Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007)

Größe: px
Ab Seite anzeigen:

Download "Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007)"

Transkript

1 Rotationskörper Ronny Harbich 1. August 2003 geändert 24. Oktober 2007)

2 Inhaltsverzeichnis 1 Einführung 3 2 Anschauliche Herleitung Darstellungen Gleichungen und Ungleichungen Volumenfunktion Unendlich viele Zylinder Darstellungen Gleichungen Anwendungen und Beispiel Das Kegelvolumen Das Kugelvolumen Ein unendliches Volumen Eine unendliche Fläche aber ein endliches Volumen Der hohle Zylinder

3 1 Einführung 1 Einführung Dieser Artikel soll die Rotation von Funktionen um die x-achse verdeutlichen. Bei solchen Rotationen entstehen dreidimensionale Figuren Rotationskörper). Das Berechnen der Volumina dieser Körper soll im weiteren Verlauf beschrieben werden. Es sei zunächst eine Funktion f mit reellem Definitions- und Wertebereich gegeben. Der Graph dieser Funktion bildet mit der x-achse im Intervall reellen [0, t] eine Fläche grün ausgefüllt). 3

4 2 Anschauliche Herleitung Anschließend wird die Fläche um die x-achse rotiert und es entsteht somit ein dreidimensionales Objekt mit dem Volumen V t). 2 Anschauliche Herleitung 2.1 Darstellungen Wird dieser Körper dann mit der x-y-ebene geschnitten Querschnittsfläche), so entsteht die oben gezeigte Abbildung. An dieser Stelle wird das Volumen V t) um das Volumen V blau schraffiert) vergrößert 1. 1 V wurde Aufgrund technischer Einschränkungen in der Abbildung mit dv bezeichnet. 4

5 2 Anschauliche Herleitung Um den Volumenzuwachs zu verdeutlichen, ist es notwendig, das Volumen V durch zwei Teilvolumina anzunähern. Beide Teilvolumina entstehen bei t und t + h und bilden jeweils einen Zylinder. Der Zylinder mit dem Volumen V 1 zeichnet sich durch den Radius ft) und der Höhe h aus, wobei der andere Zylinder mit dem Volumen V 2 mit dem Radius ft + h) und ebenso der Höhe h beschrieben wird. Diese Abbildung stellt die Grundflächen beider Zylinder dar der Betrachter befindet sich auf der x-achse und verdeutlicht noch einmal die Radien dieser geometrischen 5

6 2 Anschauliche Herleitung Figuren. 2.2 Gleichungen und Ungleichungen V = V t + h) V t) V 2 V 1, V Z = A G h = π r 2 h V 1 V V 2 1) π ft) 2 h V π ft + h) 2 h 2) π ft) 2 lim ) π ft) 2 lim h 0 h 0 V π ft + h) 2 3) h ) V lim ) π ft + h) 2 4) h 0 h ) V π ft) 2 lim π ft) 2 5) h 0 h ) V t + h) V t) π ft) 2 lim π ft) 2 6) h 0 h π ft) 2 V t) π ft) 2 7) V t) = π ft) 2 8) qt) = π ft) 2 9) V t) = qt) 10) Das Zuwachsvolumen wird durch die Differenz der beiden anderen Teilvolumina dargestellt. Da die beiden Teilvolumina bekannte geometrische Figuren Zylinder) bilden, ist auch die Volumenformel V Z dieser bekannt. Als nächstes wird eine Doppelungleichung zwischen dem kleineren Zylindervolumen, dem Zuwachsvolumen und dem größeren Zylindervolumen aufgestellt 1). Anschließend werden die beiden Zylindervolumina durch ihre Volumenformel ersetzt, wobei die Radien der Zylinder jeweils dem Funktionswert der Argumente t bzw. t+h entsprechen 2). Nun wird die Doppelungleichung mit der Höhe h dividiert 3) und die Volumenvergrößerung rückgängig gemacht, indem die Höhe h gegen 0 verringert wird 4). Da V gegen 0 gehen würde 5), wird nun V ersetzt 6) und es h 0 entsteht der Differentialquotient 6), also die erste Ableitung 7). Da V t) π ft) 2 und V t) π ft) 2 folgt sofort die Gleichheit 8). π ft) 2 beschreibt die Grundfläche des Zylinders 8) bei t und soll an dieser Stelle als Querschnittsfunktion qt) dargestellt werden 9), 10). Die Volumenfunktion ist eine Stammfunktion der Querschnittsfunktion. 2.3 Volumenfunktion Um das Volumen eines Rotationskörpers mit Hilfe der Stammfunktion zu errechnen, ist die Integration der hergeleiteten Gleichung notwendig: V t) = qt) V t) = qt)dt = Qt) + C 6

7 3 Unendlich viele Zylinder Nun stellt sich die Frage wie groß die reelle Zahl C ist. Dazu muss das Volumen eines Rotationskörpers im reellen Intervall [a, a] bekannt sein. Sein Volumen beträgt 0: V a a) = Qa) + C V a a) = Qa) + C = 0 C = Qa) V a b) = Qb) + C V a b) = Qb) Qa) Anschließend wird die Schreibweise des bestimmten Integrals verwendet: V a b) = Qb) Qa) = [Qt)] b a = b a qt)dt Wird jetzt für qt) wieder die Flächenformel eingesetzt, ergibt sich folgendes: V a b) = b qt)dt = π b [ft)] 2 dt V a b) = π b [fx)] 2 dx a a a 3 Unendlich viele Zylinder 3.1 Darstellungen Es wird eine Funktion f rotiert und anschließend werden in dem entstandenem Rotationskörper Zylinder gleicher Höhe h und dem Radius fx) eingeschrieben. 7

8 4 Anwendungen und Beispiel 3.2 Gleichungen V Z = A G h = π r 2 h, n ist natürliche Zahl qx) = π [fx)] 2 11) V q0 h) h + q1 h) h + + qn 1) h) h 12) n 1 = qi h) h 13) V b i=0 n 1 i=0 V b = lim n = lim n ) b n, h = b n q i b ) ) b n n [ π f i b )] 2 b n n q i b n n 1 i=0 n 1 i=0 Zu nächst einmal werden die Zylindervolumina mit einander addiert 12), 13). Diese Untersumme ergibt einen Wert nahe am tatsächlichen Volumen. Nun wird versucht die Höhe h durch n mit Hilfe einer Grenze b auszudrücken 14). An dieser Stelle soll nun das wahre Volumen des Körpers ermittelt werden 15), 16). Dieses ergibt sich genau dann, wenn n. ) 14) 15) 16) 4 Anwendungen und Beispiel 8

9 4.1 Das Kegelvolumen 4 Anwendungen und Beispiel Die Querschnittsfunktion eines Kegels ist eine lineare Funktion f mit dem Anstieg m: m = y x = r h, fx) = r h x Das Volumen V soll nun im Intervall [0, h] berechnet werden: h V = π 0 r ) [ ] 2 h x r 2 h 1 dx = π h 2 3 x3 = π 0 3 r2 h 9

10 4 Anwendungen und Beispiel Es entsteht die bekannte Kegelvolumenformel. Das Kegelvolumen V lässt sich auch mit dem Grenzwert der Untersumme ausrechnen: qx) = π [fx)] 2 = π r2 h 2 x2 n 1 V = lim q i h ) ) h n n n i=0 h = lim q 0 h ) + q 1 h ) + + q n 1) h ))) n n n n n = lim π h n n r2 h h n 1) 2) ) 2 n 2 = lim π h n n r2 h h2 n 3 2 n 2 3 n2 2 + n )) 6 n = lim π h r 2 3 n 3 n n2 3 2 n + n )) 3 6 n 3 1 = lim π h r 2 n n + 1 )) 6 n 2 = π 3 r2 h Letztendlich entsteht dieselbe wie oben errechnete Volumenformel. 4.2 Das Kugelvolumen 10

11 4 Anwendungen und Beispiel Die bekannte Kreisgleichung wird nach fx) aufgelöst. x 2 + fx) 2 = r 2 fx) = r 2 x 2 Die Funktion f wird um die x-achse rotiert und es entsteht folgendes Volumen V : r V = π r r2 x 2 ) 2 dx [ = π r 2 x 1 ] r 3 x3 r = π r r3 r )) r3 = 4 3 πr3 Es entsteht die schon bekannte Kugelvolumenformel. 4.3 Ein unendliches Volumen Es sei eine Funktion f mit fx) = x gegeben. Nun soll das Volumen V im Intervall [0, ] angegeben werden. V = π 0 [ 1 = π = π lim x x ) 2 dx ] 2 x x2 ) = Des Ergebnis deutet daraufhin, dass das Volumen dieses Körpers unendlich groß ist. 11

12 4 Anwendungen und Beispiel 4.4 Eine unendliche Fläche aber ein endliches Volumen Es sei eine Funktion f mit fx) = 1 gegeben. Nun wird die Fläche F und das Volumen x V, das bei der Rotation entsteht, im Intervall [1, ] gesucht. 12

13 4 Anwendungen und Beispiel F = 1 ) 1 dx x = [ln x] 1 = ) 2 1 V = π dx x 1 [ = π 1 ] x 1 = π lim 1 ) x x 1 )) = π 1 Die gegebene Funktion hat somit im genannten Intervall eine unendlich große Fläche und nach der Rotation ein Volumen von π. Da die Flächen- und Volumenformel bewiesen sind und somit nicht fehlerhaft sein können, stellt sich die Frage woher dieses kurios erscheinende Ergebnis kommt. Es ist korrekt, denn vielmehr scheint die Vorstellung von Unendlichkeit schwierig zu sein. 4.5 Der hohle Zylinder Übungsaufgabe: Es wird das Volumen in einem Hohlzylinder gesucht. Der Radius des Zylinders betrage 5 LE, der Abstand bis zum inneren hohlen Teil des Zylinders sei 3 LE und er habe eine Höhe von 8 LE. Nach der Volumenbestimmung soll eine allgemeine Volumenformel erstellt werden. 13

14 4 Anwendungen und Beispiel 14

Integralrechnung Rotationskörper 1

Integralrechnung Rotationskörper 1 Integralrechnung Rotationskörper 1 Volumenberechnung von Rotationskörpern y Datei Nr. 4810 15. Juli 015 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 4810 Rotationskörper - Volumenberechnungen Inhalt 1. Berechnungsformel

Mehr

Analysis 7. f(x) = 4 x (x R)

Analysis 7.   f(x) = 4 x (x R) Analysis 7 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch fx) = 4 x R) a) Führen Sie für die Funktion f eine Kurvendiskussion durch Nullstellen, Koordinaten der lokalen Extrempunkte,

Mehr

Integralrechnung. Alexander F,Christoph K, Jasmin L, Dominik M, Monica P & Sarah S. 20. April 2016

Integralrechnung. Alexander F,Christoph K, Jasmin L, Dominik M, Monica P & Sarah S. 20. April 2016 Alexander F,Christoph K, Jasmin L, Dominik M, Monica P & Sarah S. 20. April 2016 Alexander F,Christoph K, Jasmin L, Dominik M, Monica P & Sarah S. Riemann-Integral Eine Funktion f : [a, b] R heiÿt Riemann

Mehr

Analysis 5.

Analysis 5. Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion

Mehr

Integralrechnung - Rotationskörper

Integralrechnung - Rotationskörper F H Z > F A C H H O C H S C H U L E Z E N T R A L S C H W E I Z H T A > H O C H S C H U L E F Ü R T E C H N I K + A R C H I T E K T U R L U Z E R N A b t e i l u n g I n f o r m a t i k Integralrechnung

Mehr

Analysis 8.

Analysis 8. Analysis 8 www.schulmathe.npage.de Aufgaben Gegeben sind die Funktionen f a durch f a (x) = a x x + (x R x ; a R a ) a) Geben Sie die Koordinaten der Schnittpunkte der Graphen der Funktionen f a mit den

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

Integralrechnung Rotationskörper 1

Integralrechnung Rotationskörper 1 Integralrechnung Rotationskörper Volumenberechnung von Rotationskörpern Datei Nr. 80. April 06 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Rotationskörper - Volumenberechnungen Inhalt. Berechnungsformel

Mehr

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I:

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I: Mathematik LK13 Kursarbeit 1 6.11.14 Musterlösung Aufgabe I: Analysis I 1. Spaß mit natürlichen Eponentialfunktionen Gegeben sind die Funktionen f ()=e ( + ) und g ( )=5 e Untersuchen Sie beide Funktionen

Mehr

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: klaus_messner@web.de, Internet: www.elearning-freiburg.de Einführung des Integrals 15

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen Rotationskörpers

Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen Rotationskörpers http://www.fotocommunity.de/search?q=table&index=fotos&options=ytoyontzoju6inn0yxj0ijtpoja7czo3oijkaxnwbgf5ijtzojg6ijizmjy4oduwijt9/pos/13 Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2.

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2. 1 Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2.2 klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 2.1

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen.

Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen. Anwendungen der Integralrechnung 1 1 Trägheitsmomente 1. 1 Einleitung, Definition Körper fallen im Vakuum gleich schnell und sie gleiten auf einer reibungsfreien schiefen Ebene gleich schnell. Sie rollen

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

Aufgabe P2/2007 Die Skizze zeigt den Achsenschnitt eines Kegels. Es gilt: 6,2 48

Aufgabe P2/2007 Die Skizze zeigt den Achsenschnitt eines Kegels. Es gilt: 6,2 48 5 Aufgaben im Dokument Aufgabe P6/2004 Eine Kugel und ein Zylinder werden miteinander verglichen - Die Kugel hat ein Volumen von 268, - der Radius der Kugel und der Grundkreisradius des Zylinders sind

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Klausur Nr. 2. Produkt- und Kettenregel, Rotationskörper. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 2. Produkt- und Kettenregel, Rotationskörper. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 2 Produkt- und Kettenregel, Rotationskörper Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche

Mehr

Volumen eines Rotationskörpers

Volumen eines Rotationskörpers Volumen eines Rotationskörpers Das Volumen V des durch Rotation des Funktionsgraphen r = f (x) 0, a x b, um die x-achse erzeugten Körpers lässt sich durch Integration über die kreisförmigen Querschnitte

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge.

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge. Multiple Choice. Die folgenden acht Aufgaben sind Multiple Choice-Aufgaben. Bei jeder Aufgabe gibt es 4 Aussagen, die wahr oder falsch sind. Für 4 korrekte Antworten gibt es 4 Punkte, für 3 korrekte Antworten

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure Kerstin Rjasanowa ISBN 3-446-4479- Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-4479- sowie im Buchhandel 7.9 Anwendungen der Integralrechnung

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel PD Dr. Roger Labahn {konrad.engel, roger.labahn}@uni-rostock.de.09.

Mehr

Musterlösung. für die Klausur MA2_06.1 vom 10. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann.

Musterlösung. für die Klausur MA2_06.1 vom 10. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann. Fachbereich Produktion und Wirtschaft Musterlösung für die Klausur MA_06. vom 0. Februar 006 Labor für Mathematik und Statistik Prof. Norbert Heldermann Richard Münder Bei dem vorliegenden Dokument handelt

Mehr

9.3. Rotationsvolumina

9.3. Rotationsvolumina 9.. Rotationsvolumina Rotationskörper entstehen, wenn man eine ebene Kurve um eine in der Ebene liegende Achse kreisen läßt. Beispiele aus dem praktischen Leben sind Töpferscheibe und Drechselbank. Die

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de

Mehr

Das Volumen und die Oberfläche einer n-dimensionalen Kugel

Das Volumen und die Oberfläche einer n-dimensionalen Kugel Das Volumen und die Oberfläche einer n-dimensionalen Kugel Alois Temmel 6. Februar 14 c 14, A. Temmel Inhaltsverzeichnis 1 Die Volumenformel 3 1.1 Die n-dimensionale Kugel.................... 3 1.1.1 Die

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de

Mehr

Mathematik II für MB und ME

Mathematik II für MB und ME Übungsaufgaben Serie : Integralrechnung. Berechnen Sie folgende Integrale 3 + 2 2 d, b) d) sin(3) cos(3) d, e) Mathematik II für MB und ME e a d, c) 6 d, f) + 2 2. Berechnen Sie durch geeignete Substitution

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Flächeninhalt, Volumen und Integral

Flächeninhalt, Volumen und Integral Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Herzlich Willkommen Bienvenue Welcome. Volumenbestimmung in Tanks aufgrund statischer Druckmessung

Herzlich Willkommen Bienvenue Welcome. Volumenbestimmung in Tanks aufgrund statischer Druckmessung Herzlich Willkommen Bienvenue Welcome bestimmung in Tanks aufgrund statischer Druckmessung - Vergleich mathematische und praktische Vorgehensweise Manfred Schleicher Information zu dieser Präsentation

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Erste Schularbeit Mathematik Klasse 8D WIKU am

Erste Schularbeit Mathematik Klasse 8D WIKU am Erste Schularbeit Mathematik Klasse 8D WIKU am 3.1.215 KORREKTUR UND KOMMENTAR Aufgabe 1. (2P) Parameter einer linearen Funktion bestimmen. Gegeben ist die Funktion f(x) = ax 4, wobei a R +. Bestimmen

Mehr

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie D-BAUG Analysis I HS 2014 Dr. Meike Akveld Serie 12 1. Für die Hyperbel mit der Gleichung x 2 y 2 = 1 (siehe Abbildung 1) betrachten wir die Parametrisierung ( ) ( ) x(t) cosh t r : R R 2, r(t) = =. y(t)

Mehr

, das Symmetrieverhalten des Graphen von f a. und die Werte von a, für welche die Wertemenge von f a. die Zahl 1 enthält. a 2 x 2 vgl.

, das Symmetrieverhalten des Graphen von f a. und die Werte von a, für welche die Wertemenge von f a. die Zahl 1 enthält. a 2 x 2 vgl. Abiturprüfung Berufliche Oberschule 00 Mathematik Technik - A II - Lösung Teilaufgabe.0 Gegeben ist die Funktion f a ( ) a a mit a IR \ {0} in der von a unabhängigen Definitionsmenge D f IR \ {0}. Teilaufgabe.

Mehr

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 4, Analysis II SoSe 6, 3/4. Mai Uneigentliche und parameterabhängige Integrale, Rotationskörper Die ins Netz gestellten Kopien

Mehr

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Erste Schularbeit Mathematik Klasse 7A G am

Erste Schularbeit Mathematik Klasse 7A G am Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 Korrekturversion Aufgabe 1. (2P) Zahlenmengen. Es folgen Aussage über Zahlenmengen. Kreuzen Sie die beiden zutreffenden Aussagen an! 2 10 3 ist eine

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 27 9. Klasse: Marco Bettner/Erik Dinges Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel: Vertretungsstunden Mathematik

Mehr

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31 Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3

Mehr

Aufgaben zu Ableitung und Integral der ln-funktion

Aufgaben zu Ableitung und Integral der ln-funktion Aufgaben zu Ableitung und Integral der ln-funktion. Bilden Sie von folgenden Funktionen jeweils die. Ableitung. a) f(x) = x+lnx b) f(x) = (lnx) c) f(x) = x(lnx) xlnx+x d) f(x) = e) f) x (lnx ) f(x) = x

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Der Begriff des bestimmten Integrals

Der Begriff des bestimmten Integrals Der Begriff des bestimmten Integrals Das ursprüngliche Problem, das zum Begriff des bestimmten Integrals führte, war ein geometrisches, die Bestimmung von Flächeninhalten. 1-E Archimedes von Syrakus Infinite

Mehr

Mathematische Grundkenntnisse Selbsteinschätzungstest, Herbst 2009

Mathematische Grundkenntnisse Selbsteinschätzungstest, Herbst 2009 Mit diesem Test bieten wir Ihnen an, Ihr mathematisches Schulwissen abzurufen, zu überprüfen und allenfalls Lücken zu identifizieren. Die Teilnahme ist nicht verpflichtend und hat keine Konsequenzen. Der

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 2 Aufgabe ) a) Berechne für alle natürlichen Zahlen n N das Integral e nx ln(x)dx. Mit Hilfe der partiellen Integration für f (x) = nx, somit f(x)

Mehr

Technische Universität Dresden, Fakultät Mathematik Prof. Dr. F. Schuricht, Dr. M. Herrich. der Übungsaufgaben zum Brückenkurs Mathematik 2018

Technische Universität Dresden, Fakultät Mathematik Prof. Dr. F. Schuricht, Dr. M. Herrich. der Übungsaufgaben zum Brückenkurs Mathematik 2018 Technische Universität Dresden, Fakultät Mathematik Prof. Dr. F. Schuricht, Dr. M. Herrich E R G E B N I S S E der Übungsaufgaben zum Brückenkurs Mathematik 08 Ergebnisse zur. Übung am.09.08 Thema: Logik,

Mehr

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx.

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx. Prof. Dr. H. Brenner Osnabrück WS 23/24 Analysis I Arbeitsblatt 25 Übungsaufgaben Aufgabe 25.. Berechne das bestimmte Integral π x sin x 2 dx. In den folgenden Aufgaben, bei denen es um die Bestimmung

Mehr

Name: Mathematikschularbeit 100 Minuten, 5BS, Gruppe E, Teil 1 Typ-1- und Typ-1-ähnliche Aufgaben (50 Minuten) Punkte

Name: Mathematikschularbeit 100 Minuten, 5BS, Gruppe E, Teil 1 Typ-1- und Typ-1-ähnliche Aufgaben (50 Minuten) Punkte 24 0 0 a Gegeben ist die Zahl 2. N Aufgabenstellung: Kreuzen Sie jene(n) Zahlenbereich(e) an zu dem/denen diese Zahl gehört! Z R C Q 0 b Gegeben sind die Mengen H={x N 4< x 5} und J ={x R 4 < x 5}. Zeichnen

Mehr

Selbsteinschätzungstest

Selbsteinschätzungstest D-MATH ETHZ-Semesterbeginn HS 0 Selbsteinschätzungstest Dieser Test bietet Ihnen die Möglichkeit, Ihre mathematischen Schulkenntnisse abzurufen und zu überprüfen. Die Teilnahme ist freiwillig. Bei jeder

Mehr

Einführung des Integrals. Integralrechnung. Der Hauptsatz. Stammfunktionen. Einführung des Integrals

Einführung des Integrals. Integralrechnung. Der Hauptsatz. Stammfunktionen. Einführung des Integrals Einführung des Integrals 15 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz lächen Mittelwerte Rotationsvolumen Das Integral wird aus einer geometrischen ragestellung hergeleitet:

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Musterlösung Prüfung

Musterlösung Prüfung D-BAUG Analysis I/II Winter 24 Meike Akveld Theo Bühler Musterlösung Prüfung. (a) Bestimmen Sie die reellen Koeffizienten p und q, so dass z = 2 3i eine Lösung der Gleichung z 3 3z 2 + pz + q = ist. Bestimmen

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Darstellungsformen von Funktionen

Darstellungsformen von Funktionen http://www.flickr.com/photos/ishida/1805420435/in/pool-streetlampsoftheworld Darstellungsformen von Funktionen 1 E X f (x) Y Abb. 1: Konzept einer Funktion f (x): Abbildung einer Menge auf die andere Die

Mehr

Kapitel 8 Einführung der Integralrechnung über Flächenmaße

Kapitel 8 Einführung der Integralrechnung über Flächenmaße 8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb

Mehr

Füllen von Rotationskörpern W. B.

Füllen von Rotationskörpern W. B. Füllen von Rotationskörpern W B Inhaltsverzeichnis 1 Einleitung 1 11 Vorwort 1 12 Theoretische Grundlagen 2 2 Füllen von Rotationskörpern 3 21 Theoretische Grundlagen zum Füllvorgang 3 22 Füllfunktionen

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Kursarbeit Nr.1 LK Mathematik NAME :

Kursarbeit Nr.1 LK Mathematik NAME : Kursarbeit Nr.1 LK Mathematik 7. 10. 2004 1. Bestimmen Sie eine Stammfunktion F zur angegebenen Funktion f! a) f :R R, f x =1 1 x 100 b) f :R R, f x =sin 2 x 5 x c) f :R R, f x = x 5 x 3 2 2 x 2 2. Berechnen

Mehr

13 Differentialrechnung für Funktionen mehrerer Veränderlicher

13 Differentialrechnung für Funktionen mehrerer Veränderlicher 3 Differentialrechnung für Funktionen mehrerer Veränderlicher 3. Grundbegriffe Die wesentlichen Unterschiede zwischen den Funktionen mehrerer Veränderlicher und den Funktionen einer Veränderlichen treten

Mehr

Klausur Nr. 2. Produkt- und Kettenregel, Rotationskörper. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 2. Produkt- und Kettenregel, Rotationskörper. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 2 Produkt- und Kettenregel, Rotationskörper Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Zwischenprüfung, Gruppe B Analysis I/II

Zwischenprüfung, Gruppe B Analysis I/II 1.3.217 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort

Mehr

8 5 9 : 8 5 ; 0 85<8. 8 : 8 0 > 1 Der Schnittpunkt mit der x-achse ist? 1 0.

8 5 9 : 8 5 ; 0 85<8. 8 : 8 0 > 1 Der Schnittpunkt mit der x-achse ist? 1 0. Aufgabe M04A1 Gegeben ist die Funktion mit. Ein Teil des Graphen ist abgebildet. a) Geben Sie die maximale Definitionsmenge von und Gleichungen der Asymptoten von an. besitzt einen Schnittpunkt mit der

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 27 Prof. Manfred Einsiedler Übungsblatt. Berechnen Sie das Volumen und der Vase { (x, y, z) R 3 x [ π, 2π], } y 2 + z 2 sin(x) + 2. 2. Berechnen Sie das Volumen und

Mehr

Hörsaalübung 5, Analysis II

Hörsaalübung 5, Analysis II Fachbereich Mathematik der Universität Hamburg Dr.H.P.Kiani Hörsaalübung 5, Analysis II SoSe 8, 4./ 5. Juni Rotationskörper und Kurvenintegrale Die ins Netz gestellten Kopien der Unterlagen sollen nur

Mehr

Mathe GFS. Volumenbestimmung bei Drehkörpern. die bei Rotation um die x-achse entstehen. Marisa Schmidt Kurs M4. am

Mathe GFS. Volumenbestimmung bei Drehkörpern. die bei Rotation um die x-achse entstehen. Marisa Schmidt Kurs M4. am Mathe GFS Marisa Schmidt Kurs M4 am 18.02.2005 Volumenbestimmung bei Drehkörpern. die bei Rotation um die x-achse entstehen Einführune: Das Ziel meiner GFS ist es, darzustelien, wie man das Volumen eines

Mehr

Uneigentliche Integrale

Uneigentliche Integrale Uneigentliche Integrale -E Ma Lubov Vassilevskaya Integrierbarkeit ccvon Funktionen Folgende Gründe können die Integrierbarkeit verhindern: Die Funktion f (x) ist im endlichen Integrationsintervall [a,

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen:

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen: . ANALYSIS Gegeben ist die kubische Parabel f: y = x 3 6x + 8x + a) Die Gerade g: y = k x + berührt die Parabel an der Stelle x = x 0 > 0. Bestimmen Sie den Parameter k. b) Berechnen Sie den Inhalt der

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

Analysis: Extremwertaufgaben Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J1

Analysis: Extremwertaufgaben Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J1 Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com Dezember 05 Teil A: Ganzrationale Funktionen Aufgabe : Gegeben ist die Funktion

Mehr

Klausur zu Maß- und Integrationstheorie

Klausur zu Maß- und Integrationstheorie Mathematisches Institut Universität Leipzig Prof. Dr. Bernd Kirchheim WS 2017/18 6.Februar 2018 Klausur zu Maß- und Integrationstheorie Erlaubte Hilfsmittel: Schreibmaterialien (ohne Kommunikations- oder

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Fachwissen verständlich erklärt Analysis [] Kurvendiskussion Mitternachtsformel / pq-formel Polynomdivision Ableitung / Integration und mehr Kostenlose

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2009 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2009 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

: B * C < D 7,22 4 Satz des Pythagoras 36,12846,0. Das Volumen der Pyramide beträgt 128 '(. 8 ; +,-. * : +,-. 4 ;<=? 7,22 ;<= > 5 E" : E",

: B * C < D 7,22 4 Satz des Pythagoras 36,12846,0. Das Volumen der Pyramide beträgt 128 '(. 8 ; +,-. * : +,-. 4 ;<=? 7,22 ;<= > 5 E : E, 4 Aufgaben im Dokument Aufgabe P1/2010 Ein zusammengesetzter Körper besteht aus einem Zylinder und aufgesetztem Kegel. Aus diesem Körper wird eine Halbkugel herausgearbeitet (siehe Achsenschnitt). 3,0

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr