Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?"

Transkript

1 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der Elemente wichtig ist, wie z.b. die Reihenfolge der Ziffern in einer dreistelligen Zahl. Werden die der Grundgesamtheit entnommenen Elemente zurückgelegt, so können Elemente mehrmals gezogen werden. Man spricht dann von Wiederholung. Umfasst die Stichprobe alle in einer Grundgesamtheit enthaltenen Elemente, wobei die Grundgesamtheit identische Elemente enthalten kann, dann ergibt sich nur eine Möglichkeit, wenn die Reihenfolge der Elemente unwichtig ist. Interessanter wird die Sache, falls die Reihenfolge eine Rolle spielt. Man spricht dann von einer Permutation. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M {1;2;3;4;5} erstellen? Lösung: Dies ist eine Permutation ohne Wiederholung mit n 5. Für diese gilt folgendes: P n n! Beim obigen Beispiel gibt es also 5! Zahlen, wobei 5! Beispiel: Wie viele Wörter (mit elf Buchstaben) lassen sich aus den Buchstaben im Wort "TITICACASEE" bilden? Lösung: Das Wort hat elf Buchstaben. Von diesen wiederholen sich jedoch alle ausser "S". Wir haben es mit einer Permutation mit Wiederholung zu tun für welche gilt P (k 1, k 2,..., k m ) n n! k 1! k 2! k m Die Grössen k 1, k 2,..., k m bedeuten die Anzahl identischer Elemente. Im obigen Beispiel haben wir sechs verschiedene Elemente wie folgt: Nr. Element k 1 T k I k C k A k S k E k 6 2 wobei k 1 + k k m n. Man erhält eine Anzahl Wörter wie folgt:

2 2 P (2,2,2,2,1,2) 11 11! 2! 2! 2! 2! 1! 2! P(2,2,2,2,2) 11 11! (2!) 5 1'274'400 Weil 1! 1 müssen Elemente ohne Wiederholung (in unserem Fall der Buchstabe "S") nicht berücksichtigt werden. Umfasst die Stichprobe nicht alle Elemente der Grundgesamtheit, dann haben wir es mit einer Kombination oder einer Variation zu tun. (Eine Permutation ohne Wiederholung ist eine spezielle Variation ohne Wiederholung mit k n). Stichprobe Geordnet (Variation) Ungeordnet (Kombination) Kombination mit Wiederholung: C w n + k - 1 Mit Zurücklegen. k Stichprobenumfang k. Ohne Zurücklegen. Stichprobenumfang k. Variation mit Wiederholung: V w n k Beispiel: Wie viele Wörter mit vier Buchstaben kann man aus den Buchstaben im Alphabet (mit 26 Buchstaben) bilden? Lösung: Wir haben n 26 und k 4. Somit gibt es '976 Wörter mit vier Buchstaben. Variation ohne n! Wiederholung: V (n - k)! Beispiel: Wie viele verschiedene Tipps gibt es bei eine Pferderennen mit 12 Rennpferden, wenn man auf die fünf Erstplazierten in richtiger Reihenfolge wetten soll? Lösung: n 12 und k 5 12! (12-5)! 12! 7! '040. Permutation ohne Wiederholung: P N! Beispiel: Wie viele verschiedene Würfe mit drei nicht unterscheidbaren Würfeln gibt es? Lösung: n 6 und k ! 5! 3! 56. Kombination ohne Wiederholung: C n k Beispiel: Wie viele verschiedene Möglichkeiten gibt es bei einem Zahlenlotto bei welchem von 12 Kugeln 5 gezogen werden? Lösung: n 12 und k ! 5! 7! 792. Grundaufgabe: Wie viele verschiedene Buchstabenfolgen kann man aus den Buchstaben im Wort "ZIEL" erstellen? Antw.: P 4! 24. Permutation mit Wiederholung: P w N! N 1! N 2!...

3 3 Grundaufgabe: Wie viele verschiedene Buchstabenfolgen kann man aus den Buchstaben im Wort "HOCHSCHULE" erstellen? Antw.: P 10! 2! 3! 302'400. Variation der Klasse k ohne Wiederholung: V N! (N - k)! Grundaufgabe: Wie viele Wörter mit vier verschiedenen Buchstaben kann man aus den 26 Buchstaben des Alphabets bilden? Antw.: V 26! 22! '800. Variation der Klasse k mit Wiederholung: V w N k Grundaufgabe: Wie viele Wörter mit vier Buchstaben kann man aus den 26 Buchstaben des Alphabets bilden? Antw.: V w '976. Kombination der Klasse k ohne Wiederholung: C N k N! (N - k)! k! Grundaufgabe: Wie viele Möglichkeiten gibt es, an einen Spieler von 36 Karten 6 auszuteilen? Antw.: C ! 30! 6! 1'947'792. Kombination der Klasse k mit Wiederholung: C w N + k 1 k (N + k 1)! (N 1)! k! Grundaufgabe: Wie viele verschiedene Würfe gibt es mit sieben nicht unterscheidbaren Würfeln? Antw.: C w ! 5! 7! 792. Verteilungen A. Binominalverteilung: Ein Bernoulli-Versuch besteht aus zwei Ergebnissen, einem Treffer und einem Fehlschlag. Die n-malige Wiederholung eines Bernoulli-Versuchs nennt man eine Bernoulli-Kette der Länge n. Die Binominalverteilung ergibt sich als Wahrscheinlichkeitsverteilung der Anzahl "Treffer" in einer Bernoulli-Kette. Zwei Beispiele von Bernoulli-Ketten sind 1. n-maliger Münzwurf: "Treffer" Kopf (mit Wahrscheinlichkeit p ½) und "Niete" Zahl (mit Wahrscheinlichkeit ebenfalls 1 - p ½). 2. n-maliges Würfeln: "Treffer" Sechs (mit Wahrscheinlichkeit p 1 / 6) und "Niete" keine Sechs mit Wahrscheinlichkeit 1 - p 5 / 6).

4 4 Für die Binominalverteilung gilt folgendes: P n k pk (1 - p) n - k Beim ersten Beispiel erhält man z.b. für die Wahrscheinlichkeit, dass die Hälfte von einem Dutzend Münzwürfen Köpfe seien folgendes: P 6 ½6 ½ 6 12! 6! 6! ,2256. Beim zweiten Beispiel erhält man für die Wahrscheinlichkeit, dass bei zwölfmaligem Würfeln genau zwei Mal eine Sechs gewürfelt wird folgendes: P ! ! 10! ,2961. Dabei ist die Wahrscheinlichkeit für sämtliche mögliche Ergebnisse gleich 1. Von dieser Tatsache lässt sich wie folgt Gebrauch machen: Wie gross ist die Wahrscheinlichkeit, dass bei zwölfmaligem Würfeln mindestens eine Sechs gewürfelt wird? Antwort: P ! ! 11! ,6187. Hier wurden von der Gesamtwahrscheinlichkeit 1 die Wahrscheinlichkeiten für keinen und einen Sechser subtrahiert. B. Geometrische Verteilung: Ein Bernoulli-Versuch wird so lange durchgeführt, bis sich ein Treffer einstellt. Die Wahrscheinlichkeit, dass beim n-ten Mal ein Treffer erscheint beträgt P(X n) (1 p) n 1 p Beispiel: Berechne die Wahrscheinlichkeit, dass beim Würfeln beim fünften Mal zum ersten Mal eine Sechs erscheint. Lösung: P(X 6) (5 / 6) 4 (1 / 6) C. Hypergeometrische Verteilung: Die hypergeometrische Verteilung der Wahrscheinlichkeit ergibt sich aus einem Urnenmodell wie folgt: Eine Urne enthalte n Kugeln. Davon seien w weiss und n - w seien schwarz. Die Wahrscheinlichkeit, dass eine Stichprobe von m Kugeln genau k weisse Kugeln enthält ist gegeben durch die hypergeometrische Verteilung wie folgt: w P k n - w m - k n m Beispiel: Eine Warensendung enthält 80 Einheiten, wovon 3 defekt sind. Wie gross ist die Wahrscheinlichkeit, dass bei der Entnahme einer Stichprobe von vier Einheiten zwei der entnommenen Einheiten defekt sind?

5 5 3 Antwort: P , D. Verallgemeinerte hypergeometrische Verteilung: Diese Verteilung gilt für die Wahrscheinlichkeit, dass einer Grundgesamtheit von N Elementen x 1 Elemente mit der Eigenschaft A 1, x 2 Elemente mit der Eigenschaft A 2... und x k Elemente mit der Eigenschaft A k entnommen werden, wenn besagte Grundgesamtheit N 1 Elemente mit der Eigenschaft A 1, N 2 Elemente mit der Eigenschaft A 2... und N k Elemente mit der Eigenschaft A k enthält. Es gilt dann folgendes: N 1 P x 1 N 2 x 2 N 3 x... N k 3 x k N n wobei x 1 + x 2 + x x k n und N 1 + N 2 + N N k N. Beispiel: In einer Urne befinden sich fünf rote, acht grüne, zehn blaue und dreizehn gelbe Kugeln. Wie gross ist die Wahrscheinlichkeit, dass eine Stichprobe von 14 Kugeln zwei rote, drei grüne, vier blaue und fünf gelbe Kugeln enthält? Antwort: 5 P , Wenn die Elemente zurückgelegt werden gilt folgendes: x n! P x 1! x 2! x 3! x k! N 1 x 1 N N 2 x 2 N N 3 3 N N k N Beim obigen Beispiel erhält man folgendes: P 14! 2! 3! 4! 5! , Ein Auswahlverfahren lässt sich mit Hilfe eines Ereignisbaums anschaulich darstellen. Die Verwendung eines Ereignisbaums als Hilfsmittel soll mit folgendem Beispiel veranschaulicht werden. In einer Urne befinden sich 3 weisse, 2 graue und eine schwarze Kugel. Es sei die Wahrscheinlichkeit gesucht, dass man bei der Entnahme von drei Kugeln ohne Zurücklegen eine weisse, eine graue und eine schwarze Kugel zieht. x k

6 6 Ausgehend vom Punkt A werden alle möglichen Ergebnisse und Zwischenergebnisse beim Ziehen von drei Kugeln dargestellt. Wenn die Kugeln nacheinander gezogen werden bestehen sechs Möglichkeiten wie folgt: weiss grau schwarz, weiss schwarz grau, grau weiss schwarz, grau schwarz weiss, schwarz weiss grau und schwarz grau weiss. Die Wahrscheinlichkeit, dass man eine weisse, eine graue und eine schwarze Kugel zieht erhält man als Summe von Wahrscheinlichkeiten wie folgt: P 0.5 [ ] [ ] [ ] 0.3 Bedingte Wahrscheinlichkeit Die bedingte Wahrscheinlichkeit eines Ereignisses A unter der Bedingung, dass ein Ereignis B eintritt ist gleich dem Quotient aus der Wahrscheinlichkeit, dass sowohl A als auch A eintritt und der Wahrscheinlichkeit, dass B eintritt. P(A B) P(A B) P(B) 1. Beispiel: Zwei gleiche Urnen U 1 und U 2 enthalten Kugeln wie folgt: Urne U 1 : Drei schwarze und zwei weisse Kugeln. Urne U 2 : Drei schwarze und vier weisse Kugeln. Man greift blind in eine der beiden Urnen und zieht eine Kugel. Die gezogene Kugel sei schwarz. Mit welcher Wahrscheinlichkeit stammt sie aus Urne U 1? Lösung: P(Aus U 1 Schwarze Kugel) Schwarze Kugel aus U 1 Schwarze Kugel

7 7 2. Beispiel: Einer von tausend Menschen hat eine bestimmte Krankheit. Bei einem Prozent der gesunden Patienten fällt der Test fälschlicherweise positiv aus. Jemand lässt diesen Test machen und er fällt positiv aus, d.h. der Test ergab, dass die Person erkrankt ist. Wie gross ist die Wahrscheinlichkeit, dass die getestete Person tatsächlich krank ist? P(Erkrankt Positiv) P(Positiv und erkrankt) P(Positiv) Die Wahrscheinlichkeit tatsächlich erkrankt zu sein beträgt also lediglich 9.1%. Sind zwei Ereignisse A und B voneinander unabhängig, dann muss P(A B) P(A), P(B A) P(B) und P(A B) P(A) P(B)

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

II Wahrscheinlichkeitsrechnung

II Wahrscheinlichkeitsrechnung 251 1 Hilfsmittel aus der Kombinatorik Wir beschäftigen uns in diesem Abschnitt mit den Permutationen, Kombinationen und Variationen. Diese aus der Kombinatorik stammenden Abzählmethoden sind ein wichtiges

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Übungen zur Kombinatorik

Übungen zur Kombinatorik 1. Das Paradoxon des Chevalier de Méré: De Méré fand es paradox, dass beim Würfeln mit drei Würfeln die Augenzahlsumme 11 häufiger zustande kam als die Augenzahlsumme 12. Wie lauten die tatsächlichen Wahrscheinlichkeiten

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Übungen zur Kombinatorik (Laplace)

Übungen zur Kombinatorik (Laplace) 1. In einem Beutel sind 10 Spielmarken enthalten, die von 0 bis 9 nummeriert sind. X sei das Ereignis, dass man zufällig die Marke 5 oder 8 herausholt, Y das Ereignis, dass eine größere Zahl als 5 gezogen

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Wahrscheinlichkeit und Zufallsvorgänge Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2

Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2 Abiturprüfung Berufliche Oberschule 003 Mathematik 13 Technik - B I - Lösung Teilaufgabe 1.0 Eine Kfz-Werkstatt für Autoelektronik baut in Fahrzeuge Alarmanlagen ein. Die Werkstatt verfügt über 11 Stellplätze,

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Kombinatorische Abzählverfahren - LÖSUNGEN

Kombinatorische Abzählverfahren - LÖSUNGEN Kombinatorische Abzählverfahren - LÖSUNGEN TEIL C: Lösungen 1. Produtregel das einfache Verfahren Aufgabe 1: Auto-Ausstattung Aufgabe 2: Tanzstunde Aufgabe 3: Menüplanung Aufgabe 4: Atenzeichen Aufgabe

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente

Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente Kursthemen 11. Sitzung Folie I - 11-1 Spezielle diskrete Verteilungen: Auswahlexperimente Spezielle diskrete Verteilungen: Auswahlexperimente A) Kombinatorik (Folien bis 5) A) Kombinatorik (Folien bis

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

W.12 Kombinatorik 1. vermischte Aufgaben zu Vertauschungsmöglichkeiten ( )

W.12 Kombinatorik 1. vermischte Aufgaben zu Vertauschungsmöglichkeiten ( ) 1 Die Kombinatorik ist die Lehre von den Vertauschungsmöglichkeiten. Da man eigentlich fast jede Wahrscheinlichkeit mit irgendwelchen Vertauschungsmöglichkeiten multiplizieren muss, ist es naheliegend,

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

falls rote Kugel im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Bernoulli-Prozess

falls rote Kugel im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Bernoulli-Prozess 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln sind nicht rot. Wir entnehmen n Kugeln, d.h. Stichproben vom Umfang n.

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6} Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Das Urnenmodell mit und ohne Zurücklegen

Das Urnenmodell mit und ohne Zurücklegen THM Friedberg Standort: Friedberg Seminar: Mathematik 3- Statistik WS 12/13 Gruppe Nr.9 Dozent: Dipl. Log. me. Kästner Das Urnenmodell mit und ohne Zurücklegen 10.12.2012 Theresa Hönicke Matrikelnr.: 869678

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU

LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU Erster Teil: Überlegen Sie mal... Zur Lösung dieser sechs Aufgaben reichen einfache Kenntnisse der Wahrscheinlichkeitstheorie und einige logische

Mehr

1 Kap 12 Kombinatorik

1 Kap 12 Kombinatorik 1 Kap 12 Kombinatorik 12 Kombinatorik Manchmal ist es schwierig, bei einstufigen Experimenten die für die Berechnung der Wahrscheinlichkeit notwendige Anzahl der möglichen Fälle und der günstigenfälle

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

CAMPUS 09 LÖSUNGEN ZUM QUIZ MIT DEM ZUFALL AUF DU UND DU

CAMPUS 09 LÖSUNGEN ZUM QUIZ MIT DEM ZUFALL AUF DU UND DU CAMPUS 09 LÖSUNGEN ZUM QUIZ MIT DEM ZUFALL AUF DU UND DU Erster Teil: Überlegen Sie mal... Zur Lösung dieser sechs Aufgaben reichen einfache Kenntnisse der Wahrscheinlichkeitstheorie und einige logische

Mehr

Bei der Berechnung von Laplace-Wahrscheinlichkeiten muss man die Mächtigkeit von Ergebnisräumen und Ereignissen bestimmen.

Bei der Berechnung von Laplace-Wahrscheinlichkeiten muss man die Mächtigkeit von Ergebnisräumen und Ereignissen bestimmen. VI. Kombinatorik ================================================================== 6.1 Einführung --------------------------------------------------------------------------------------------------------------

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen)

b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen) R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Relative Häufigkeit, Wahrscheinlichkeit II en: A1 A1 Über die Zusammensetzung der Schülerschaft eines Gymnasiums ist bekannt: In der Sek.

Mehr

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! =

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! = Übungsblatt Höhere Mathematik - Weihenstephan SoSe 00 Michael Höhle, Hannes Petermeier, Cornelia Eder Übung: 5.6.00 Die Aufgaben -3 werden in der Übung am Donnerstag (5.6. besprochen. Die Aufgaben -6 sollen

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Mathematik Lösung Klassenarbeit Nr. 2 Klasse 10a

Mathematik Lösung Klassenarbeit Nr. 2 Klasse 10a Der GTR ist erlaubt, wird mitunter wirklich benötigt. Bitte lest die Lösungen in Ruhe durch. Ich hoffe sie sind so ausführlich, dass jeder alle Zwischenschritte versteht. Wenn nicht, meldet Euch bitte.

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Laplace-Formel. Übungsaufgaben

Laplace-Formel. Übungsaufgaben Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

b) Wie viele Möglichkeiten gibt es, den gewählten Vorstand auf drei Stühle zu setzen? (Die möglichen Anordnungen nennt man Permutation)

b) Wie viele Möglichkeiten gibt es, den gewählten Vorstand auf drei Stühle zu setzen? (Die möglichen Anordnungen nennt man Permutation) M8 LU 33 Kombinatori und Wahrscheinlicheiten A Kombinatori. a) Wie viele Möglicheiten gibt es, aus diesen fünf Mitgliedern des Schwinglubs einen Vorstand mit Präsident, Viepräsident und Atuar u wählen?

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik Statistik 1 für SoziologInnen Grundlagen der Kombinatorik Univ.Prof. Dr. Marcus Hudec Zufallsauswahl aus Grundgesamtheiten In der statistischen Praxis kommt dem Ziehen von Stichproben größte Bedeutung

Mehr

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten?

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten? 1 Überblick æ Beschreibende Statistik: Auswertung von Experimenten und Stichproben æ Wahrscheinlichkeitsrechnung: Schlüsse aus gegebenen Wahrscheinlichkeiten, Hilfsmittel: Kombinatorik æ Beurteilende Statistik:

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Kombinatorische Abzählverfahren

Kombinatorische Abzählverfahren Mathematik Statistik Kombinatorische Abzählverfahren * Kombinatorische Abzählverfahren Vorwort TEIL A: Basiswissen 1. Was zum Teufel ist das? 1.2. Wofür benötigt man Kombinatorische Abzählverfahren? 1.3.

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

4. Kombinatorik *) In der Kombinatorik werden drei wichtige Symbole benötigt: o n! o (n) k o

4. Kombinatorik *) In der Kombinatorik werden drei wichtige Symbole benötigt: o n! o (n) k o *) Die Berechnung der Wahrscheinlichkeit im Laplace-Experiment wirkt zunächst einfach. Man muss einfach die Anzahl der günstigen Fälle durch die Anzahl der möglichen Fälle teilen. Das Feststellen dieser

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 2 - WAHRSCHEINLICHKEIT 28.11.2014 1 28.11.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 WAS IST WAHRSCHEINLICHKEITSRECHNUNG? 02 THEOREME DER WAHRSCHEINLICHKEITSRECHNUNG

Mehr

Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X:

Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X: Übungsblatt 1 Beispiel 1. Von den 50 Teilnehmern eines Kurses sind 35 weiblich und 10 Raucher/innen. Wie viele nicht-rauchende Teilnehmerinnen sind zu erwarten, wenn die Merkmale Geschlecht und Rauchverhalten

Mehr

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm.

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm. Bernoulli-Kette Die Anzahl der 0/-Folgen der Länge n mit k Einsen sollte bekannt sein. Wir haben 0 Äpfel in einer Reihe vor uns liegen. Jeder Apfel ist mit 40%-iger Wahrscheinlichkeit wurmstichig ( =).

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21 Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21 Quasiendliche Wahrscheinlichkeitsräume Definition quasiendlicher Wahrscheinlichkeitsraum

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse.

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN 12. 13. Klasse Jens Möller INHALTE Baumdiagramme Ziehen mit und ohne Zurücklegen Binomialverteilungen Erwartungswerte

Mehr

Elemente der Stochastik (SoSe 2016) 6. Übungsblatt

Elemente der Stochastik (SoSe 2016) 6. Übungsblatt Dr. M. Weimar 19.05.2016 Elemente der Stochastik (SoSe 2016 6. Übungsblatt Aufgabe 1 ( Punkte Eine Klausur, die insgesamt von zwölf Kursteilnehmern geschrieben wurde, soll von drei Gutachtern bewertet

Mehr

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli BOS 98 S I Im ahmen einer statistischen Erhebung wurden 5 repräsentative Haushalte ausgewählt und im Hinblick auf ihre Ausstattung mit Fernsehern, adiorecordern sowie Homecomputern untersucht. Dabei gaben

Mehr

Vorkurs Mathematik für Informatiker Kombinatorik --

Vorkurs Mathematik für Informatiker Kombinatorik -- Vorkurs Mathematik für Informatiker -- 10 Kombinatorik -- Thomas Huckle Stefan Zimmer 30.09.2014 1 Urnenmodell In der Kombinatorik interessiert man sich dafür, wie viele Möglichkeiten es für die Ergebnisse

Mehr

Eigenschaften der relativen Häufigkeit ( Zur Erinnerung) Axiomatische Definition der Wahrscheinlichkeit: Vorlesung Statistik WING

Eigenschaften der relativen Häufigkeit ( Zur Erinnerung) Axiomatische Definition der Wahrscheinlichkeit: Vorlesung Statistik WING Eigenschaften der relativen Häufigkeit ( Zur Erinnerung) Axiomatische Definition der Wahrscheinlichkeit: Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften

Mehr

Vier-Felder-Tafel und bedingte Wahrscheinlichkeit

Vier-Felder-Tafel und bedingte Wahrscheinlichkeit Vier-Felder-Tafel und bedingte Wahrscheinlichkeit erkrankt nicht erkrankt geimpft 47 125 nicht geimpft 21 Summe 201 Ergänze die Vier-Felder-Tafel und stelle die Zusammenhänge in einem Pfaddiagramm dar,

Mehr