Kontrolle. Themenübersicht

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kontrolle. Themenübersicht"

Transkript

1 Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste, Rangliste, Zentralwert, Mittelwert, mittlere Abweichung Strichliste, relative Häufigkeit, Säulendiagramm ( Histogramm ) Wahrscheinlichkeit, einstufige Zufallsexperimente mehrstufige Zufallsexperimente, Baumdiagramm, Pfadregeln Kontrolle

2 Arbeitsblatt 1 Zentralwert Mittelwert mittlere Abweichung Es folgt ein Beispiel zum Thema! Beispiel durcharbeiten! Der Benzinverbrauch zweier Autos vom Typ A und B soll im Stadtverkehr getestet werden. Nach jeder Fahrt ermittelt man, wie viel Liter Benzin jeweils für 100 km benötigt wurden: Typ A: 8,0; 7,4; 8,4; 7,8; 9,3; 8,2; 8,6; 7,0; 8,2 Typ B: 8,7; 7,9; 8,4; 8,1; 7,8; 7,9; 8,5; 8,3; 7,6; 7,8 a) Diese Urlisten sind unübersichtlich. Ordne für jeden Typ die Messwerte nach wachsender Größe! So erhältst du Ranglisten. b) Welcher Wert steht in der Mitte der Ranglisten von Typ A? Die Rangliste von Typ B enthält 10 Werte, also eine gerade Anzahl. Die Mitte liegt hier zwischen dem 5. Und 6. Wert. Bilde den Mittelwert dieser beiden Werte, indem du die Werte addierst und dann durch 2 teilst. Die auf diese Weise bei Typ A und B ermittelten Werte nennt man Zentralwert. Vergleiche! c) Berechne für jedes Auto den mittleren Verbrauch. Addiere zunächst alle Benzinverbrauchswerte miteinander. Teile dann dein Ergebnis durch die Anzahl der Stichproben bei jedem Autotyp. d) Um welche Beträge weichen die einzelnen Werte jeder Liste von ihren Mittelwert ab? Der Mittelwert dieser Abweichung heißt mittlere Abweichung. Berechne für jedes Auto die mittlere Abweichung der Testwerte von ihrem Mittelwert! Vergleiche! a) Rangliste ( Werte nach der Größe geordnet! ) Typ A: 7,0; 7,4; 7,8; 8,0; 8,2; 8,2; 8,4; 8,6; 9,3 Typ B: 7,6; 7,8; 7,8; 7,9; 7,9; 8,1; 8,3; 8,4; 8,5; 8,7 b) Zentralwert Typ A: Zentralwert: 8,2 Liter Typ A Typ B: Zentralwert: 7,9 + 8,1 = 16 : 2 = 8,0 Liter höherer Verbrauch c) mittlerer Verbrauch ( Mittelwert! ) Typ A: (7,0 + 7,4 + 7,8 + 8,0 + 8,2 + 8,2 + 8,4 + 8,6 + 9,3) 9 Typ A: 8,1 Liter Verbrauch gleich! Typ B: (7,6 + 7,8 + 7,8 + 7,9 + 7,9 + 8,1 + 8,3 + 8,4 + 8,5 + 8,7) 10 Typ B: 8,1 Liter

3 d) mittlere Abweichung Typ A mittlere Abweichungen vom Mittelwert Typ B mittlere Abweichung vom Mittelwert 8,0 Liter - 0,1 8,7 Liter + 0,6 7,4 Liter - 0,7 7,9 Liter - 1,1 8,4 Liter + 0,3 8,4 Liter + 0,3 7,8 Liter - 0,3 8,1 Liter 0 9,3 Liter + 1,2 7,8 Liter - 0,3 8,2 Liter + 0,1 7,9 Liter - 0,2 8,6 Liter + 0,5 8,5 Liter + 0,4 7,0 Liter - 1,1 8,3 Liter + 0,2 8,2 Liter + 0,1 7,6 Liter - 0,5 7,8 Liter - 0,3 Beispiel zur 1. Aufgabe! 8,0 8,1 = - 0,1 Beispiel zur 1. Aufgabe! 8,7 8,1 = + 0,6 mittlere Abweichung Typ A: (0,1 + 0,7 + 0,3 + 0,3 + 1,2 + 0,1 + 0,5 + 1,1 + 0,1) 9 mittlere Abweichung Typ A: 0, ~ 0,5 Liter mittlere Abweichung Typ B: (0,6 + 1,1 + 0,3 + 0,3 + 0,2 + 0,4 + 0,2 + 0,5 + 0,3) 10 mittlere Abweichung Typ B: 0,39 ~ 0,4 Liter Beim Typ A ist die mittlere Abweichung vom Mittelwert am höchsten! 1. Übung zum Beispiel! ( Gehe wie im Beispiel vor! ) Typ A: 8,6; 8,4; 7,5; 7,4; 8,5; 8,1; 8,6; 8,2; 9,4 Typ B: 7,4; 8,1; 9,3; 8,0; 9,3; 8,0; 8,2; 7,9; 8,4; 7,4 2. Postschalter Die Anzahl der Kunden an einem Postschalter betrug in 20 aufeinanderfolgenden Zeitabschnitten von je zehn Minuten 9; 6; 7; 4; 6; 6; 5; 4; 5; 0; 3; 9; 7; 6; 5; 4; 5; 6; 6; 7. Bestimmt den Zentralwert, berechnet den Mittelwert und die mittlere Abweichung!

4 Arbeitsblatt 2 Häufigkeit Erheben von Daten absolute Häufigkeit relative Ein Unfallstatistik, eine Ausfuhrstatistik, eine Arbeitslosenstatistik usw. ist eine Liste von Zahlen. In der Mathematik benutzt man die Bezeichnung Statistik umfassenden. Die Statistik ist ein eigenständiges Teilgebiet der Mathematik, das sich mit dem Erheben und Auswerten von Daten befasst. Um die Verkehrsbelastung einer Straße zu ermitteln, führt man eine Verkehrszählung durch. Dafür legt man folgendes fest: Personenkraftwagen Pkw; Lastkraftwagen Lkw; Lastzüge (Lastkraftwagen mit Anhänger) Lz; Busse Busse; Motorräder und Mopeds Motorräder. Die Verkehrsbelastung hängt von der Tageszeit ab. Deshalb teilt man den Zähltag in Zeitabschnitte von jeweils einer halben Stunde auf. Die Beobachtungen werden in einer Strichliste festgehalten. Beispiel: Strichliste Ort: Zeit: Gaußstraße Uhr absolute Häufigkeit Pkw Lkw Lz Busse Motorräder IIII IIII IIII IIII IIII IIII IIII IIII IIII I IIII III II Es wurden 34 Pkw gezählt. Statt dessen sagt man auch: Die absolute Häufigkeit der Pkw ist 34. Die Tabelle zeigt, wie sich die absolute Häufigkeit auf die einzelnen Ergebnisse verteilen. Man spricht von einer Häufigkeitsverteilung. Die Häufigkeitsverteilung kann durch ein Säulendiagramm veranschaulicht werden Pkw Lkw Lz Busse Motorräder cm Relative Häufigkeit Beobachtet man unter n Ergebnissen ein bestimmtes Ergebnis E genau x-mal, so heißt der Quotient n x die relative Häufigkeit von E. Relative Häufigkeit = absolutehäufigkeit x ; h (E) =. Gesamtzahl n

5 Eine halbe Stunde später wurde in der Gaußstraße erneut eine Verkehrszählung vorgenommen. Beispiel: In der nächsten halben Stunde lautet die Häufigkeitsverteilung: Pkw 48, Lkw 15, Lz 9, Busse 3, Motorräder 5. Die Verkehrsbelastung wurde offensichtlich größer. Die Anzahl der Pkw ist von 34 auf 48 angewachsen. Ist der Anteil dieser Fahrzeuge am Verkehr auch gewachsen? Dazu müssen wir die relative Häufigkeit berechnen! 6.00 bis 6.30 Uhr 6.30 bis 7.00 Uhr absolute relative absolute relative Häufigkeit x x Häufigkeit h Häufigkeit x x Häufigkeit h Pkw Lkw Lz Busse Motorräder Summe = 0,62 = 62% 48 = 0,64 = 64 % 11 = 0,20 = 20 % = 5 9 = 0,09 = 9 % 9 = 3 3 = 0,06 = 6 % 3 = 2 5 = 0,03 = 3 % 5 = = 1,00 = 100 % = Wir erkennen: Obwohl die Anzahl der Pkw am stärksten zunahm, ist ihr Anteil am gesamten Verkehr gesunken. Vergleiche die anderen Fahrzeuge! Säulendiagramm ( Histogramm ) 100% 90% % 70% 60% 50% 40% 30% 20% 10% 0% 86% 60% 20% 19% 9% 11% 6% 3% 4% 6% Pkw Lkw Lz Busse Motorräder

6 Arbeitsblatt 2 relative Häufigkeit Diagramme 1. Erbsen Die Erbsen in 600 Erbsenhülsen wurden gezählt: Anzahl der Erbsen Anzahl der Hülsen a) Wie viele Erbsen waren durchschnittlich in der Hülse? ( Mittelwert ) b) Berechne die relative Häufigkeit! c) Zeichne ein Säulendiagramm ( Histogramm )! d) Berechne die mittlere Abweichung vom Mittelwert! 2. Schlafgewohnheiten 400 Willkürlich ausgewählte Erwachsene wurden befragt, wie viele Stunden sie durchschnittlich nachts schlafen. Man erhielt: Schlafdauer in Stunden Anzahl der Erwachsenen a) Berechne die relative Häufigkeiten! b) Zeichne ein Säulendiagramm! c) Welche Schlafdauer kommt bei Erwachsenen am häufigsten vor? Wird der Mittelwert kleiner oder größer als dieser häufigste Wert sein? d) Berechne den Mittelwert! e) Berechne die mittlere Abweichung vom Mittelwert! 3. Lufttemperatur In der folgenden Tabelle sind für drei Orte die Monatsmittelwerte der Lufttemperatur in C angegeben: Rio de Janeiro Januar Februar März April Mai Juni Juli August September Oktober November Dezember 26,0 26,1 25,5 23,9 22,3 21,3 20,8 21,1 21,5 22,3 23,1 24,4 München - 2,1-0,9 3,3 8,0 12,5 15,8 17,5 16,6 13,4 7,9 3,0-0,7 Jakutsk -42,7-36, ,9 6,6 16,1 19,5 15,5 6,3-7,9-28,4-39,8 a) In welchem Monat nimmt die Lufttemperatur an den drei Orten ihren höchsten Wert an, in welchem Monat ihren niedrigsten? b) Berechne zu jedem Ort die mittlere Jahrestemperatur! c) Stelle die Monatsmittelwerte in einem geeignetem Diagramm dar!

7 Arbeitsblatt 3 Zufallsexperimente Wahrscheinlichkeit Wenn wir einen Würfel werfen, können wir nicht voraussagen, welche Seitenfläche oben liegen wird. Es gibt sechs Möglichkeiten. Ein Experiment, bei dem mehrere Ergebnisse ( Ausfälle ) möglich sind, heißt Zufallsexperiment. Alle möglichen Ergebnisse eines Zufallsexperimentes fasst man zur Ergebnismenge S zusammen. 1. Beispiel: Werfen einer Münze Ergebnisse: Zahl ist oben ( Z ); Wappen ist oben ( W ) Z, W 2. Beispiel: Würfeln Ergebnisse: Ergebnismenge: S = { } Ergebnismenge: S = { } 1 fällt, 2 fällt, 3 fällt, 4 fällt, 5 fällt, 6 fällt. 1,2,3,4,5,6 Sind alle Ergebnisse eines Zufallsexperiments gleichwahrscheinlich, so gilt für die Wahrscheinlichkeit P eines Ereignisses A: P ( A ) = Anzahl _ der _ Ergebnisse, _ die _ zu _ A _ gehören Anzahl _ aller _ möglichen _ Ergebnisse 1. Beispiel: Mit welcher Wahrscheinlichkeit werfe ich keine Sechs? P ( keine Sechs ) = 6 5 = 0,83 = 83 % ( keine Sechs bedeutet es können alle anderen Zahlen fallen 1, 2, 3, 4, 5 also 5 Zahlen von 6 möglichen ) 2.Beispiel: Mit welcher Wahrscheinlichkeit werfe ich eine gerade Zahl? P ( gerade Zahl ) = 6 3 = 0,5 = 50 % ( 3 gerade Zahlen von 6 möglichen ) 1. Werfen eines Tetraeders Bei einem Tetraeder gilt die Zahl als geworfen, auf deren Seite das Tetraeder liegen bleibt. a) Gib die Ergebnismenge S an! Wie groß ist bei einem idealen Tetraeder die Wahrscheinlichkeit für b) eine 2, c) keine 2, d) eine Zahl größer 2, e) eine gerade Zahl?

8 2. Ziehen aus einer Urne Eine Urne enthält 1 weiße Kugel, 2 schwarze Kugeln, 3 rote Kugeln und 4 blaue Kugeln. In die Urne wird blind hineingegriffen, und eine Kugel wird gezogen. a) Gib die Ergebnismenge S an! b) Lege eine Tabelle mit den Ergebnissen an und trage zu jedem Ergebnis die Wahrscheinlichkeiten ein! Wie groß ist die Wahrscheinlichkeit, c) eine farbige Kugel, d) keine farbige Kugel zu ziehen? 3. Ein Skatspiel besteht aus 32 Karten. Wie groß ist die Wahrscheinlichkeit, a) das Herz-As, b) eine Herzkarte, c) ein As, d) eine Lusche ( Sieben, Acht, Neun ) zu ziehen? 4. In einem Behälter sind 60 Kugeln. Sie sind von 1 bis 60 nummeriert. Eine Kugel wird gezogen. Berechne die Wahrscheinlichkeit für folgender Ereignis: a) Die Zahl ist durch 3 teilbar. b) Die Zahl ist Vielfaches von7. c) Die Zahl ist gerade. d) Die Zahl ist ein Teiler von 60. e) Die Zahl ist eine Primzahl. f) Die Zahl enthält zwei gleiche Ziffern. g) Die Zahl ist zweistellig. h) Die Zahl enthält die Ziffer 5. Lege vier Streichhölzer so dazu, dass fünf Quadrate entstehen! Lege zwei Streichhölzer so um, dass vier kongruente gleichseitige Dreiecke entstehen!

9 Arbeitsblatt 4 Mehrstufige Zufallsexperimente Baumdiagramm Wird ein Zufallsexperiment mehrmals hintereinander ausgeführt, so spricht man von einem mehrstufigen Zufallsexperiment. Mit einem Baumdiagramm können wir die möglichen Ergebnisse und die Wahrscheinlichkeiten finden. 1. Beispiel: Eine Münze wird zweimal geworfen. 1. Wurf Z W 2. Wurf Z W Z W Ergebnisse ZZ ZW WZ WW Jeder Weg vom Start bis zu Einem Endpunkt liefert ein Ergebnis. Also treten die vier Ergebnisse ZZ, ZW, WZ, WW auf. Legt man auf den Startpunkt vier Plättchen und verteilt diese längst der Wege gemäß den Wahrscheinlichkeiten, so kommt in jedem Endpunkt ein Plättchen an. Eines von vier Plättchen bedeutet, dass die Wahrscheinlichkeit 4 1 ist. Wahrschein- lichkeiten Den Wert 4 1 für die Wahrscheinlichkeiten eines Ergebnisses erhält man auch, wenn man die Wahrscheinlichkeiten multipliziert. Eine Münze wird dreimal nacheinander geworfen. a) Zeichne ein Baumdiagramm! Gib alle Ergebnisse und ihre Wahrscheinlichkeiten an! b) Wie groß ist die Wahrscheinlichkeit zunächst Z, dann W und schließlich noch einmal W zu werfen ( Ergebnis ZWW )? c) Wie groß ist die Wahrscheinlichkeit für WZW bzw. WWZ? d) Wie groß ist die Wahrscheinlichkeit für das Ereignis ohne Berücksichtigung der Reihenfolge wird einmal Z und zweimal W geworfen?

10 Arbeitsblatt 4 1. Pfadregel ( Produktregel ): Die Wahrscheinlichkeit eines Pfades ist gleich dem Produkt der Wahrscheinlichkeiten entlang des jeweiligen Pfades im Baumdiagramm. 2. Pfadregel ( Summenregel ): Die Wahrscheinlichkeit eines Ereignisses ist gleich der Summe der Wahrscheinlichkeiten aller der Pfade, die für dieses Ereignis günstig sind. 1. Ein idealer Würfel wird zweimal nacheinander geworfen. a) Zeichne ein Baumdiagramm! Gib alle Ergebnisse und ihre Wahrscheinlichkeiten an! b) Welche Ergebnisse liefern die Augensumme 11? Wie groß ist die Wahrscheinlichkeit für das Ereignis Augensumme 11? c) Wie groß ist die Wahrscheinlichkeit für das Ereignis Augensumme 7? 2. Raten bei einem Test Ein Auswahltest besteht aus vier Aufgaben. Jede Aufgabe enthält vier Antworten, von denen jeweils eine richtig ( r ) und drei falsch ( f ) sind. Peter hat im Unterricht nicht aufgepasst und nichts gelernt. Er kreuzt bei jeder Frage eine Antwort zufällig an. a) Zeichne ein Baumdiagramm! b) Mit welcher Wahrscheinlichkeit kreuzt Peter alle vier Aufgaben richtig an? c) Mit welcher Wahrscheinlichkeit kreuzt er drei Aufgaben richtig an? d) Der Test gilt als bestanden, wenn mehr als die Hälfte der Aufgaben richtig angekreuzt wurden. Wie groß ist die Wahrscheinlichkeit, dass Peter den Test besteht?

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

( ) ( ) ( ) Mehrstufige Zufallsversuche

( ) ( ) ( ) Mehrstufige Zufallsversuche R. Brinkmann http://brinkmann-du.de Seite 1 19.11.2009 Mehrstufige Zufallsversuche Häufig müssen Zufallsversuche untersucht werden, die aus mehr als einem einzigen Experiment bestehen. Diese Versuche setzen

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs Stochastik Lehr-und Aufgabenbuch Skriptum zum Vorbereitungskurs 1 WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments.

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments. Übungsmaterial 1 1 Zufallsexperimente 1.1 Ergebnisräume einfacher Zufallsexperimente Damit ein Experiment ein Zufallsexperiment ist, müssen folgende Eigenschaften erfüllt sein: 1) Das Experiment lässt

Mehr

Download. Hausaufgaben: Statistik und Wahrscheinlichkeit. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Statistik und Wahrscheinlichkeit. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mayr Hausaufgaben: Statistik und Wahrscheinlichkeit Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Statistik und Wahrscheinlichkeit Üben in drei Differenzierungsstufen

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 Aufgaben ab Seite 7 2. Häufigkeiten, Wahrscheinlichkeiten und Laplace-Experimente 2.1 Die absolute und die relative Häufigkeit 1. Beispiel: Ich werfe mal einen Würfel und möchte herausfinden, wie oft jeweils

Mehr

Vorbereitung für die Arbeit

Vorbereitung für die Arbeit Vorbereitung für die Arbeit Trigonometrie: 1. Eine 8 m hohe Fahnenstange wirft einen 13 m langen Schatten. Was ist der Winkel mit dem die Sonne die Fahnenstange trifft? 2. Ein U-Boot wird mit Sonar aufgespürt.

Mehr

Lehrerfortbildung: Stochastik

Lehrerfortbildung: Stochastik Lehrerfortbildung: Stochastik Workshop: 3.0.06-6..06 an der Ruhr-Uni-Bochum Einführung mit Aufgaben und Lösungen Dipl.-Math. Bettina Reuther Dipl.-Math. Dirk Bachmann Einführende Beispiele Das Ziegenproblem

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

Daten und Zufall Beitrag 4 mehrstufige Zufallsversuche kennenlernen 1 von 28

Daten und Zufall Beitrag 4 mehrstufige Zufallsversuche kennenlernen 1 von 28 IV Daten und Zufall Beitrag mehrstufige Zufallsversuche kennenlernen 1 von 8 Von Siedlern, Räubern und Orakeln mehrstufige Zufallsversuche kennenlernen Von Dominik Kesenheimer, Stuttgart Zufallsversuche

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6} Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

Station 1 Das Galtonbrett, Realmodelle

Station 1 Das Galtonbrett, Realmodelle Station 1 Das Galtonbrett, Realmodelle Zeit zur Bearbeitung: 10 Minuten 1.1 Versuch:. Münzwurf mit dem Galtonbrett Betrachtet wird folgendes Zufallsexperiment: Fünf identische Münzen werden zehn-mal geworfen.

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG - LÖSUNGEN. Zweimaliges Werfen eines Würfels mit Berücksichtigung der Reihenfolge a. Ergebnismenge (Ereignisraum)

Mehr

Übersicht Wahrscheinlichkeitsrechnung EF

Übersicht Wahrscheinlichkeitsrechnung EF Übersicht Wahrscheinlichkeitsrechnung EF. Grundbegriffe der Wahrscheinlichkeitsrechnung (eite ). Regeln zur Berechnung von Wahrscheinlichkeiten (eite ). Bedingte Wahrscheinlichkeit und Vierfeldertafel

Mehr

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

Erwartungswert. c Roolfs

Erwartungswert. c Roolfs Erwartungswert 2e b a 4e Der Sektor a des Glücksrads bringt einen Gewinn von 2e, der Sektor b das Doppelte. Um den fairen Einsatz zu ermitteln, ist der durchschnittlich zu erwartende Gewinn pro Spiel zu

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm.

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm. Bernoulli-Kette Die Anzahl der 0/-Folgen der Länge n mit k Einsen sollte bekannt sein. Wir haben 0 Äpfel in einer Reihe vor uns liegen. Jeder Apfel ist mit 40%-iger Wahrscheinlichkeit wurmstichig ( =).

Mehr

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli BOS 98 S I Im ahmen einer statistischen Erhebung wurden 5 repräsentative Haushalte ausgewählt und im Hinblick auf ihre Ausstattung mit Fernsehern, adiorecordern sowie Homecomputern untersucht. Dabei gaben

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Wahrscheinlichkeitsrechnung Teil 1

Wahrscheinlichkeitsrechnung Teil 1 Wahrscheinlichkeitsrechnung Teil Einführung in die Grundbegriffe Sekundarstufe Datei Nr 30 Stand September 2009 Friedrich W Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK wwwmathe-cdde Inhalt Zufallsexperimente,

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

11 Wahrscheinlichkeitsrechnung

11 Wahrscheinlichkeitsrechnung 1 Kap 11 Wahrscheinlichkeitsrechnung 11 Wahrscheinlichkeitsrechnung 11.1 Zufallsexperimente Beispiele 1. 2. 3.... Definition: Vorgänge bei denen man das Ergebnis noch nicht kennt, heissen Zufallsexperimente.

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

A Grundlegende Begriffe

A Grundlegende Begriffe Grundlegende egriffe 1 Zufallsexperimente und Ereignisse Ein Zufallsexperiment besteht aus der wiederholten Durchführung eines Zufallsversuchs. ei einem Zufallsversuch können verschiedene Ergebnisse (chreibweise:

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Übungen zur Kombinatorik (Laplace)

Übungen zur Kombinatorik (Laplace) 1. In einem Beutel sind 10 Spielmarken enthalten, die von 0 bis 9 nummeriert sind. X sei das Ereignis, dass man zufällig die Marke 5 oder 8 herausholt, Y das Ereignis, dass eine größere Zahl als 5 gezogen

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

5. KLASSENARBEIT MATHEMATIK G9A

5. KLASSENARBEIT MATHEMATIK G9A 5. KLASSENARBEIT MATHEMATIK G9A 11.04.2014 Aufgabe 1 2 3 4 5 6 Punkte (max) 2 4 4 8 4 2 Punkte (1) Eine Münze wird dreimal geworfen. Gib zu jedem der folgenden Ereignisse das Gegenereignis an! (a) Man

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A) 3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P

Mehr

Arbeitsblatt Wahrscheinlichkeit

Arbeitsblatt Wahrscheinlichkeit EI 8a 2010-11 MATHEMATIK Arbeitsblatt Wahrscheinlichkeit gelöst! 1. Aufgabe Wahrscheinlichkeit (hier wird dann auch mal gerundet!) a) Merksatz: Wahrscheinlichkeiten kann man immer (nicht ganz. dann, wenn

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Übungen zur Kombinatorik

Übungen zur Kombinatorik 1. Das Paradoxon des Chevalier de Méré: De Méré fand es paradox, dass beim Würfeln mit drei Würfeln die Augenzahlsumme 11 häufiger zustande kam als die Augenzahlsumme 12. Wie lauten die tatsächlichen Wahrscheinlichkeiten

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Statistik, Wahrscheinlichkeits- und Prozentrechnung Seite 1

Statistik, Wahrscheinlichkeits- und Prozentrechnung Seite 1 Seite 1 1 W ü r f e l e x p e r i m e n t 1 (Partnerarbeit) a) Würfele mehrmals mit einigen Spielwürfeln und notiere in einer Strichliste, welche Augenzahl wie oft gefallen ist. Wie oft wurde welche Augenzahl

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten.

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. 3. Laplaceexperimente. Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. Laplace-Münze: p(k) = p(z) = / Laplace-Würfel: p() =... = p(6) = / 6.

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung 1. 60 Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden

Mehr

Computersimulation des Qualitätstests

Computersimulation des Qualitätstests .1 Computersimulation des Qualitätstests In diesem Kapitel erreichen wir ein erstes entscheidendes Ziel: Wir ermitteln näherungsweise die Wahrscheinlichkeiten und für die Fehler 1. und. Art und zwar ohne

Mehr

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften.

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. 2. Geben Sie vier Zufallsexperimente mit ihrer jeweiligen an. 3. In einer Obstkiste

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Prüfungsaufgaben Wahrscheinlichkeit und Statistik

Prüfungsaufgaben Wahrscheinlichkeit und Statistik Aufgabe P8: 2008 Aufgabe 1 von 17 In einem Behälter liegen fünf blaue, drei weiße und zwei rote Kugeln. Mona zieht eine Kugel, notiert die Farbe und legt die Kugel wieder zurück. Danach zieht sie eine

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

Stochastik Klasse 10 Zufallszahlen

Stochastik Klasse 10 Zufallszahlen Thema Grit Moschkau Stochastik Klasse 10 Zufallszahlen Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Urnenmodell, Histogramm, absolute und relative Häufigkeit, Zufallsexperiment, Wahrscheinlichkeit,

Mehr

Hauptschule A-Kurs. Testform A

Hauptschule A-Kurs. Testform A Mathematiktest für Schülerinnen und Schüler der 8. Klassenstufe Teil 1 Hauptschule A-Kurs Testform A Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

Kopfübungen für die Oberstufe

Kopfübungen für die Oberstufe Serie A Alle Kopfübungen der Serie A beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss

Mehr

A Grundlegende Begriffe 6. 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10

A Grundlegende Begriffe 6. 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10 Inhalt A Grundlegende Begriffe 6 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10 2 Relative Häufigkeit und abstrakter Wahrscheinlichkeitsbegriff 13 Aufgaben 16 3 Laplace scher Wahrscheinlichkeitsbegriff

Mehr

Laplace-Formel. Übungsaufgaben

Laplace-Formel. Übungsaufgaben Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

3.5 Beschreibende Statistik. Inhaltsverzeichnis

3.5 Beschreibende Statistik. Inhaltsverzeichnis 3.5 Beschreibende Statistik Inhaltsverzeichnis 1 beschreibende Statistik 26.02.2009 Theorie und Übungen 2 1 Die Darstellung von Daten 1.1 Das Kreisdiagramm Wir beginnen mit einem Beispiel, welches uns

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen.

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen. Liebe Schülerin, lieber Schüler! Die Abschlussarbeit besteht aus zwei Heften. Heft 1 Kurzformaufgaben Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine

Mehr

20.3 Wahrscheinlichkeit bei Laplace- Versuchen

20.3 Wahrscheinlichkeit bei Laplace- Versuchen Zufalls experimente und Ereignisse Geben Sie jeweils eine sinnvolle Ergebnismenge Q für die folgenden Zufallsexperimente an: I) Eine Münze wird dreimal geworfen (benutzen Sie w für Wappen und z für Zahl).

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

9. Elementare Wahrscheinlichkeitsrechnung

9. Elementare Wahrscheinlichkeitsrechnung 9. Elementare Wahrscheinlichkeitsrechnung Beispiel (Einmaliges Würfeln): verbal mengentheoretisch I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1,,, 6 des Experiments werden

Mehr

Kapitel 4: Stochastik in der Grundschule

Kapitel 4: Stochastik in der Grundschule Kapitel 4: Stochastik in der Grundschule 0. Warum Stochastik in der Schule? Gründe ergeben sich aus dem Auftrag zur Allgemeinbildung: Das Lernen von Stochastik kann wesentlich zum besseren Verständnis

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung Das komplette Material finden Sie hier: School-Scout.de Blatt 26: Pfadregeln

Mehr

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58 Statistik Einführung Wahrscheinlichkeitstheorie Kapitel 3 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Wahrscheinlichkeitstheorie

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

AUFGABEN ZUR KOMBINATORIK (1)

AUFGABEN ZUR KOMBINATORIK (1) --- --- AUFGABEN ZUR KOMBINATORIK (). Zum Würfeln wird ein Tetraeder benutzt, das auf seinen vier Seiten mit,, und beschriftet ist. Als Ergebnis zählt diejenige Augenzahl, die auf der Grundfläche steht.

Mehr

1. Funktionale Zusammenhänge

1. Funktionale Zusammenhänge 1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,

Mehr

Pfadregel. 400 Kugeln durchlaufen die möglichen Pfade. Das Diagramm zeigt das Ergebnis am Ende der Versuchsdurchführung.

Pfadregel. 400 Kugeln durchlaufen die möglichen Pfade. Das Diagramm zeigt das Ergebnis am Ende der Versuchsdurchführung. Würfelsimulation 1) Bezeichnen Sie in den Säulendiagrammen (Histogrammen - 2. Graphik) die senkrechten Achsen und vervollständigen Sie im ersten Diagramm die Achseneinteilung. Lesen Sie im Histogramm für

Mehr

Daten und Zufall in der Jahrgangstufe 6

Daten und Zufall in der Jahrgangstufe 6 Daten und Zufall in der Jahrgangstufe 6 Durchführung und Auswertung von Zufallsexperimenten; Baumdiagramm und relative In Partnerarbeit wird ein Zufallsexperiment Zweimaliges Werfen eines Würfels durchgeführt.

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Buchstabensalat. 1) Entnimm dem Gefäß zwei Kugeln. Versuche möglichst viele unterschiedliche Kombinationen zu finden.

Buchstabensalat. 1) Entnimm dem Gefäß zwei Kugeln. Versuche möglichst viele unterschiedliche Kombinationen zu finden. Buchstabensalat In einem dunklen Gefäß liegen 5 rote Kugeln mit dem Buchstaben U, 5 gelbe mit dem Buchstaben S und 5 grüne mit dem Buchstaben N. Am Nachmittag spielt Pia wieder einmal mit dem geheimnisvollen

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Repetitionsaufgaben schriftliche Matur 2016 Teil 1

Repetitionsaufgaben schriftliche Matur 2016 Teil 1 Kantonsschule Solothurn Repetitionsaufgaben Matura 16 Teil 1 RYS Repetitionsaufgaben schriftliche Matur 2016 Teil 1 1. Gleichungen / Funktionen / Kurzaufgaben 1.1. a) x + 10 = 16 b) by + cy = mb + mc c)

Mehr

Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr.

Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr. Hochschule Darmstadt Fachbereich MN Prof. Dr. Dietrich Baumgarten Darmstadt, den 9.7.2012 Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr. Aufgabe 1 2 3 4 5 6 Summe Note Punkte 1 Aufgabe

Mehr