Wahrscheinlichkeits - rechnung und Statistik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wahrscheinlichkeits - rechnung und Statistik"

Transkript

1 Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage

2 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute und relative Häufigkeitsverteilung an, wobei nicht alle Klassen gleich lang sind, sowie die Klassenbreiten, -dichten und -mitten: j Klasse K j von a j min bis unter b j min h j f j d j h j m j , ,0 1, , ,5 3, , ,0 5, , ,0 7, , ,0 9, , ,4 12, , ,8 22,5 Σ ,0000 Die grafische Darstellung einer klassierten Häufigkeitsverteilung erfolgt mittelseines Histogramms. Es besteht aus soviel Rechtecken wie Klassen, deren Grundlinien auf der waagerechten Achse (der Merkmalsachse) die Klasseneinteilung wiedergeben. Die Flächeninhalte sollen dabei den Häufigkeiten h j proportional sein. Deshalb muss die Höhe von Rechteck j gleich der Klassendichte h j sein, sonst würden Klassen mit großer Breite überproportional gewichtet, und es entstünde ein falscher optischer Eindruck. Bild 2.4 gibt ein ehrliches Histogramm zum vorigen Beispiel an in dem Sinne, dass die Flächeninhalte die tatsächlichen Klassenbesetzungszahlen wiedergeben. Bild 2.4: Histogramm zu den Telefongesprächen

3 20 2 Beschreibende Statistik Aufgabe 2.4 Bei einer Population von n = 30 Versuchstieren wird an einem bestimmen Tag das Gewicht gemessen. Man erhält folgende Urliste: lfd. Nr. Gewicht in kg ,16 11,53 14,02 11,85 10,94 11, ,94 11,46 13,15 12,70 10,88 13, ,04 10,95 14,78 12,39 13,69 11, ,28 12,96 13,24 13,42 12,23 15, ,34 12,28 13,42 13,93 14,73 11,28 a) Erstellen Sie, um einen besseren Überblick über die Verteilung der statistischen Masse bezüglich der Gewichte zu erhalten, eine absolute klassierte Häufigkeitsverteilung mit den (gleich langen) Klassen: 10 kg bis unter 11 kg, 11 kg bis unter 12 kg usw. b) Stellen Sie die absolute klassierte Häufigkeitsverteilung im Histogramm dar. 2.3 Kumulierte Häufigkeiten und empirische Verteilungsfunktion Häufig interessiert man sich für Fragestellungen der folgenden Art: Welcher Anteil der statistischen Masse liegt (bezüglich eines bestimmten Merkmals) unterhalb oder oberhalb einer bestimmten Grenze, oder zwischen zwei Grenzen? Welche Merkmalsausprägung x p hat die Eigenschaft, dass der Anteil p der statistischen Masse unterhalb x p und der Rest oberhalb davon liegt? Solche Fragen beantwortet die kumulierte Häufigkeitstabelle und ihre grafische Darstellung. Sie können nur konstruiert werden, wenn das Merkmal X eine Anordnung seiner Werte der Größe nach gestattet, also qualitativordinal oder quantitativ ist.

4 2.3 Kumulierte Häufigkeiten und empirische Verteilungsfunktion 21 Definition 2.3 Seien h j und f j die absolute und relative Häufigkeit der Merkmalsausprägung a j bzw. der Klasse K j, wobei die a j bzw. K j der Größe nach geordnet sein sollen. Dann heißt H j := h 1 + h h j = j h k (2.10) k=1 die kumulierte absolute Häufigkeit der Ausprägung a j bzw. der Klasse K j und analog F j := f 1 + f f j = j f k (2.11) k=1 ihre kumulierte relative Häufigkeit. Beispiel 2.8 Erstellen Sie eine relative kumulierte Häufigkeitstabelle zu den Daten aus Beispiel 2.6. Bestimmen Sie damit die Anteile der Studierenden mit: a) höchstens neun Semestern; b) acht oder mehr Semestern; c) sieben bis neun Semestern. Lösung: j Semesterzahl a j rel. Häufigkeit einfach f j kumuliert F j 1 6 0,0667 0, ,2667 0, ,3333 0, ,2000 0, ,1000 0, ,0333 1,0000 Daraus liest man ab (X := Semesterzahl): a) Anteil mit X 9: F 4 =0,8667 oder 86,67 %. b) Anteil mit X 8: 1 F 2 =1 0,3333 = 0,6667 oder 66,67 %.

5 22 2 Beschreibende Statistik c) Anteil mit 7 X 9: F 4 F 1 =0,8667 0,0667 = 0,8000 oder 80 %. (Die %-Angabe ist bei einer Gesamtzahl von n<100 lt. [9] fragwürdig.) Ganz analog bilden wir die kumulierten Häufigkeiten bei einer klassierten Verteilung eines stetigen Merkmals. Beispiel 2.9 Bestimmen Sie für die Telefongespräche aus Beispiel 2.7 die relativen kumulierten Häufigkeiten F j. Wie viel Prozent der Gespräche dauerten unter acht Minuten? Lösung: j Klasse K j von a j min bis unter b j min relativ, einfach f j relativ, kumuliert F j ,3300 0, ,2222 0, ,1440 0, ,1016 0, ,0664 0, ,0854 0, ,0504 1,0000 Daraus lesen wir ab, dass 79,78 % der Telefongespräche unter acht Minuten dauerten. Für den weiteren Umgang mit kumulierten Häufigkeiten F j ist es sinnvoll, diese auf eine Funktion auszuweiten, die für alle reellen Zahlen erklärt ist: Definition 2.4 Die empirische Verteilungsfunktion F (x) ist für eine statistische Masse, die nicht in Klassen eingeteilt ist, gegeben durch F (x) := f j. (2.12) a j x Ist die statistische Masse dagegen in Klassen [a j ; b j ) eingeteilt, entsteht F (x), indem man die Stützpunkte (b j ; F j ),j=0,..., m, durch Strecken verbindet. Dabei wird b 0 := a 1 und F 0 := 0 gesetzt.

6 2.3 Kumulierte Häufigkeiten und empirische Verteilungsfunktion 23 Empirisch heißt: durch Beobachtung gewonnen. Der Begriff wird häufig verwendet als Gegensatz zu theoretisch : durch Überlegung und Modellbildung gewonnen. Wir erhalten so für ein unklassiertes Merkmal eine monoton wachsende Treppenfunktion, die genau an den Stellen a j Sprünge der Höhe f j aufweist. An den Sprungstellen selbst ist wegen des Kleiner-gleich-Zeichens in (2.12) immer der größere Wert zu nehmen, mathematisch ausgedrückt: Die Treppenfunktion ist rechtsseitig stetig. Bild 2.5 zeigt die empirische Verteilungsfunktion für die Semesterzahlen. Bild 2.5: Empirische Verteilungsfunktion F (x) der Semesterzahlen Bei einem klassierten Merkmal wird durch die Strecken einerseits eine stetige Funktion erzeugt, andererseits drückt man dadurch aus, dass über die Verteilung des Merkmals innerhalb einer Klasse nichts Näheres bekannt ist. Man nimmt dann an, dass die Merkmalsausprägungen innerhalb einer Klasse gleichmäßig über die gesamte Klassenbreite verteilt sind. Die empirische Verteilungsfunktion ist beim klassierten Merkmal eine monoton wachsende stetige Funktion mit dem Wertebereich [0; 1]. Es gilt die Näherung F (x) Anzahl Elemente mit Merkmalsausprägung x. n Falls x mit einer Klassengrenze zusammenfällt, gilt sogar exakte Gleichheit, ansonsten ist F (x) wegen des Informationsverlustes durch die Klassenbildung nur eine Näherung. Bild 2.6 zeigt die empirische Verteilungsfunktion für die Dauer der Telefongespräche.

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

f j = ( 2) = 5.5.

f j = ( 2) = 5.5. Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Statistik Dr. Thomas Zehrt Merkmale und Häufigkeitsverteilung Motivation In der heutigen Zeit fällt jeden Tag eine unvorstellbare Menge von Daten

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Leseprobe. Michael Sachs. Wahrscheinlichkeitsrechnung und Statistik. für Ingenieurstudenten an Fachhochschulen. ISBN (Buch):

Leseprobe. Michael Sachs. Wahrscheinlichkeitsrechnung und Statistik. für Ingenieurstudenten an Fachhochschulen. ISBN (Buch): Leseprobe Michael Sachs Wahrscheinlichkeitsrechnung und Statistik für Ingenieurstudenten an Fachhochschulen ISBN (Buch): 978-3-446-43797-5 ISBN (E-Book): 978-3-446-43732-6 Weitere Informationen oder Bestellungen

Mehr

Grafische Darstellung von Häufigkeitsverteilungen (1)

Grafische Darstellung von Häufigkeitsverteilungen (1) Grafische Darstellung von Häufigkeitsverteilungen () Grafische Darstellungen dienen... - Einführung - der Unterstützung des Lesens und Interpretierens von Daten. der Veranschaulichung mathematischer Begriffe

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Wahrscheinlichkeitsrechnung und Statistik Für Ingenieurstudenten an Fachhochschulen von Michael Sachs erweitert Wahrscheinlichkeitsrechnung und Statistik Sachs schnell und portofrei erhältlich bei beck-shopde

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

9. Kapitel: Grafische Darstellung quantitativer Informationen

9. Kapitel: Grafische Darstellung quantitativer Informationen 9. Kapitel: Grafische Darstellung quantitativer Informationen 9.1: Fallstricke bei der Übersetzung von Zahlen in Bilder a) optische Täuschungen b) absichtliche Manipulationen 9.2: Typologie von Datengrafiken

Mehr

Deskriptive Statistik Auswertung durch Informationsreduktion

Deskriptive Statistik Auswertung durch Informationsreduktion Deskriptive Statistik Auswertung durch Informationsreduktion Gliederung Ø Grundbegriffe der Datenerhebung Total-/Stichprobenerhebung, qualitatives/quantitatives Merkmal Einteilung der Daten (Skalierung,

Mehr

Verteilungen und ihre Darstellungen

Verteilungen und ihre Darstellungen Verteilungen und ihre Darstellungen Übung: Stamm-Blatt-Diagramme Wie sind die gekennzeichneten Beobachtungswerte eweils zu lesen? Tragen Sie in beiden Diagrammen den Wert 0.452 an der richtigen Stelle

Mehr

Bestimmen von Quantilen

Bestimmen von Quantilen Workshop im Rahmen der VIV-Begabtenförderung Bestimmen von Quantilen Wie Rückwärtsdenken in der Stochastik hilft Leitung: Tobias Wiernicki-Krips Samstag, 10. Januar 2015 1 / 29 Motivation Wie bestimmt

Mehr

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter, hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Ziele 2. Lageparameter 3.

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 28.05.2013 Konzentrationsmaße 1. Konzentrationsbegriff

Mehr

Anwendung A_0801_Quantile_Minimum_Maximum

Anwendung A_0801_Quantile_Minimum_Maximum 8. Lageparameter 63 8.3 Interaktive EXCEL-Anwendungen (CD-ROM) Anwendung A_080_Quantile_Minimum_Maimum Die Anwendung besteht aus einem Tabellenblatt Simulation : In der Simulation wird aus einer Urliste

Mehr

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1 1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker,

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

Muster einer Fachabschlußklausur (90 Min.)

Muster einer Fachabschlußklausur (90 Min.) Muster einer Fachabschlußklausur (90 Min.) Mathematik 3 für Wirtschaftsingenieure Teilnehmer (Name, Vorname): Matrikelnummer: erreichte Punkte Max. erreichte Punkte Max. Aufg. 1 11 Aufg. 5 15 Aufg. 2 9

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52 2 Häufigkeitsverteilungen 2.0 Grundbegriffe Ziel: Darstellung bzw. Beschreibung (Exploration) einer Variablen. Ausgangssituation: An n Einheiten ω 1,..., ω n sei das Merkmal X beobachtet worden. x 1 =

Mehr

F r a g e n k a t a l o g

F r a g e n k a t a l o g F r a g e n k a t a l o g 1. Was ist eine Konstante? 2. Was ist eine Variable? 3. Was ist ein Datum? 4. Welche Werte haben Variablen? 5. Was sind qualitative Variablen? 6. Was sind quantitative Variablen?

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Statistik I für Betriebswirte Vorlesung 10

Statistik I für Betriebswirte Vorlesung 10 Statistik I für Betriebswirte Vorlesung 10 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 13. Juni 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Statistik. Ronald Balestra CH St. Peter

Statistik. Ronald Balestra CH St. Peter Statistik Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. Januar 2010 Inhaltsverzeichnis 1 Statistik 1 1.1 Beschreibende Statistik....................... 1 1.2 Charakterisierung von Häufigkeitsverteilungen...........

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 1 Übung Lösungsvorschlag Gruppenübung G 1 Auf einer Touristeninsel in der Karibik wurden in den letzten beiden Juliwochen morgens zur gleichen Zeit die folgenden

Mehr

Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 1 1. Klausur Wintersemester 2012/2013 Hamburg, 19.03.2013 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr

7. Konzentrations- und Disparitätsmessung

7. Konzentrations- und Disparitätsmessung 7. Konzentrations- und Disparitätsmessung Betrachte: Merkmal X, bei dem alle Daten x i 0 sind und die Merkmalssumme n i=1 x i eine sinnvolle Interpretation besitzt (extensives Merkmal) 314 Beispiel: X:

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage i Günther Bourier Beschreibende Statistik Praxisorientierte Einführung - Mit Aufgaben und Lösungen 12., überarbeitete und aktualisierte Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort V 1 Einführung

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK PROF. DR. CHRISTINA BIRKENHAKE Inhaltsverzeichnis 1. Merkmale 2 2. Urliste und Häufigkeitstabellen 9. Graphische Darstellung von Daten 10 4. Lageparameter 1

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Häufigkeitsverteilung

Häufigkeitsverteilung 2. Eindimensionale Häufigkeitsverteilungen Thema dieses Abschnitts ist die Auswertung eindimensionalen (univariaten) Datenmaterials, d.h. Daten zu einem einzigen Merkmal einer Grundgesamtheit oder Stichprobe.

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6

Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6 6. Diagramme mit Mathcad In diesem Kapitel geht es um andere, als X Y Diagramme. 6.. Kreisdiagramme. Schritt: Die darzustellende Funktion muß zunächst als Funktion definiert werden, zum Beispiel f(x):=

Mehr

Kapitel 35 Histogramme

Kapitel 35 Histogramme Kapitel 35 Histogramme In einem Histogramm können Sie die Häufigkeitsverteilung der Werte einer intervallskalierten Variablen darstellen. Die Werte werden zu Gruppen zusammengefaßt und die Häufigkeiten

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Tabellarische und Graphische Darstellung des Materials

Tabellarische und Graphische Darstellung des Materials Tabellarische und Graphische Darstellung des Materials Die Darstellung der Daten ist (neben deren Zusammenfassung in den weiter unten behandelten statistischen Kennwerten) Aufgabe der beschreibenden Statistik.

Mehr

9. Kapitel: Grafische Darstellung quantitativer Informationen

9. Kapitel: Grafische Darstellung quantitativer Informationen 9. Kapitel: Grafische Darstellung quantitativer Informationen 9.1: Fallstricke bei der Übersetzung von Zahlen in Bilder a) optische Täuschungen b) absichtliche Manipulationen 9.2: Typologie von Datengrafiken

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Übungsaufgaben zu Kapitel 2 und 3... 2 Aufgabe 1... 2 Aufgabe 2... 2 Aufgabe 3... 2 Aufgabe 4... 2 Aufgabe 5... 3 Aufgabe 6... 3 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9... 4 Aufgabe

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Lösungen zu Übung 1 (Kap. 1.5) Prof. Dr.B.Grabowski

Lösungen zu Übung 1 (Kap. 1.5) Prof. Dr.B.Grabowski Lösungen zur Übung1: Skript I (Beschreibende Statistik), Kap. 1.5 Aufgabe 1 1. Sind folgende Merkmale diskret oder stetig? a) Die durch eine wahlberechtigte Person der BRD gewählte Partei bei der Bundestagswahl.

Mehr

Spezielle Eigenschaften der Binomialverteilung

Spezielle Eigenschaften der Binomialverteilung Spezielle Eigenschaften der Binomialverteilung Wir unterscheiden: 1) die Wahrscheinlichkeitsfunktion einer diskreten Variablen 2) die Verteilungsfunktion einer diskreten Variablen. 1) Die Wahrscheinlichkeitsfunktion

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

1 Einführung und Grundbegriffe

1 Einführung und Grundbegriffe 1 Einleitung Die deskriptive Statistik dient der systematischen Erfassung und Darstellung von Daten, die bestimmte Zustände oder Entwicklungen aufzeigen. Sehr viele Entscheidungen des Alltags, in Wirtschaftsunternehmen

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

Kapitel 3: Eindimensionale Häufigkeitsverteilungen

Kapitel 3: Eindimensionale Häufigkeitsverteilungen Kapitel 3: Eindimensionale Häufigkeitsverteilungen. Unklassierte Daten...29 a) Häufigkeitsverteilung...29 b) Tabellen und Graphiken...3 c) Summenhäufigkeiten...34 2. Klassierte Daten...38 a) Größenklassen...38

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Michael Sachs Wahrscheinlichkeitsrechnung und Statistik für Ingenieurstudenten an Fachhochschulen 2., erweiterte Auflage Mathematik-Studienhilfen Inhaltsverzeichnis 1 Wozu Statistik?...7 2 Beschreibende

Mehr

2 Empirische Häufigkeitsverteilungen

2 Empirische Häufigkeitsverteilungen 2 Empirische Häufigkeitsverteilungen 2.1 Häufigkeit und Verteilung In diesem Kapitel werden Sie mit den Grundelementen einer statistischen Datenauswertung bekannt gemacht; dazu zählen die Häufigkeitsverteilung

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

Übungsaufgaben zu Kapitel 2 und 3

Übungsaufgaben zu Kapitel 2 und 3 Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 2 und 3... 2 Aufgabe 1... 2 Aufgabe 2... 2 Aufgabe 3... 2 Aufgabe 4... 3 Aufgabe 5... 3 Aufgabe 6... 3 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9... 5 Aufgabe

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker. Dr. Nils Raabe Technische Universität Dortmund

Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker. Dr. Nils Raabe Technische Universität Dortmund Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker Dr. Nils Raabe Technische Universität Dortmund Statistische Methoden spielen in der Informatik eine große Rolle. Beispiele: Laufzeiten

Mehr

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen.

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen. 4. Analyse univariater Daten: Übersicht Mathematik ist die Wissenschaft der reinen Zahl, Statistik die der empirischen Zahl Von univariaten Daten spricht man, wenn bei der Datenerhebung nur ein Merkmal

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

I. Zahlen, Rechenregeln & Kombinatorik

I. Zahlen, Rechenregeln & Kombinatorik XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen

Mehr

Deskriptive Statistik

Deskriptive Statistik Seminar für Statistik Universität Mannheim Lösungen zu den Zusatzaufgaben der Veranstaltung Deskriptive Statistik Lösung zu Zusatzaufgabe 1 In einem Histogramm mit Klassenbreiten b i und Säulenhöhen h

Mehr

Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen

Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler von Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen 5., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis

Mehr

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben? Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.

Mehr

Vorwort Abbildungsverzeichnis Teil I Mathematik 1

Vorwort Abbildungsverzeichnis Teil I Mathematik 1 Inhaltsverzeichnis Vorwort Abbildungsverzeichnis V XIII Teil I Mathematik 1 1 Elementare Grundlagen 3 1.1 Grundzüge der Mengenlehre... 3 1.1.1 Darstellungsmöglichkeiten von Mengen... 4 1.1.2 Mengenverknüpfungen...

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 2. Beschreibende Statistik (descriptive Statistics) Literatur Kapitel 2 * Storrer: Kapitel 29-31 * Stahel: Kapitel 1-3 * Statistik in Cartoons:

Mehr

4. Auswertung eindimensionaler Daten

4. Auswertung eindimensionaler Daten 4. Auswertung eindimensionaler Daten Ziel dieses Kapitels: Präsentation von Methoden zur statistischen Auswertung eines einzelnen Merkmals 64 Bezeichnungen (Wiederholung): Merkmalsträger: e 1,..., e n

Mehr

Angewandte Statistik mit R

Angewandte Statistik mit R Reiner Hellbrück Angewandte Statistik mit R Eine Einführung für Ökonomen und Sozialwissenschaftler 2., überarbeitete Auflage B 374545 GABLER Inhaltsverzeichnis Vorwort zur zweiten Auflage Tabellenverzeichnis

Mehr

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik Modul 04: Messbarkeit von Merkmalen, Skalen und 1 Modul 04: Informationsbedarf empirische (statistische) Untersuchung Bei einer empirischen Untersuchung messen wir Merkmale bei ausgewählten Untersuchungseinheiten

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Von Professor Dr. Gert Heinrich 3., durchgesehene Auflage R.Oldenbourg Verlag München Wien T Inhaltsverzeichnis

Mehr

Mathematik. Schuljahr 1

Mathematik. Schuljahr 1 Mathematik 1 Duales Berufskolleg Mathematik Schuljahr 1 Fachrichtung Soziales 2 Mathematik Vorbemerkungen Die Schülerinnen und Schüler lernen im Fach Mathematik einfache naturwissenschaftliche Sachverhalte

Mehr

Statistik I WS 2014/2015. Prof. Dr. Walter Krämer

Statistik I WS 2014/2015. Prof. Dr. Walter Krämer Statistik I WS 2014/2015 Prof. Dr. Walter Krämer Organisatorisches Dozenten: Vorlesung: Prof. Dr. Walter Krämer Übungen: Dipl.-Stat. Marianthi Neblik cand.stat. Eva-Maria Becker cand.stat. Nicole Dauzenroth

Mehr

Kapitel 1: Univariate Statistik

Kapitel 1: Univariate Statistik Kapitel 1: Univariate Statistik 1.1 Begriffsdefinitionen 1.1.1 Beobachtungseinheit, Merkmal Die kleinste Einheit einer statistischen Auswertung, an der Beobachtungen durchgeführt werden, ist die Beobachtungseinheit

Mehr

Deskriptive Statistik Kapitel VII - Konzentration von Merkmalswerten

Deskriptive Statistik Kapitel VII - Konzentration von Merkmalswerten Deskriptive Statistik Kapitel VII - Konzentration von Merkmalswerten Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Einleitung 2. Lorenzkurve

Mehr

Diskrete Wahrscheinlichkeitsverteilungen

Diskrete Wahrscheinlichkeitsverteilungen Diskrete Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Zufallsvariablen Wahrscheinlichkeitsverteilungen Maßzahlen theoretischer Verteilungen Eigenschaften von Erwartungswert und Varianz

Mehr