Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:"

Transkript

1 TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott, V. Prinz Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: a) f(n) + g(n) Ω(f(n)) b) o(f(n)) O(f(n)) c) g(n) O(f(n)) f(n) + g(n) O(f(n)) Beweisen oder widerlegen Sie: d) 4 n O(2 n ) e) 27 2 n + n log 2 n Ω(n) f) n 2 n Θ(1) Lösungsvorschlag 2.1 a) Für c = 1, n 0 = 1 gilt: n n 0 : f(n) cf(n). Da g(n) 0 gilt weiterhin n n 0 : f(n) + g(n) cf(n). Damit existiert ein c > 0 und ein n 0 N mit n n 0 : f(n)+g(n) cf(n). Dies ist aber die Definition von f(n)+g(n) = Ω(f(n)). b) o(f(n)) O(f(n)): Es muss gezeigt werden, dass jede beliebige Funktion h(n) o(f(n)) auch in O(f(n)) liegt: h(n) o(f(n)) c > 0 n 0 N n n 0 : h(n) c f(n) c > 0 n 0 N n n 0 : h(n) c f(n) h(n) O(f(n)) c) g(n) O(f(n)) f(n) + g(n) O(f(n)) : g(n) O(f(n)) c > 0 n 0 N n n 0 : g(n) c f(n) c > 0 n 0 N n n 0 : g(n) + f(n) (c + 1) f(n) c > 0 n 0 N n n 0 : g(n) + f(n) c f(n) (c = c + 1) g(n) + f(n) O(f(n))

2 2 d) 4 n / O(2 n ): Es muss gezeigt werden d.h. ( c > 0 n 0 N n n 0 : 4 n c 2 n ) c > 0 n 0 N n n 0 : 4 n > c 2 n ) Seien c > 0 und n 0 N beliebig (aber fest). Dann folgt für alle n > log 2 c: n > log 2 c 2 n > c 2 n 2 n > c 2 n 4 n > c 2 n c > 0 n 0 N n = max{ log 2 c + 1, n 0 : 4 n > c 2 n ) e) 27 2 n + n log 2 n Ω(n): Mit c = 1 und n 0 = 1 gilt n n 0 : D.h.: 27 2 n + n log 2 n 27 2 n n = c n c > 0 n 0 N n n 0 : 27 2 n + n log 2 n c n f) Wissen von Blatt 1 Aufgabe 1.4 b) 2 2+n O(1) 2 n 2 2+n Ω(1): 2 Mit c n = 1 und n 0 = 2 gilt n n 0 : Somit folgt: 2 2+n 2 n Θ(1) n 2 n = c Aufgabe 2.2 (P) Komplexitätsanalyse Gegeben: Zahlenfolge A[0],..., A[n 1] und eine Zahl x in dieser Folge Algorithmus count(x,a): c = 0 ; for ( i =0; i<n ; i++) i f (A[ i ] == x ) c++; a) Bestimmen Sie die Komplexität dieses Algorithmus im worst case, best case und average case. b) Überlegen Sie sich einen count Algorithmus der auf sortierten Folgen arbeitet und bestimmen Sie die Komplexität im worst case, best case und average case. Vergleichen Sie dies mit den Ergebnissen aus Aufgabenteil a). c) Läßt sich die Komplexität verbessern indem man zunächst sortiert und anschließend den Algorithmus für sortierte Folgen anwendet?

3 3 Lösungsvorschlag 2.2 In dieser Aufgabe ging es darum die Laufzeit verschiedener Algorithmen anzugeben und zwar im besten, schlechtesten und durchschnittlichen Fall. Für die ersten zwei Fälle muss man sich in Abhängigkeit von n (also der Eingabegröße) einen bestimmten Fall überlegen, für den der Algorithmus besonders kurz bzw. besonders lange läuft. Wie dann die Laufzeit abgeschätzt wird, wurde in der Vorlesung an anderen Beispielen gezeigt. Für den average case muss man die durchschnittliche Laufzeit berechnen. D.h., man müsste die Laufzeit für jede mögliche Eingabe, hier A und x, berechnen und deren Summe durch die Anzahl der Möglichkeiten teilen. Dazu betrachten wir alle möglichen Instanzen, mit unterschiedlichem Verhalten des Algorithmus. In Teil b) also z.b. wie oft x in A vorkommt und an welcher Stelle x zum ersten Mal auftritt. Dann wird die Summe über diese Instanzen gebildet und mit ihrer Wahrscheinlichkeit multipliziert. Ist T (I) also die Laufzeit für I, erhalten wir I T (I) p(i) als durchschnittliche Laufzeit (da I p(i) = 1 muss nicht mehr geteilt werden). In den nachfolgenden Algorithmen wurde diese Summe soweit wie möglich reingezogen. Für T (I) O(1) ergibt sich z.b. O( I 1 p(i)) = O(1). Bei diesen Algorithmen muss die Wahrscheinlichkeit der verschiedenen Instanzen nur in den Schleifen genauer betrachtet werden. a) c = 0 ; for ( i =0; i<n ; i++) // O( n i f (A[ i ] == x ) c++; i=0 I T(I)*p(I)) Gesamtlaufzeit: O(1+n 1+1+1) = O(n) für alle Fälle da die Schleife stets vollständig durchlaufen wird und T(I) O(1) für alle Instanzen I. b) c = 0 ; for ( i =0; i<n ; i++) { // O( I i f (A[ i ] == x ) { c++; else { i f ( c > 0) k(i) i=0 T(I)*p(I)) Worst case: Alle Elemente kleiner gleich x = Schleife läuft bis zum Ende = O(n) Best case: Nur erstes Element gleich x = 2 Schleifen Durchläufe = O(1) Average case: Erstes x an Stelle j = j + #x Durchläufe. Da #x fast sicher gleich 1 ist, muss man nur die Position des ersten x unterscheiden. Die Wahrscheinlichkeit für das erste x an Stelle j ist gleich 1/n und somit erhält man für die Schleife: O( n 1 j+1 n (n+1) j=0 ) = O( ) = O( n+1) = O(n) n 2n 2 Dieser Ansatz bring also keine signifikante Verbesserung. c = 0 ; l = 0 ; r = n 1; while ( l <= r ) { // O( I m = ( l+r ) / 2 ; i f (A[m] == x ) { while (A[m] == x ) { // O( I m ; c++; m = ( l+r ) / 2 +1; while (A[m] == x ) { // O( I m++; c++; k(i) i=0 T(I)*p(I)) l(i) j=0 T(I)*p(I)) l (I) j=0 T(I)*p(I))

4 4 i f (A[m] > x ) l = m+1; else r = m 1; Für die inneren Schleifen ergibt sich, wie oben im worst case, l(i) + l (I) = n 1 und im average case l(i) + l (I) = 0. Der innere if-block hat somit einen Aufwand von O(n) (worst case) bzw. O(1) (average case), falls x gefunden ist, und O(1) sonst, da er dann nicht ausgeführt wird. Da der Rest der Schleife unabhängig von der Instanz stets in O(1) ist bestimmt der Aufwand des If-Blocks den Aufwand der gesamten (äußeren) Schleife. Worst case: Alle Elemente gleich x. Man findet x mit einem Schritt, benötigt dann aber 2 n/2 Schritte zum eigentlichen Zählen. Insgesamt: O(1 + 1 n) = O(n) Average case: Analog zur binären Suche in der Vorlesung ist k = log(n) und da der If-Block in O(1) ist erhält man insgesamt: O(log(n) 1 + 1) = O(log(n)) Best case: Man findet x im ersten Schritt (k = 1) und es kommt nur einmal vor. = O(1 + 1) = O(1) Hier erhält man eine verbesserte Schranke für den average case. c) Nein, denn Sortieren hat eine Komplexität von O(n log(n)) die bereits über der Komplexität des Algorithmus für unsortierte Folgen liegt. Auch ein Test auf Sortiertheit benötigt O(n) Schritte. Soll aber ohnehin sortiert werden entstehen keine zusätzlichen Kosten und man kann durch Verwendung des Algorithmus für sortierte Arrays ggf. Laufzeit sparen. Aufgabe 2.3 [5 Punkte] (H) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: a) O(f(n) + g(n)) O(f(n)) + O(g(n)) b) O(f(n)) + O(g(n)) O(f(n) + g(n)) Dabei ist O(f(n)) + O(g(n)) = {h f (n) + h g (n) h f (n) O(f(n)) h g (n) O(g(n)) Beweisen oder widerlegen Sie: c) 4n n O(n 3 ) d) n Ω(n log 2 n) e) 9n + 27n 2 Θ(n) Lösungsvorschlag 2.3 a) O(f(n) + g(n)) O(f(n)) + O(g(n)): Es muss gezeigt werden, dass jede beliebige Funktion h(n) O(f(n) + g(n)) auch

5 5 in O(f(n)) + O(g(n)) liegt, d.h., dass h(n) als Summe von zwei Funktionen h f (n) O(f(n)) und h g (n) O(g(n)) dargestellt werden kann: Außerdem gilt: h(n) O(f(n) + g(n)) c > 0 n 0 N n n 0 : h(n) c f(n) + g(n) c > 0 n 0 N n n 0 : h(n) c g(n) c f(n) c > 0 (h(n) c g(n)) O(f(n)) h(n) = (h(n) c g(n)) + c g(n) und c g(n) O(g(n)). Für die Funktionen h f (n) = h(n) c g(n) und h g (n) = c g(n) gilt: h(n) = h f (n) + h g (n) h f (n) O(f(n)) h g (n) O(g(n)) D.h. h(n) O(f(n)) + O(g(n)) b) O(f(n)) + O(g(n)) O(f(n) + g(n)): Es muss gezeigt werden, dass jede beliebige Funktion h(n) O(f(n)) + O(g(n)) auch in O(f(n) + g(n)) liegt. Dies wird gezeigt, indem aus der Darstellung h f (n) + h g (n) für h(n) (und den Eigenschaften h f (n) O(f(n)) und h g (n) O(g(n))) geeignete c > 0 und n 0 N hergeleitet werden: h(n) O(f(n)) + O(g(n)) h f (n) O(f(n)) h g (n) O(g(n)) : h(n) = h f (n) + h g (n) c f > 0 n f N n n f : h f (n) c f f(n) c g > 0 n g N n n g : h g (n) c g g(n) c f, c g > 0 n f, n g N n max{n f, n g : h f (n) + h g (n) c f f(n) + c g g(n) c = max{c g, c f > 0 n 0 = max{n f, n g N n n 0 : h f (n) + h g (n) c (f(n) + g(n)) h(n) = h f (n) + h g (n) O(f(n) + g(n)) c) 4n n O(n 3 ): Mit c = und n 0 = 1 gilt n n 0 : 4n n 4n n 3 = ( )n 3 = c n 3 D.h.: c > 0 n 0 N n n 0 : 4n n c n 3 d) n / Ω(n log 2 n): Es muss gezeigt werden ( c > 0 n 0 N n n 0 : n c n log 2 n) d.h. c > 0 n 0 N n n 0 : n < c n log 2 n)

6 6 Seien c > 0 und n 0 N beliebig (aber fest). Dann folgt für alle n > 2 1/c : e) 9n + 27n 2 Θ(n): n > 2 1/c log 2 n > 1/c c log 2 n > 1 c n log 2 n > n c > 0 n 0 N n = max{ 2 1/c + 1, n 0 : n < c n log 2 n) 9n + 27n 2 = (9 + 27) n D.h. mit c = und n 0 = 1 gilt für alle n > n 0 sowohl 9n + 27n 2 c n als auch 9n + 27n 2 c n Und damit gilt sowohl 9n + 27n 2 O(n) als auch 9n + 27n 2 Ω(n) Daraus folgt 9n + 27n 2 O(n) Ω(n) = Θ(n) Aufgabe 2.4 [5 Punkte] (H) Komplexitätsanalyse Gegeben: Zahlenfolge A[0],..., A[n 1] Algortihmus insert(a): for ( i =1; i<n ; i++) { x = A[ i ] ; j = i 1 ; while ( j >= 0 && A[ j ] > x ) { A[ j + 1 ] = A[ j ] ; j ; A[ j + 1 ] = x ; a) Geben Sie für obigen Algorithmus Komplexitätsabschätzungen für den best und worst case an. b) Finden Sie für beide Fälle eine Instanz I so dass T(I) in Θ der in Teil a) gefundenen Schranke liegt.

7 7 Lösungsvorschlag 2.4 a) for ( i =1; i<n ; i++) { // n 1 i=1 T(I) x = A[ i ] ; j = i 1 ; while ( j >= 0 && A[ j ] > x ) { // k j=0 T(I ) A[ j + 1 ] = A[ j ] ; j ; A[ j + 1 ] = x ; best case: k = 1 (Schleife wird nie durchlaufen) = O(1) damit äußere Schleife O(n ( (1 + 1) + 1)) = O(3n) = O(n) worst case: Für die innere Schleife gilt immer k = i 1 = O(i 2) für i {1,..., n 1 Für die äußere Schleife ergibt sich also: O( n 1 n(n 1) i=1 ( i + 1)) = O(3 (n 1) + 2 ) O(n 2 ). 2 b) best case: [1, 2, 3,..., n] damit ist für alle i A[i] > A[i 1] und die while-schleife wird nicht betreten. Schlampig: n 1 i=1 ( ) = (n 1) 3 = 3n 6 Schritte worst case: [n, n 1, n 2,..., 1] damit ist für alle i A[i] < A[i 1] und die while-schleife wird durchlaufen bis j = 0 ist. Schlampig: n 1 n (n 1) i=1 (2+2i+1) = (n 1) = 2 n 2 9 Schritte

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen 1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 5 14. Juni 2011 Grundlagen: Algorithmen und Datenstrukturen

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 11 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. November 2014 (O-Notation, Theta, Omega) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n

Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 27.10.2011 stefan.klampfl@tugraz.at 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Informatik I 1. Kapitel. Einführung in Algorithmen und Datenstrukturen. Einführung in Algorithmen. Einführung in Algorithmen.

Informatik I 1. Kapitel. Einführung in Algorithmen und Datenstrukturen. Einführung in Algorithmen. Einführung in Algorithmen. Informatik I 1. Kapitel Rainer Schrader Einführung in Algorithmen und Datenstrukturen Zentrum für Angewandte Informatik Köln 16. Juli 008 1 / 1 / 1 Einführung in Algorithmen Einführung in Algorithmen Gliederung

Mehr

3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen

3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen 3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen Sortierproblem Eingabe: Folge von n natürlichen Zahlen a 1, a 2,, a n, die Folge

Mehr

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte

Mehr

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11 Kapitel 1 Exakte Suche nach einem Wort R. Stiebe: Textalgorithmen, WS 2003/04 11 Überblick Aufgabenstellung Gegeben: Text T Σ, Suchwort Σ mit T = n, = m, Σ = σ Gesucht: alle Vorkommen von in T Es gibt

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Übung: Algorithmen und Datenstrukturen SS 2007

Übung: Algorithmen und Datenstrukturen SS 2007 Übung: Algorithmen und Datenstrukturen SS 2007 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 5 Votierung in der Woche vom 04.06.0708.06.07 Aufgabe 12 Manuelle Sortierung

Mehr

2.3.1 Einleitung Einfache Sortierverfahren Höhere Sortierverfahren Komplexität von Sortierverfahren Spezielle Sortierverfahren

2.3.1 Einleitung Einfache Sortierverfahren Höhere Sortierverfahren Komplexität von Sortierverfahren Spezielle Sortierverfahren 2.3 Sortieren 2.3.1 Einleitung 2.3.2 Einfache Sortierverfahren 2.3.3 Höhere Sortierverfahren 2.3.4 Komplexität von Sortierverfahren 2.3.5 Spezielle Sortierverfahren 1 Selection-Sort Idee: Suche kleinstes

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse

Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Algorithmenanalyse Algorithmen und Datenstrukturen Kapitel 1 Algorithmen & Frank Heitmann heitmann@informatik.uni-hamburg.de 14. Oktober 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/48 Der Sprung ins Wasser...

Mehr

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 13 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Mathematische Grundlagen

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

SOI 2013. Die Schweizer Informatikolympiade

SOI 2013. Die Schweizer Informatikolympiade SOI Die Schweizer Informatikolympiade Lösung SOI Wie schreibe ich eine gute Lösung? Bevor wir die Aufgaben präsentieren, möchten wir dir einige Tipps geben, wie eine gute Lösung für die theoretischen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 1 186.089 VO 3.0 Vorlesungsprüfung 19. Oktober

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 5 Asymptotische Laufzeitkomplexität Definition Regeln Beispiele Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger

Mehr

Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen -

Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen - Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen - 2) Algorithmenanalyse Prof. Dr. Anja Schanzenberger FH Augsburg, Fakultät für Informatik Kontakt: anja.schanzenberger@hs-augsburg.de

Mehr

12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang

12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 12 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne

Mehr

ADS: Algorithmen und Datenstrukturen

ADS: Algorithmen und Datenstrukturen ADS: Algorithmen und Datenstrukturen Akuter Denk-Stau Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.114 Algorithmen und Datenstrukturen 1 UE 2.0 186.099 Programmiertechnik und theoretische

Mehr

Informatik I Komplexität von Algorithmen

Informatik I Komplexität von Algorithmen Leistungsverhalten von Algorithmen Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz

Mehr

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A)

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A) Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

4 Effizienz und Komplexität 3.1 1

4 Effizienz und Komplexität 3.1 1 4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz

Mehr

Allgemeine Hinweise: TECHNISCHE UNIVERSITÄT MÜNCHEN. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift

Allgemeine Hinweise: TECHNISCHE UNIVERSITÄT MÜNCHEN. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 2008/09 Einführung in die Informatik 2 Klausur Prof. Dr. Helmut Seidl, T. M. Gawlitza, S. Pott,

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 11. Übung Verkettete Listen, Sortieren Insertionsort, Mergesort, Radixsort, Quicksort Clemens Lang Übungen zu AuD 19. Januar 2010 Clemens Lang (Übungen zu AuD) Algorithmen

Mehr

Algorithmen und Datenstrukturen 1-1. Seminar -

Algorithmen und Datenstrukturen 1-1. Seminar - Algorithmen und Datenstrukturen 1-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Inhalt der ersten beiden Vorlesungen Algorithmenbegriff Komplexität, Asymptotik

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Klausur Algorithmen und Datenstrukturen

Klausur Algorithmen und Datenstrukturen Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Algorithmen und Datenstrukturen 22.08.2013

Mehr

3. Musterlösung. Problem 1: Heapsort

3. Musterlösung. Problem 1: Heapsort Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 3. Musterlösung Problem : Heapsort ** 2 3 4 5 Algorithmus : Heapsort (A) Eingabe : Array A der Länge n Ausgabe : Aufsteigend

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 4 (7.5.2014) Asymptotische Analyse, Sortieren IV Algorithmen und Komplexität Erfahrungen 1. Übung C++ / Java sind komplett ungewohnt Struktur

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

2. Übungsblatt zu Algorithmen II im WS 2016/2017

2. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Christian Schulz, Dr. Simon Gog Michael Axtmann. Übungsblatt zu Algorithmen II im WS 016/017 Aufgabe

Mehr

Einführung in die Informatik I Kapitel II.3: Sortieren

Einführung in die Informatik I Kapitel II.3: Sortieren 1 Einführung in die Informatik I Kapitel II.3: Sortieren Prof. Dr.-Ing. Marcin Grzegorzek Juniorprofessur für Mustererkennung im Institut für Bildinformatik Department Elektrotechnik und Informatik Fakultät

Mehr

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer

Mehr

Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass

Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass f O g und auch g O f. Wähle zum Beispiel und G. Zachmann Informatik

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26. November 2010

186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26. November 2010 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26.

Mehr

Folge 13 - Quicksort

Folge 13 - Quicksort Für Abiturienten Folge 13 - Quicksort 13.1 Grundprinzip des Quicksort Schritt 1 Gegeben ist ein unsortierter Array von ganzen Zahlen. Ein Element des Arrays wird nun besonders behandelt, es wird nämlich

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Martin Hofmann Sommersemester 2009 1 Überblick über die Vorlesung Was sind Algorithmen, wieso Algorithmen? Ein Algorithmus ist eine genau festgelegte Berechnungsvorschrift,

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

damit hätten wir nach Ende der Schleife: "a[0 n-1] enthält nur Elemente aus a[0 n-1], aber in sortierter Reihenfolge".

damit hätten wir nach Ende der Schleife: a[0 n-1] enthält nur Elemente aus a[0 n-1], aber in sortierter Reihenfolge. Korrektheit Invariante: a[0 k-1] enthält nur Elemente aus a[0 k-1], aber in sortierter Reihenfolge Terminierung: Die Schleife endet mit k=n def insertionsort(a): for k in range( 1, len(a) ): while i >

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Rekursion Rekursion Neue Denkweise Wikipedia: Als Rekursion bezeichnet man den Aufruf

Mehr

Informatik B von Adrian Neumann

Informatik B von Adrian Neumann Musterlösung zum 7. Aufgabenblatt vom Montag, den 25. Mai 2009 zur Vorlesung Informatik B von Adrian Neumann 1. Java I Schreiben Sie ein Java Programm, das alle positiven ganzen Zahlen 0 < a < b < 1000

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Klausur Theoretische Informatik I WS 2004/2005

Klausur Theoretische Informatik I WS 2004/2005 Technische Universität Chemnitz Chemnitz, den 22.02.2005 Fakultät für Informatik Prof. Dr. Andreas Goerdt Klausur Theoretische Informatik I WS 2004/2005 Studiengang Mechatronik Aufgabe 1 (2+2+2 Punkte)

Mehr

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2015/2016 Teil I

Mehr

Datenstrukturen, Algorithmen und Programmierung 2

Datenstrukturen, Algorithmen und Programmierung 2 Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1. VO SS 2009 14. April 2009 Petra Mutzel Kurzvorstellung

Mehr

Asymptotische Laufzeitanalyse: Beispiel

Asymptotische Laufzeitanalyse: Beispiel Asyptotische Laufzeitanalyse: n = length( A ) A[j] = x GZ Algorithen u. Datenstrukturen 1 31.10.2013 Asyptotische Laufzeitanalyse: n = length( A ) A[j] = x GZ Algorithen u. Datenstrukturen 2 31.10.2013

Mehr

Klausur Algorithmen und Datenstrukturen II 10. August 2015

Klausur Algorithmen und Datenstrukturen II 10. August 2015 Technische Universität Braunschweig Sommersemester 2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Überblick. 1 Vorbemerkungen. 2 Algorithmen. 3 Eigenschaften von Algorithmen. 4 Historischer Überblick. Einführung

Überblick. 1 Vorbemerkungen. 2 Algorithmen. 3 Eigenschaften von Algorithmen. 4 Historischer Überblick. Einführung Teil I Einführung Überblick 1 Vorbemerkungen 2 Algorithmen 3 4 Historischer Überblick Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 1 1 Vorbemerkungen Was ist Informatik? Informatik

Mehr

Natürliche Zahlen, Summen und Summenformeln

Natürliche Zahlen, Summen und Summenformeln Vorlesung Natürliche Zahlen, Summen und Summenformeln.1 Die natürlichen Zahlen Die natürlichen Zahlen sind diejenigen Zahlen mit denen wir zählen 0,1,,3,... Es gibt unendlich viele und wir schreiben kurz

Mehr

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum:

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum: Berufsakademie Stuttgart / Außenstelle Horb Studienbereich Technik Studiengang Informationstechnik Kurs IT2006, 2.Semester Dozent: Olaf Herden Student: Alexander Carls Matrikelnummer: 166270 Aufgabe: Beschreibung

Mehr

1. Übungsblatt zu Algorithmen II im WS 2011/2012

1. Übungsblatt zu Algorithmen II im WS 2011/2012 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Moritz Kobitzsch, Dennis Schieferdecker. Übungsblatt zu Algorithmen II im WS 0/0 http://algo.iti.kit.edu/algorithmenii.php

Mehr

Quicksort ist ein Divide-and-Conquer-Verfahren.

Quicksort ist ein Divide-and-Conquer-Verfahren. . Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Fibonacci-Suche. Informatik I. Fibonacci-Suche. Fibonacci-Suche. Einführung. Rainer Schrader. 24. Mai 2005

Fibonacci-Suche. Informatik I. Fibonacci-Suche. Fibonacci-Suche. Einführung. Rainer Schrader. 24. Mai 2005 Fibonacci-Suche Informatik I Einführung Rainer Schrader Zentrum für Angewandte Informatik Köln 4. Mai 005 Grundidee wie bei der Binärsuche, aber andere Aufteilung Fibonacci-Zahlen: F 0 = 0 F 1 = 1 F m

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

Grundlagen Algorithmen und Datenstrukturen Kapitel 13

Grundlagen Algorithmen und Datenstrukturen Kapitel 13 Grundlagen Algorithmen und Datenstrukturen Kapitel 13 Christian Scheideler + Helmut Seidl SS 2009 18.07.09 Kapitel 6 1 Speicherverwaltung Drei Ansätze: Allokiere neue Objekte auf einem Keller. Gib nie

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (25 Sortieren vorsortierter Daten)

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (25 Sortieren vorsortierter Daten) Vorlesung Informatik 2 Algorithmen und Datenstrukturen (25 Sortieren vorsortierter Daten) 1 Untere Schranke für allgemeine Sortierverfahren Satz Zum Sortieren einer Folge von n Schlüsseln mit einem allgemeinen

Mehr

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren . Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen

Mehr

Datenstrukturen und SS Robert Elsässer

Datenstrukturen und SS Robert Elsässer Datenstrukturen und Algorithmen Robert Elsässer Organisatorisches Vorlesung: Mo 11:15-12:45 Audimax Fr 11:15-12:45 Raum G Zentralübung: Do 13:00 13:45 Raum G Beginn: nächste Woche Übungen: Beginn: nächste

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Suchen in Datenmengen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Suchen und Sortieren

Suchen und Sortieren Suchen und Sortieren Suchen Sortieren Mischen Zeitmessungen Bewertung von Sortier-Verfahren Seite 1 Suchverfahren Begriffe Suchen = Bestimmen der Position (Adresse) eines Wertes in einer Datenfolge Sequentielles

Mehr

Algorithmen und Datenstrukturen 1-3. Seminar -

Algorithmen und Datenstrukturen 1-3. Seminar - Algorithmen und Datenstrukturen 1-3. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Outline Spezielle Listen: Stacks, Queues Sortierverfahren 3. Übungsserie Wiederholung:

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen...

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen... Suchen und Sortieren In diesem Kapitel behandeln wir Algorithmen zum Suchen und Sortieren Inhalt 1. Grundlagen... 2 2. Sortieren... 6 1.1. Vertauschen... 13 1.2. Selektion... 16 1.3. Einfügen... 19 1.4.

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs

Mehr

Grundlagen der Algorithmen und Datenstrukturen

Grundlagen der Algorithmen und Datenstrukturen Grundlagen der Algorithmen und Datenstrukturen Christian Scheideler + Helmut Seidl SS 2009 01.04.09 Kapitel 0 1 Vorlesung: Organisatorisches Di 12:00 13:30 MI HS 1 Do 12:00 12:45 MI HS 1 Übungen: 34 Alternativen

Mehr

Übung Datenstrukturen. Sortieren

Übung Datenstrukturen. Sortieren Übung Datenstrukturen Sortieren Aufgabe 1 Gegeben sei nebenstehender Sortieralgorithmus für ein Feld a[] ganzer Zahlen mit N Elementen: a) Um welches Sortierverfahren handelt es sich? b) Geben Sie möglichst

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 202/3 24. Vorlesung Amortisierte Analyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Hash-Tabellen Frage: Ziel: Problem: Lösung: Wie groß macht man

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Ziel Angabe der Effizienz eines Algorithmus unabhängig von Rechner, Programmiersprache, Compiler. Page 1 Eingabegröße n n Integer, charakterisiert die Größe einer Eingabe, die

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:

Mehr

Amortisierte Analysen

Amortisierte Analysen Amortisierte Analysen 26. Mai 2016 1 Einleitung Es gibt viele Datenstrukturen, bei deren Komplexitätsanalyse das Problem auftaucht, dass die Ausführung mancher Operationen Einfluss auf die Komplexität

Mehr