19. Amortisierte Analyse

Größe: px
Ab Seite anzeigen:

Download "19. Amortisierte Analyse"

Transkript

1 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe. Erhalte da, we vel Zet m Durchschtt jede Operato der Folge beötgt. Lere dre verschedee Methode für amortserte Aalyse kee. Datestrukture ud Algorthme 9.Amortserte Aalyse

2 Amortserte Aalyse (2) Durchschtt beruht cht auf Wahrschelchkete, soder st durchschttlche Laufzet m schlmmste Fall: I jeder Folge vo Operatoe beötgt ee ezele Operato m Durchschtt cht mehr Zet. Amortserte Aalyse lefert häufg realstsche Abschätzuge. Habe des berets be Uo-Fd gesehe. Lere dre verschedee Methode für amortserte Aalyse kee. Datestrukture ud Algorthme 9.Amortserte Aalyse 2

3 Amortserte Aalyse durch Zusammefassug Amortserte Aalyse durch Zusammefassug efachste Methode zur amortserte Aalyse. Beruht auf der Beobachtug, dass eer Folge vo Operatoe häufg cht jede Operatoe hre worstcase Laufzet beötgt. Habe deses be Uo-Fd gesehe. Be Operatoe Uo-Fd-Datestruktur köe de Uo-Operatoe ur Zet O( log()) ud cht Zet O(²) beötge, obwohl m worst-case jede Uo- Operato Zet O() beötgt. Datestrukture ud Algorthme 9.Amortserte Aalyse 3

4 Mult-Stack-Operatoe Push. 2. ( S,x) top[ S] top[ S] S[ top[ S ] x + Pop. f ( S) Stack Empty the error "uderflow" else top S retur [ ] top[ S] S[ top[ S] + ] ( S,k) Mult - Pop. whle Stack st cht 2. do Pop[ S] 3. k k - leer ud k 0 Datestrukture ud Algorthme 9.Amortserte Aalyse 4

5 Aalyse Mult-Stack Laufzet vo Push ud Pop m worst-case O(). Laufzet vo Mult-Pop be Stack mt s Elemete m worst-case O(m(s,k)). Worst-case Laufzet vo Push-, Pop- oder Mult-Pop- Operatoe zusamme O(²). Aalyse korrekt, aber cht präzse. Datestrukture ud Algorthme 9.Amortserte Aalyse 5

6 Amortserte Aalyse Mult-Stack Jedes Objekt ka ur da a Pop- oder Mult-Pop- Operato betelgt se, we es vorher a Push- Operato betelgt war. Isgesamt st de Azahl der Pop-Operatoe damt O(). Erhalte als Laufzet für Operatoe O(). Datestrukture ud Algorthme 9.Amortserte Aalyse 6

7 Implemeterug ees Zählers Wolle k-bt Zähler mplemetere, der be 0 begt zu zähle. Realsere Zähler durch e k-elemetges Array A[0..k- ] vo Bts. Nedrgstes Bt A[0] ud höchstes Bt A[k-] gespechert. Array stellt damt zu jedem Zetpukt Zahl dar. x k 0 [] A 2 Datestrukture ud Algorthme 9.Amortserte Aalyse 7

8 Erhöhe ees Zählers ( A) Ikremet 2 whle < legth 3 do A[] f < legth 6 the A [ A] [ ] [ A] A[] 0 Ikremet Laufzet Laufzet A erhöht vo Ikremet Zähler vo Ikremet um modulo 2 A :O(Azahl geflppter Bts) O(k) - Operatoe : O(k) k... Aalyse korrekt, aber sehr ugeau. Datestrukture ud Algorthme 9.Amortserte Aalyse 8

9 Bespel für Zähler Zählerwert A[7] A[6] A[5] A[4] A[3] A[2] A[] A[0] Datestrukture ud Algorthme 9.Amortserte Aalyse Koste sgesamt 9

10 Amortserte Aalyse des Zählers Lemma 9.: Begt e Zähler be 0 ud werde Ikremets durchgeführt, so wrd das Bt A[] geau / 2 -mal geflppt. Korollar 9.2: Be Ikremets werde sgesamt höchstes 2 Btflps durchgeführt. Bewes: k < Datestrukture ud Algorthme 9.Amortserte Aalyse 0

11 Buchhaltugsmethode Bereche für jede Operato amortserte Koste ĉ. Amortserte Koste köe größer se als als de egetlche Koste eer Operato (Laufzet). Dese Überschuss köe wr utze für Operatoe, dere amortserte Koste kleer sd als hre egetlche Koste. Bezeche mt c, ĉ Koste bzw. amortserte Koste der -te Operato. Glt da ĉ so st de Summe der amortserte Koste ee obere Schrake für de Laufzet. c, Datestrukture ud Algorthme 9.Amortserte Aalyse

12 Buchhaltugsmethode be Stacks ud Zähler Be Stacks setze wr für ee Push-Operato de amortserte Koste auf 2. De Operatoe Pop ud Multpop erhalte amortserte Koste 0. Be Zähler sd de amortserte Koste der Flps vo 0 auf auf 2 gesetzt. Für de Flp vo auf 0 sd de amortserte Koste 0. I bede Fälle glt ĉ c I bede Fälle erhalte wr O() als worst-case Laufzet für ee Folge vo Operatoe. Datestrukture ud Algorthme 9.Amortserte Aalyse 2

13 Potetalmethode () We be der Buchhaltugsmethode werde Koste m voraus bezahlt. De m Voraus bezahlte Koste sd m so geate Potetal eer Datestruktur gesammelt. Se sd cht ezele Operatoe zugeordet. Bezeche mt c Koste der -te Operato. D bezechet Datestruktur ach der -te Operato. Potetal Φ gegebe durch Fukto de jedem reelle Zahl Φ ( D ) zuordet. D ee Amortserte Koste der -te Operato gegebe durch ( ) Φ( D ). ĉ c + Φ D Datestrukture ud Algorthme 9.Amortserte Aalyse 3

14 Potetalmethode (2) Für de Summe der amortserte Koste glt ĉ (c + Φ(D ) Φ(D )) c + Φ(D ) Φ(D 0 ) Damt de Summe der amortserte Koste ee obere Schrake für de Gesamtlaufzet st, muss für alle gelte Φ(D ) Φ(D0 ) Datestrukture ud Algorthme 9.Amortserte Aalyse 4

15 Potetalmethode ud Stacks () Ist D Stack ach Operatoe ud ethält Stack zu desem Zetpukt s Elemete, so setze wr Φ(D ) Da e Stack e ee egatve Azahl vo Elemete ethalte ka, glt für alle Φ(D ) Φ(D0 ). Amortserte Koste für Pop ud Mult-Pop jewels 0. Ist -te Operato e Push, so glt s. (D ) Φ(D ) (s + ) s + Φ. Datestrukture ud Algorthme 9.Amortserte Aalyse 5

16 Potetalmethode ud Stacks (2) Damt sd amortserte Koste für e Push gegebe durch c + Φ(D ) Φ(D ) + ĉ Gesamtlaufzet für Operato damt O(). 2. Datestrukture ud Algorthme 9.Amortserte Aalyse 6

17 Potetalmethode ud Zähler () D Ist Zähler ach Operatoe ud ethält Zähler zu desem Zetpukt Ese, so setze wr Φ(D ) b. b -te Operato setze t Ese zurück auf 0. Da glt b b t. + Weter glt da für alle : Φ(D ) Φ(D0 ). Amortserte Koste der -te Operato u gegebe durch ĉ c + Φ( D ) Φ( D ) ( t + ) + ( t ) 2. Datestrukture ud Algorthme 9.Amortserte Aalyse 7

18 Potetalmethode ud Zähler (2) b b 2 b b 2 ) Φ(D ) Φ(D ĉ c Für Gesamtlaufzet erhalte wr: Datestrukture ud Algorthme 9.Amortserte Aalyse 8

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

7/7/06. Formulierung mittels Dynamischer Programmierung. Berechnungsbeispiel. Gewinnung der optimalen Reihenfolge

7/7/06. Formulierung mittels Dynamischer Programmierung. Berechnungsbeispiel. Gewinnung der optimalen Reihenfolge Formulerug mttels Dyamscher Programmerug Berechugsbespel Beobachtug: de Azahl der Telprobleme A j mt j st ur Folgerug: der aïve rekursve Algo berechet vele Telprobleme mehrfach! Idee: Bottom-up-Berechug

Mehr

Physikalisch-Technische Bundesanstalt, Braunschweig

Physikalisch-Technische Bundesanstalt, Braunschweig Üerscht üer essuscherhetserechuge vo der Darstellug der Ehet des Drehmometes üer de Wetergae s h zur Aedug ud Bespel eer Ope-ource-Aedug dafür Drk Röske Physkalsch-Techsche Budesastalt, Brauscheg Darstellug

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

Preisindex. und. Mengenindex

Preisindex. und. Mengenindex Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk resdex ud Megedex Übuge Aufgabe ösuge www.f-lere.de resdex 1 De Etwcklug der rese wrd der Öffetlchket

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar.

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar. Hochschle Frtwage Uversty Sommersemester 0 Fakltät Dgtale Mede Mathematk Prof. Dr. Thomas Scheder Mede d Iformatk Übgsblatt. Elemetares Reche mt komplexe Zahle Es se w= +. a) Blde Se de komplex Kojgerte

Mehr

Tilgungsrechnung 2. Bearbeitet von Martin Kubsch. 12.01.2005 Tilgungsrechnung 2 1. Formelsammlung. Jahres-, Quartals,- Halbjahres oder Monatsrechnung

Tilgungsrechnung 2. Bearbeitet von Martin Kubsch. 12.01.2005 Tilgungsrechnung 2 1. Formelsammlung. Jahres-, Quartals,- Halbjahres oder Monatsrechnung Tlgugsrechug Bearbetet vo Mart Kubsch.0.00 Tlgugsrechug Formelsammlug Uterjährge Tlgug a) m r = m z Azahl glech Jahres-, Quartals,- Halbjahres oder Moatsrechug b) m z > m r (mehr Zs- als Tlgugsperode)

Mehr

Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE)

Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE) Stoffwerte vo Flüssgkete Oberflächespaug (PHYWE) Zel des Versuches st, de Platzbedarf ees Ethaol-Moleküls der Grezfläche zwsche Dapfphase ud Lösug aus der Kozetratosabhäggket der Oberflächespaug be wässrge

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

BANK ONLINE Zentraler Bankdaten-Transfer

BANK ONLINE Zentraler Bankdaten-Transfer BANK ONLINE Zetraler Bakdate-Trasfer Ihaltsverzechs 1 Lestugsbeschrebug... 3 2 Itegrato das Ageda-System... 4 3 Hghlghts... 5 3.1 Efachste Aktverug... 5 3.2 Abruf vo Kotoauszüge... 6 3.3 Bakeübergrefede

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung Zu Proble urjährger Zse ud Zahluge der Zsessrechug Gewöhlch geht a der Zsessrechug davo aus, dass de Zse ach ee Jahr de Kapl ugeschlage werde ud da weder Zse trage. Der Zssat, t de das Kapl ultplert wrd,

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

EINLEITUNG, FEHLERRECHNUNG

EINLEITUNG, FEHLERRECHNUNG Eletug FEHLERRECHNUNG ohe Dfferetalrechug 04.05.006 Blatt 1 EINLEITUNG, FEHLERRECHNUNG Aufgabe des physkalsche Praktkums st es, dem Studerede de Physk durch das Expermet äher zu brge, h mt der Methode

Mehr

IV. VERSICHERUNGSUNTERNEHMUNG

IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG Vers.-Oek.Tel-I-Ka-IV--5 Dr. Rurecht Wtzel; HS 09.0.009 IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG. Überblck ) I desem Katel wede wr us der Aalyse der Verscherugsuterehmug

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

1.2.2 Prozentrechnung

1.2.2 Prozentrechnung .2. Verhältsglechuge, Produktglechuge Ee Awedug vo leare Glechuge sd Verhälts- ud Produktglechuge Be Verhältsglechuge st das Verhälts zwsche zwe Varable kostat, z.b. hergestellte Stückzahl zu beötgter

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

Eine einfache Formel für den Flächeninhalt von Polygonen

Eine einfache Formel für den Flächeninhalt von Polygonen Ee efache Formel für de Flächehalt vo Polygoe Peter Beder Set ege Jahre hat der Mathematkddaktk de sogeate emprsche Uterrchtsforschug mt quattatve ud qualtatve Methode Kojuktur, währed stoffddaktsche Arbete

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Short Listing für multikriterielle Job-Shop Scheduling-Probleme

Short Listing für multikriterielle Job-Shop Scheduling-Probleme Short Lstg für ultkrterelle Job-Shop Schedulg-Problee Dr. Adré Heg, r.z.w.-cdata AG, Zu Hosptalgrabe 2, 99425 Wear, adre.heg@rzw.de 1. Multkrterelle Job-Shop Schedulg-Problee Das Job-Shop Schedulg-Proble,

Mehr

Ralf Korn. Elementare Finanzmathematik

Ralf Korn. Elementare Finanzmathematik Ralf Kor Elemetare Fazmathematk Ihaltsverzechs. Eletug Exkurs : Akte Begrffe, Grudlage ud Geschchte. We modellert ma Aktekurse? 4. Edlche E-Perode-Modelle 6. Edlche Mehr-Perode-Modelle 3.3 Das Black-Scholes-Modell

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

Klausur Betriebswirtschaftslehre PM/B

Klausur Betriebswirtschaftslehre PM/B Isttut für Fazwrtschaft, Bake ud Verscheruge, Karlsruher Isttut für Techologe Klausur Betrebswrtschaftslehre PM/B Achtug: Ihalte der Vorlesug köe Zukuft ggf. cht mehr kosstet mt de Ihalte deser Klausur

Mehr

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N . Charakterserug vo Polymere. moodsperse polydsperse cytochrom c Ege Bopolymere (Ezyme) habe ur ee ehetlche olekülgröße. moodsperse mometa st kee Polymersatosmethode verfügbar, de Polymere mt eer ehetlche

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten: FH Wedel Prof. Dr. Sebasta Iwaows D5 Fole Dsrete athemat Sebasta Iwaows FH Wedel ap.5: ombator Refereze zum Nacharbete: Lag 5. 5. 7. (Bsp. 4) Beutelspacher 4 (außer Fxpute vo Permutatoe) eel 8 Hacheberger

Mehr

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6 Ihalt: Efaktorelle Varazaalyse Bortz: Bortz Kap. 7.0-7. Übug Statstk II SS 006 Musterlösug rbetsblatt 6 ufgabe 1: Nee Se de Verfahre für Mttelwertsvergleche, de Se bsher für tervallskalerte Date kee gelert

Mehr

Datenstrukturen und Algorithmen. Grundlagen, Basisalgorithmen und Lösungsstrategien für sequentielle und parallele Algorithmen.

Datenstrukturen und Algorithmen. Grundlagen, Basisalgorithmen und Lösungsstrategien für sequentielle und parallele Algorithmen. 3. Jahrgag, Heft 3, Oktober 03, ISSN 0939-88 FIAL Datestrukture ud Algorthme Grudlage, Bassalgorthme ud Lösugsstratege für sequetelle ud parallele Algorthme Ulrch Hoffma Techcal Reports ad Workg Papers

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Uverstät Lepzg Isttut für Iforatk Dr. Moka Meler Ihalt Zahle ud hre Darstellug... -. Addtossystee... -. Postossystee... -.3 Dezal- ud Dualsyste... -3.3. Dezalsyste... -3.3. Dualsyste... -4.4 Wetere Bespele

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen We gelgt es de Buchacher (oder FdJ IMMER zu gewe Eletug Schrebwese ud Varable Erwarteter Gew des Buchachers 4 4 De Stratege der Buchacher 5 4 Der ehrlche Buchacher 6 4 "real lfe" Buchacher6 4 La FdJ 9

Mehr

Software-Partner-Itzehoe-GmbH

Software-Partner-Itzehoe-GmbH oftware-parter-itehoe-gmbh ehr geehrter Kude, sehr geehrter Iteresset, das achfolged dargestellte Dokumet st ledglch e espel für de Darstellug der erechug ach der Rchtle DI 077. Her hadelt es sch um e

Mehr

Diskussionspapiere der WHL Wissenschaftlichen Hochschule Lahr. http://www.whl-lahr.de/diskussionspapiere. Verfasser: Tristan Nguyen und Karsten Rohlf*

Diskussionspapiere der WHL Wissenschaftlichen Hochschule Lahr. http://www.whl-lahr.de/diskussionspapiere. Verfasser: Tristan Nguyen und Karsten Rohlf* skussospapere der WHL Wsseschaftlche Hochschule Lahr http://wwwwhl-lahrde/dskussospapere Verfasser: Trsta Nguye ud Karste Rohlf* Herausgeber: WHL Wsseschaftlche Hochschule Lahr Hohbergweg 15 17-77933 Lahr

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

Physikalische Chemie T Fos

Physikalische Chemie T Fos Physkalsche Cheme T Fos ISCHPHSEN.... ZUSENSETZUNG VO ISCHPHSEN.... EXTENSIVE - UND INTENSIVE GRÖßEN... 4.. Partelles olvolume V m... 7.3 DS ROULTSCHE GESETZ... 0.4 KOLLIGTIVE EIGENSCHFTEN....4. De Sedeuktserhöhug...

Mehr

Fernstudium. Technische Thermodynamik Teil: Energielehre

Fernstudium. Technische Thermodynamik Teil: Energielehre Fakultät Maschewese Isttut für Eergetechk, Professur für Techsche Therodyak Ferstudu Techsche Therodyak Tel: Eergelehre Prof. Dr. C. Bretkopf Wterseester 2012/13 Adstratves Techsche Therodyak Eergelehre

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

2 Integrierte Sicherheitstechnik

2 Integrierte Sicherheitstechnik Iegrere Scherhesechk Scherhesechsche Archekur o MOISAFE UCS..B 2 2 Iegrere Scherhesechk De acholged beschrebee Scherhesechk des MOISAFE UCS..B erüll olgede Scherhesaorderuge: Kaegore 4 ud erorace Leel

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 0.00 Harry Zgel 99-006, EMal: HZgel@aol.com, Iteret:

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1 Ivesttosetscheduge m Mult-Chael-Customer-Relatoshp Maagemet Has Ulrch Buhl, Na Kreyer, Na Schroeder Lehrstuhl für Betrebswrtschaftslehre, Wrtschaftsformatk & Facal Egeerg Kerkompetezzetrum Iformatostechologe

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Fomelsammlug tschaftsmathemat / Statst Fomelsammlug fü de Lehveastaltug tschaftsmathemat / Statst zugelasse fü de Klausue zu tschaftsmathemat ud Statst de Studegäge de Techsche Betebswtschaft Veso vom

Mehr

Amortisierte Laufzeitanalyse

Amortisierte Laufzeitanalyse Paris-Lodron Universität Salzburg 24 Januar, 2014 Inhaltsverzeichnis 1 Einführung Definition Beispiel:Stapeloperationen Beispiel: Binärzähler (1/2) Beispiel: Binärzähler (2/2) 2 Analyse der Stack mittels

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr