlung Statistik

Formelsammlung Statistik Deskrptve Statstk Formelsammlug Statstk. Edmesoale Häugketsverteluge Merkmal: X Datemege (Stchprobe) vom Umfag N: x, x 2,..., x geordete Stchprobe: x (), x (2),..., x () mt x () x (2)... x () Auspräguge

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß Thema Zetrehe Statstk - Neff INHALT. Zetreheaalyse, Tred Leare Regressosaalyse mt eem Eflussfaktor X = "Zet" De tredberegte Sasoschwakuge e = s = y ŷ De mttlere Sasoschwakuge s j k k = = s De rreguläre

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

3.5 Einzelwerte (Datenreihen) Häufigkeitsverteilungen Häufigkeitsklassen

3.5 Einzelwerte (Datenreihen) Häufigkeitsverteilungen Häufigkeitsklassen Thema 3 Häufget Statst - Neff INHALT 3.5 Ezelwerte (Daterehe) Häufgetsverteluge Häufgetslasse Etsprechede Formel für x ud s - : Gewchtug mt h Klassemtte x* Hstogramme mt de Dchte f = Rechtechöhe: f = h

Mehr

Die Kontingenztabelle. Randhäufigkeiten. Teststatistik (Chi-Quadrat Statistik) Unabhängigkeitshypothese. Wiederholung: zweidimensionales Datenmaterial

Die Kontingenztabelle. Randhäufigkeiten. Teststatistik (Chi-Quadrat Statistik) Unabhängigkeitshypothese. Wiederholung: zweidimensionales Datenmaterial Statstk 4. Vorlesug Wederholug: zwedmesoales Datemateral Beobachtuge, jeder hat Werte für m Merkmaler, also jeder besteht aus Merkmalauspräguge. z.b. wr otere de Grösse ud das Umsatz verschedee Flale (m).

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 0.00 Harry Zgel 99-006, EMal: HZgel@aol.com, Iteret:

Mehr

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6 Ihalt: Efaktorelle Varazaalyse Bortz: Bortz Kap. 7.0-7. Übug Statstk II SS 006 Musterlösug rbetsblatt 6 ufgabe 1: Nee Se de Verfahre für Mttelwertsvergleche, de Se bsher für tervallskalerte Date kee gelert

Mehr

Vorlesung Multivariate Statistik. Sommersemester 2009

Vorlesung Multivariate Statistik. Sommersemester 2009 P.Martus, Multvarate Statstk, SoSe 009 Free Uverstät Berl Charté Uverstätsmedz Berl Bachelor Studegag Boformatk Vorlesug Multvarate Statstk Sommersemester 009 Prof. Dr. rer. at. Peter Martus Isttut für

Mehr

Quantitative Geochemie mit Excel

Quantitative Geochemie mit Excel Kompaktkurs Quattatve Geocheme mt Excel Vom Meßwert zur petrogeetsche Modellerug geochemscher Date. ag: DAENAUFBEEIUNG Dateegabe ud Normerug Statstsche Kegröße Auswertug ees ICP-MS Datesatzes (Stöchometrsche

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Workshops zum TI-83 PLUS

Workshops zum TI-83 PLUS Workshops zum TI-83 PLUS Beträge vo T 3 Flader / Belge E Uterrchtsbehelf zum Esatz moderer Techologe m Mathematkuterrcht T 3 Österrech / ACDCA am PI-Nederösterrech, Hollabru Vorwort Alässlch userer gemesame

Mehr

Deskriptive Statistik

Deskriptive Statistik PD Dr. Thomas Beßger Deskrptve Statstk Sommersemester 003 Glederug. Eführug.. Vorbemerkuge.. Begrff ud Aufgabe der Statstk.3. Statstsche Grudbegrffe.3.. Statstsche Ehet, Grudgesamthet ud Stchprobe.3..

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 005 Ihalt II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

F Fehlerrechnung 1. Systematische und statistische Fehler

F Fehlerrechnung 1. Systematische und statistische Fehler -F.- F Fehlerrechug. Systematsche ud statstsche Fehler Jede Messug eer physkalsche Größe st mt eem Fehler verbude. Es st daher otwedg be der Agabe des Messwertes ee Fehlerabschätzug azugebe. Ma uterschedet

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Bestimmen einer stetigen Ausgleichsfunktion f(x), die eine gegebene Menge von n Datenpunkten (x k

Bestimmen einer stetigen Ausgleichsfunktion f(x), die eine gegebene Menge von n Datenpunkten (x k Hochschule für Tech ud Archtetur Ber Iformat ud agewadte Mathemat 3- Ausglechs- ud Iterpolatosrechug 3 Ausglechs- ud Iterpolatosrechug De Aufgabe der Ausglechsrechug st mt Hlfe eer stetge Futo f()ee bestmmte

Mehr

i P(A H i) P(H i ) (x i ˆx i ) 2 n n i=1 (x i x i ) 2 = 1 i=1 (ˆx i x i ) 2 (x + y) n = x j y n j f(x)dx = 1 f(x 1,..., x n)dx 1 dx n = 1

i P(A H i) P(H i ) (x i ˆx i ) 2 n n i=1 (x i x i ) 2 = 1 i=1 (ˆx i x i ) 2 (x + y) n = x j y n j f(x)dx = 1 f(x 1,..., x n)dx 1 dx n = 1 ZUSAMMENFASSUNG DES SKRIPTUMS ZU EINFÜHRUNG IN DIE WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK VON PROF. FELSENSTEIN PHILIPP DÖRSEK Der Autor übermmt keerle Garate für de Rchtgket. De meste Beträge wurde

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

3.3 Das arithmetische Mittel

3.3 Das arithmetische Mittel 3 Beschrebug vo Verteluge vo umersche Merkmale 79 3.3 Das arthmetsche Mttel Defto 3.4 Arthmetsches Mttel se ee umersche Varable mt Werte x, x, x. Wr bezeche das arthmetsche Mttel als amttel ( ) oder x.

Mehr

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N . Charakterserug vo Polymere. moodsperse polydsperse cytochrom c Ege Bopolymere (Ezyme) habe ur ee ehetlche olekülgröße. moodsperse mometa st kee Polymersatosmethode verfügbar, de Polymere mt eer ehetlche

Mehr

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer F Lorbeer ud Ardt Quer 5.0.006 Physkalsches Praktkum für Afäger Tel Gruppe Optk.4 Wellelägebestmmug mt dem Prsmespektrometer I. Vorbemerkug E Prsmespektrometer st e optsches Spektrometer, welches das efallede

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche ozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 8.9 Harry Zgel 99-4, EMal: HZgel@aol.com, Iteret:

Mehr