Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 5. Musterlösung zum Aufgabenblatt vom

Größe: px
Ab Seite anzeigen:

Download "Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 5. Musterlösung zum Aufgabenblatt vom"

Transkript

1 Lösun 5 Musterlösun zum Aufabenblatt vom Zentrifuation 1. Der Sedimentationskoeffizient analo zu Übun 4 Aufabe 3.4 berechnet werden: v ω 2 rs dr ω 2 rs dt r2 1 r 1 r dr ω2 s t2 t 1 dt ln r 2 r 1 ω 2 s t 2 t 1 1 r 2 r 1 e ω2 s t 2 t 1 s ln r 2/r 1 2πν 2 t 2 t 1 s ln r 2/r 1 ω 2 2 t 2 t 1 ln 60 mm 55 mm 2π /60 s s 100 s s 3 2. Zwischen dem Reibunskoeffizienten f und dem Diffusionskoeffienten D existiert die Stokes-Einstein-Beziehun f k BT 4 D Da die Proteine kuelförmi sind, ilt für den Reibunskoeffizienten f das Stokessche Gesetz: f 6πηr 5 Durch Einsetzen von Gleichun 5 in Gleichun 4 erhält man schliesslich 6πηr k BT D r k BT 6πηD J K 292 K 6π k m s m 2 s m 25.3 nm 7 Damit ilt für das olumen des Proteins: 4 3 πr3 4 3 π m m

2 3. Die Masse des Proteins erhält man nun aus deartielle spezifische olumen des Proteins zu M P Ṽ p N A m m 3 k k MDa 9 mol mol 4. Den Sedimentationskoeffizienten berechnet man abermals analo zu Übun 4 Aufabe 3.2 zu: s m w f Mit M p N A, N A m w N A ρ w ρ N A erhält man: N A N A m w N A f N A f RT D ρm p Ṽ p und 10 s D RT M p1 Ṽp ρ 11 M p s R T D1 Ṽp ρ J s K mol 292 K m 2 dm3 k s k 1.05 dm 3 Wie man sieht stimmen die Massen sehr ut überein k 51 MDa mol 5. Wenn das Protein dimerisiert, ändert sich i die molare Masse M p und ii der Diffusionskoeffizient D das partielle spezifische olumen Ṽp bleibt laut Aufabenstellun konstant. Für die molare Masse des Dimers ilt: 12 M p Dimer 2 M p Monomer. 13 Man macht die Abschätzun Dimer 2 Monomer und benutzt Gleichun 8 zur Berechnun der Kuelvolumina: 4 3 πr3 Dimer πr3 Monomer rdimer 3 2 rmonomer 3 14 r Dimer 3 2 r Monomer. Aus Gleichun 7 folt, dass der Radius r zum Diffusionskoeffizienten D umekehrt proportional ist r 1 D. Follich ilt: D Dimer D Monomer. 15 2

3 Die efundenen Zusammenhäne für die molare Masse und den Diffusionskoeffizienten setzt man nun in Gleichun 11 ein: s Dimer M pdimerd Dimer 1 Ṽp ρ RT M p MonomerD Monomer 1 Ṽp ρ RT 2 M pmonomer D Monomer 1 Ṽp ρ 3 2 RT smonomer 1.59 s Monomer. Durch erleich mit Gleichun 2 sieht man, dass das Dimer aufrund des rösseren Sedimentationskoeffizienten schneller als das Monomer sedimentieren wird, es wird also eine kürzere Zeit dauern. 2 Diffusion eines Membranproteins in einer Membran 1. Da der Quotient K η ρt für ein eebenes Ostwald-iskosimeter für jedes Lösunsmittel konstant ist, kann man die iskosität von H 2 O berechne: η H2 O Kρt 16 9 m2 k s2 m s k m s Die iskosität der Lipidlösun berechnet sich entsprechend zu η Lipid Kρt m2 2 k k 1100 s2 m s m s 2. a Ein typisches Lipid besteht aus zwei lanen unverzweiten esättit Kohlenstoffkette hydrophob und zwei polaren Endruppe z.b. Carboxylruppe; hydrophil sowie einem Phosphorylcholin insesamt also aus drei Teilen: Fettsäuren, Glycerin und Phosphorylcholin. Typische C-C Bindunslänen sind d CC 1.5 Å wodurch im wesentlichen die Läne des Lipids festelet ist. Der Bindunswinkel zwischen zwei Kohlenstoffbindunen beträt etwa 109. Die Masse eines typischen Lipids hänt im wesentlichen von der Anzahl Kohlenstoffatome ab unesättite erbindunen unterscheiden sich durch fehlende Wasserstoffatome was nur einen erinen Einfluss hat - ein typischer Wert ist 20 x C. Eine typische Masse wäre daher m Lipid H + C + 10 C + 8 O + 20 H + P + N u + 12 u u u + 20 u + 31 u + 14 u 828 u k 18 3

4 und eine Läne L , A cos35 26 A wobei nur der Fettsäureteil berücksichtit wurde. Schätzt man noch den Rest ab, erhält man L 26 A A 36.5 A Da das Lipid eine zylinderförmie Gestalt hat muss man auch den Radius bzw. den Durchmesser abschätzen. Letzterer ist in durch etwa 4 Bindunen eeben womit man also d A 6 A bzw. r 3 A erhält. Abbildun 1: Struktur von Lecithin siehe dazu Skript S. 41 b Wichtie Aspekte und Arumente für diese Aufabe finden Sie im Skript im Kapitel "Diffusion & iskosität von Flüssikeiten" S. 22 f. Um die iskosität zu brechnen nehmen wir die Formel für ein ideales Gas ohne Wechselwirkunen l. Skript S. 19 wobei sich bei einer enaueren Betrachtun des Problems ähnliche Parameterabhänhikeiten ereben. Damit berechnet sich das erhältnis der iskosität einer Lipidlösun Membran relativ zur iskosität von H 2 O zu η v m 3σ 19 wobei m die Masse des Teilchens Träheit, v die Geschwindikeit und σ der Stossquerschnitt ist zu η Lipid η H2 O v Lipid m Lipid 3 σ Lipid v H2 O m H2 O 3 σ H2 O 20 Die Geschwindikeit der Teilchen eribt sich aus der Enerieerhaltun siehe Skript S.23 was emäss Feynman auch in Flüssikeiten ilt zu 1 2 mv2 3 2 kt und damit v mh2 O Lipid/v H2 O m Lipid. 4

5 Einsetzen in die Formel eribt η Lipid η H2 O v Lipid v H2 O mlipidσ H2 O σ Lipid m H2 O mlipid m H2 O rh 2 O 828 u r Lipid 18 u mh2 O mlipid4πr H2 O m Lipid m H2 O4πr Lipid 1 A /2 A Hier wurde die Beziehun σ πr 2 benutzt, wie sie im Kapitel I.3.2 hereleitet wurde. Der Radius von H 2 O wurde mit r H2 O 1 Å anesetzt. Experimentell findet man aus Aufabenteil 1: η Lipid η H2 O k m s k m s c Das verwendete Modell ist zu primitiv was nicht nur eometrisch bedint ist. So werden beispielsweise Wechselwirkunen vernachlässit H - Brücken in Wasser, hydrophobe Wechselwirkunen an-der-waals im Lipid. 3. Gemäss der Stokes-Einstein Gleichun ilt: D kt 6πηr. Damit ist der Diffusionskoeffizient umekehrt proportional zur iskosität und dem Radius D 1 η r. Aus Aufabenteil 2.b wissen wir, dass η Lipid «2 36.5/2 A 1 A « und damit D H 2 O D Lipid η k m s H2 O k m s sowie r Lipid r H2 O Somit ist die Diffussion eines Proteins in Wasser etwa mal schneller als in einer Membran. 4. Die hier skizzierte Herleitun bezieht sich auf das Kapitel I.3.3 im Skript. Die ezeiten Schritte eben die wichtisten Punkte wieder. Wir wollen die resultierende Flussdichet Φ einer Substanz bestimmen, die von molekularen Beweunen erzeut wird. Dazu betrachten wir erst einmal den Fluss entlan x. Um die Flussdichte zu erhalten betrachten wir eine Fläche bei x0. Alle Teilchen, die diese Fläche in einer Zeit τ in positiver Richtun durchqueren werden positiv ezählt, alle in neativer Richtun davon abezoen. Die Anzahl ist dabei eeben durch die Mene der Teilchen Z, die sich in einem Intervall τ innerhalb der Strecke v τ λ vor der Fläche befinden hier nimmt man an, dass sich die Teilchen alle in x-richtun beween. Innerhalb von λ stossen sie auch nicht. Nur diese können in der Zeit τ durch die Fläche flieen alle andern sind zu weit we bzw. sind zu lansam. Somit erhält man für die Flussdichte: Φ x x 0 Z λ v τ τ A Zλ v τ τ A N λ v τ τ Nλ v τ τ 23 5

6 Um auch noch die Fläche aus der Formel zu eliminieren, führt man die Teilchenzahldichte N Z A ein. Entwickelt man diese Teilchenzahldichte N in eine Taylorreihe um die mittlere freie Weläne λ: N±λ N 0 ± λ dn dx wobei ein linearer Teilchenradient anenommen wird was für Systeme nicht allzu fern vom Gleichewicht erechtfertit ist - daher verschwinden höhere Terme erhält man Φ x x 0 2λv dn dx x0 24 Die Diffusionskonstante ist nun der Proportionalitätsfaktor zwischen Flussdichte Φ und Teilchendichteradient dn dx x0. Somit folt für den eindimensionalen Fall - wobei wir noch beachten müssen, dass die Diffusion in zwei Richtunen entlan x eht das Problem ist symmetrisch Φ x x 0 2λv dn dx x0 1 2 Φ x x 0 D dn mit D x λv dx Diese Formel ilt nun aber nur für den eindimensionalen Fall. Nimmt man eine Diffusion in zwei Dimensionen an entlan x & y muss man durch die Anzahl Dimensionen teilen. Somit folt für den zweidimensionalen Fall D 2D λ v 2 Anmerkun : Die Diffusionskonstante zwischen einem dreidimensionalen Raum und einer zweidimensionalen Fläche weicht um etwa 33% voneinander ab. Der in den vorherien Teilaufaben emachte 3D Ansatz ist somit nicht anz korrekt. 3 Das spezifische olumen 1. Für eine binäre Mischun aus Protein und dem Lösunsmittel berechnet sich das olumen: ṼP m P + ṼW m W Das partielle spezifische olumen Ṽ eribt sich, indem man Gleichun 27 durch die totale Masse teilt: Ṽ m ṼP mp m tot + ṼW mw m tot ṼP χ P + ṼW χ W 28 wobei m tot + m w die Gesamtmasse ist und mw χ w und χ p bezeichnet. m tot und mp m tot die Massenbrüche 3. Unter Benützun von χ P + χ W 1 χ W 1 χ P kann Gleichun 28 umeschrieben werden zu: Ṽ ṼP ṼW χ P + ṼW 29 6

7 4. Umformun von 29 eribt: Ṽ P Ṽ ṼW + ṼW χ P χ P 30 Nach der Gleichun 30 lässt sich χ p nur berechnen, wenn Ṽp bekannt ist. Mit der Annahme, dass sich das olumen des Lösunsmittels also des Wassers nicht ändert, berechnet sich χ p in der Lösun zu: χ p + m w c p c p + c w 0.1 cm cm cm 3 wobei c w die Massenkonzentration des Wassers und c p die Massenkonzentration des Proteins ist. Wenn sich das olumen des Lösunsmittels durch Zuabe des Proteins nicht ändert ist c w ρ w. Die Massenkonzentration des Proteins c p berechnet sich wie folt: 33 c p [Molare Konzentration] [Molare Masse] 34 3 mol l mol 100 l 0.1 cm 3 Nachdem man χ p berechnet hat, kann man das partielle spezifische olumen des Proteins nach Gleichun 30 bestimmen, wobei Ṽ 1 ρ verwendet wird: Ṽ p cm3 1 cm cm cm Da das olumen der Lösun nach der Zuabe des Proteins rösser ist, ist der χ p Wert in 4. falsch. Unter Benützun der Abschätzun von Ṽp aus 4., kann man iterartiv einen enaueren Wert für χ p erhalten. Neuordnen von 27 eribt: Ṽp m w nach Division durch m P erhält man: w m w Ṽp Ṽ w 36 und durch Addition von 1 bzw. mp 7

8 Umformen auf χ p eribt dann: m w + m w + m P 1 χ p Ṽp Ṽ w + 1 χ p Ṽ w mp Ṽp + ṼW Dabei ist m P Iteration 1 : das Inverse der Massenkonzentration des Proteins cm3. cm 3 χ P 10 cm3 1 cm cm3 + 1 cm P cm3 1 cm cm cm3 Dies entspricht einem Fehler von 2.5% eenüber der Abschätzun in Aufabenteil 4. Iteration 2 : χ P 10 cm cm3 1 cm3 1 cm cm3 + 1 cm cm P cm Dies entspricht einem Anstie von 0.05% eenüber der Iteration 1. Die Iteration kann hier abebrochen werden, da die berechneten Werte für χ P und P nach der 2. Iteration sehr nahe an den entsprechenden experimentellen Werten lieen. 8

Lösungen zu Übungsblatt 3

Lösungen zu Übungsblatt 3 PN1 Einführun in die Physik 1 für Chemiker und Bioloen Prof. J. Lipfert WS 2017/18 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine

Mehr

Übungen zum Ferienkurs Physik für Elektroingenieure Wintersemester 2015 / 16

Übungen zum Ferienkurs Physik für Elektroingenieure Wintersemester 2015 / 16 Übunen zum Ferienkurs Physik für Elektroinenieure Wintersemester 2015 / 16 Rupert Heider Nr. 1 17.03.2016 Aufabe 1 : Flieender Pfeil Sie schießen vom Boden aus einen Pfeil in einem Winkel α zur Horizontalen

Mehr

2. Klausur zur Theoretischen Physik II

2. Klausur zur Theoretischen Physik II PD Dr. Burkhard Dünwe SS 2006 Dipl.-Phys. Ulf D. Schiller 2. Klausur zur Theoretischen Physik II 22. Juli 2006 Name:............................................................ Matrikelnummer:...................................................

Mehr

Protokoll M1 - Dichtebestimmung

Protokoll M1 - Dichtebestimmung Protokoll M1 - Dichtebestimmun Martin Braunschwei 15.04.2004 Andreas Bück 1 Aufabenstellun 1. Die Dichte eines Probekörpers (Kuel) ist aus seiner Masse und den eometrischen Abmessunen zu bestimmen. Die

Mehr

Einfache eindim. Bewegungen unter Krafteinwirkung

Einfache eindim. Bewegungen unter Krafteinwirkung Einfache eindim. Beweunen unter Krafteinwirkun N. Peters, A. Oettin, C. Janetzki (Dr. W. Seifert) 4. Noember 203 Senkrechter Wurf und Fall im D Für den senkrechten Fall und Wurf (x-achse nach oben) ilt

Mehr

Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg

Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg Staatliche Studienakademie Leipzi Brückenkurs Mathematik Studienrichtun Informatik 1. - 15. September 11 Teil II: Aufaben zur Differential- und Interalrechnun Ohne Lösunswe 1. Aufabe: Bilden Sie die ersten

Mehr

Mathematische Modellierung Lösungen zum 2. Übungsblatt

Mathematische Modellierung Lösungen zum 2. Übungsblatt Mathematische Modellierun Lösunen zum 2 Übunsblatt Klaus G Blümel Lars Hoeen 3 November 2005 Lemma 1 Unter Vernachlässiun der Luftreibun beschreibt ein Massepunkt, der im Punkt 0, 0) eines edachten Koordinatensystems

Mehr

1. Nach-Klausur - LK Physik Sporenberg - Q1/

1. Nach-Klausur - LK Physik Sporenberg - Q1/ . Nach-Klausur - LK Physik Sporenber - / 0.04.03.Aufabe: Geeben ist eine flache Rechteckspule mit n 00 indunen, der Höhe h 0 cm, der Breite b 3,0 cm und den Anschlüssen und (siehe Skizze). Diese Spule

Mehr

s t =. v s t h = gt, t = v t = a v t t =

s t =. v s t h = gt, t = v t = a v t t = Michael Buhlmann Phsik > Mechanik > urf und urfparabel Innerhalb der Mechanik als Teilebiet der Phsik wird unter bestimmten Voraussetzunen earbeitet: Die Beweun eines Körpers im Raums wird zur Beweun eines

Mehr

Coaching für den Wettbewerb

Coaching für den Wettbewerb 1. Bayreuther Ta der Mathematik 08. Juli 006 Klassenstufen 7-8 Aufabe 1: Die Zwilline Peter und Michael besuchen dieselbe Klasse. Beide verlassen morens leichzeiti das Haus und benutzen denselben We zur

Mehr

Lösung zur Klausur Technische Mechanik III Universität Siegen, Fachbereich Maschinenbau,

Lösung zur Klausur Technische Mechanik III Universität Siegen, Fachbereich Maschinenbau, Lösun zur Klausur Technische Mechanik III Universität Sieen, Fachbereich Maschinenbau, 9.02.2008 Aufabe 1 (10 Punkte) y m 2 u M R MR v 0 h r x A l B s C Ein römischer Katapultwaen (Masse ) rollt beladen

Mehr

Lösungen zu Übungsblatt 3

Lösungen zu Übungsblatt 3 PN1 Einführun in die Physik für Chemiker 1 Prof. J. Lipfert WS 018/19 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine maximale Reichweite

Mehr

Millikan Versuch. Redmann, Nigl, Wiessner, Köck. Entstehung des Versuches:

Millikan Versuch. Redmann, Nigl, Wiessner, Köck. Entstehung des Versuches: Redmann, Nil, Wiessner, Köck Millikan Versuch Entstehun des Versuches: Anfan des 20. Jahrhunderts entstand die Frae, ob alle messbaren Ladunen auf eine kleinste Ladunseinheit zurückeführt werden können.

Mehr

5. Tutorium zur Analysis I für M, LaG und Ph

5. Tutorium zur Analysis I für M, LaG und Ph Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafaël Dahmen, Dipl.-Math. Stefan Waner 5. Tutorium zur Analysis I für M, LaG und Ph Aufaben und Lösunen Sommersemester 2007 18.5.2007 Definition:

Mehr

Addieren und Subtrahieren kann man nur Größen gleicher Dimension.

Addieren und Subtrahieren kann man nur Größen gleicher Dimension. 9 Dimensionsanalyse Wir haben bis jetzt Variablen oder Konstanten betrachtet und uns nie Gedanken über die Einheiten emacht. Wir können neben Länen auch Massen, Kräfte oder Zeiten haben. Diese physikalischen

Mehr

Vektoralgebra. - Anwendungen: Geraden FACHBEREICH BAUINGENIEURWESEN PROF. DR. PETER SPARLA & DR. BRITTA FOLTZ MATHEMATIK 1 1

Vektoralgebra. - Anwendungen: Geraden FACHBEREICH BAUINGENIEURWESEN PROF. DR. PETER SPARLA & DR. BRITTA FOLTZ MATHEMATIK 1 1 Vektralebra - Anwendunen: Geraden FACHBEREICH BAUINGENIEURWESEN ROF. DR. ETER SARLA & DR. BRITTA FOLTZ MATHEMATIK 1 1 Achtun! Dieses Flienskript sll den Studierenden einies an mechanischer Schreibarbeit

Mehr

v A B A α h 1 h c) Wie lautet der Geschwindigkeitsvektor beim Auftreffen der Kugel im Punkt B?

v A B A α h 1 h c) Wie lautet der Geschwindigkeitsvektor beim Auftreffen der Kugel im Punkt B? Institut für Mechanik Prof. Dr.-In. habil. P. Betsch Prof. Dr.-In. habil. Th. Seeli Prüfun in Dynamik 3. Auust 4 Aufabe ca. 0 % der Gesamtpunkte) H m v 0 y 0000 00000 00000 000 000 00 000 0 v A 000 00

Mehr

Auswertung des Versuchs P1-31,40,41 : Geometrische Optik

Auswertung des Versuchs P1-31,40,41 : Geometrische Optik Auswertun des Versuchs P1-31,40,41 : Geometrische Optik Marc Ganzhorn Tobias Großmann Aufabe 1.1: Brennweite einer dünnen Sammellinse Mit Hilfe eines Maßstabes und eines Schirmes haben wir die Brennweite

Mehr

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1 Karlsruher Institut für Technoloie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösun 3 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1 Bestimmun von Geradenleichunen Auabe Geeben ist die Geradenleichun (x) = -x +. Gesucht sind die Schnittpunkte mit den Koordinatenachsen. Lösun: Mit der y-achse (x=0): S y (0 ) Mit der x-achse (y=0): x

Mehr

Reiner Winter. Analysis. Aufgaben mit Musterlösungen

Reiner Winter. Analysis. Aufgaben mit Musterlösungen Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.

Mehr

K l a u s u r G k P h 11

K l a u s u r G k P h 11 K l a u s u r G k P h Aufabe a) Aus welcher Höhe muß ein Körper frei fallen, damit er mit der Geschwin- dikeit auf den Boden aufschlät? v 8 km h b) Wie lane dauert der freie Fall des Körpers? Aufabe 2

Mehr

Verdünnungs- und Mischungsrechnen

Verdünnungs- und Mischungsrechnen Verdünnuns- und Mischunsrechnen FTCCT3 1. Aus einer lösun mit β 0 = 50 m/ soll eine Verdünnunsreihe mit 4 Verdünnunen herestellt werden. Zusammen sollen die 5 ösunen den Konzentrationsbereich bis 50 m/

Mehr

Physik 1 für Maschinenwesen Probeklausur 1. Semester

Physik 1 für Maschinenwesen Probeklausur 1. Semester Physikdepartment E3 TU München Physik für Maschinenwesen Probeklausur. Semester Prof. Dr. Peter Müller-Buschbaum 6.0.0, 7:00 h 8:00 h Name Vorname Matrikelnummer Hiermit bestätie ich, die vorlieende Klausur

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 8

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 8 1. Aufabe Clapeyron'sche Gleichun dp dt = H schmelz T V schmelz M(Benzol) = 78,11 mol -1 ; M(Wasser) = 18,01 mol -1 1 atm 1,01325 10 5 Pa ; 1 cm 3 1 10 6 m 3 1 J 1 10 6 1,01325 10 5 atm cm 3 = 9,8692 atm

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

V 1. pdv mit p = = p 0 V 0 ln p 1. m = C H2 O T ln p 1. = P a 150m J 8K ln P a

V 1. pdv mit p = = p 0 V 0 ln p 1. m = C H2 O T ln p 1. = P a 150m J 8K ln P a 2 Lösungen Lösung zu 46. Nutze den 1. Hauptsatz du = Q + W = Q pdv. Bei einem isothermen Prozess ändert sich die innere Energie nicht: du = 0, was wir schon in mehreren Aufgaben zuvor benutzt haben. Also

Mehr

Aufgabe 11: Windanlage

Aufgabe 11: Windanlage Zentrale schritliche Abiturprüunen im Fach Mathematik Auabe 11: Windanlae Das Foto zeit einen Darrieus-Windenerie-Konverter. Der Wind setzt die drei Blätter um die vertikale Achse in Drehun; die Blätter

Mehr

Bewegungen - Freier Fall eines Massenpunktes

Bewegungen - Freier Fall eines Massenpunktes Beweunen - Freier Fall eines Massenpunktes Daniel Wunderlich Ausarbeitun zum Vortra im Proseminar Analysis (Wintersemester 008/09, Leitun PD Dr. Gudrun Thäter) Zusammenfassun: Diese Ausarbeitun behandelt

Mehr

"Hydrodynamik - Leistung einer Pumpe"

Hydrodynamik - Leistung einer Pumpe HTBL Wien 10 "Hydrodynamik" - Bernoulli-Gleichun Seite 1 von 6 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at "Hydrodynamik - Leistun einer Pumpe" Mathematische / Fachliche Inhalte in Stichworten: Lösen

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 0/ Übunen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzi, Dr. Volker Körstens, David Maerl, Markus Schindler, Moritz v. Sivers Vorlesun 0..0, Übunswoche

Mehr

Klausur Technische Strömungslehre

Klausur Technische Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömunslehre 2. 8. 25. Aufabe ( Punkte) Die Ausflussöffnun (Spalthöhe h, Tiefe T ) eines Wasserbehälters wird, wie in der Zeichnun darestellt,

Mehr

Übungsblatt 2: Das Dornbusch-Fischer-Samuelson Modell - Lösung -

Übungsblatt 2: Das Dornbusch-Fischer-Samuelson Modell - Lösung - Übunsblatt 2: Das Dornbusch-Fischer-Samuelson Modell - Lösun - Philipp Herkenhoff und Alexander Tarasov Aufabe 1: Nutzenmaximierun mit Cobb-Doulas Präferenzen Nutzen und das Budet sind eeben durch U =

Mehr

A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge

A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge Stoßquerschnitt und mittlere freie Weglänge Im idealen Gas findet zwischen zwei Teilchen ein Stoß statt, wenn der Abstand der Fluggeraden den beiden Teilchen, der Stoßparameter b, kleiner ist als die Summe

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN ARBEITSBLATT 12 WINKELBERECHNUNGEN a) WINKEL ZWISCHEN ZWEI GERADEN Diese Formel haben wir a bereits kennenelernt: Satz: Der Winkel zwischen zwei Vektoren a und b, berechnet sich nach der Formel: a b cos

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: )

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: ) Prof. C. Greiner, Dr. H. van Hees Wintersemester 212/213 Übunen zur Theoretischen Physik 1 Lösunen zu Blatt 6 Hausübunen (Ababe: 14.12.212) (H14) Arbeit eines Kraftfeles (2 Punkte) r = (6m/s 2 t 2m/s,3m/s

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

(sin φ +tan αcos φ) (4)

(sin φ +tan αcos φ) (4) PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninhofen, M. Hummel Blatt WS 8/9 1.1.8 1. Wurf am Abhan. Sie stehen an einem Abhan, der den Steiunswinkel α hat, und wollen (4Pkt.) einen Stein

Mehr

Dichte besitzt Messing bei einer Temperatur von 35 C? (1 cm³ Messing vergrößert seinen Rauminhalt beim Erwärmen um 1 K um 0, cm³).

Dichte besitzt Messing bei einer Temperatur von 35 C? (1 cm³ Messing vergrößert seinen Rauminhalt beim Erwärmen um 1 K um 0, cm³). Aufaben Länen- und oluenausdehnun 0. Mit eine tahlaßband, das für eine Teperatur von 0 eeicht ist, wird bei einer Teperatur von 5 die Läne der eite eines Gartens eessen. Welche Aussae ist richti? a) Die

Mehr

Herbst 2009 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik III für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2009 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik III für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 Frae 1 ( Punkte) Der skizzierte Mechanismus besteht aus drei Stäben, die über Drehelenke miteinander verbunden sind. Der Stab 1 wird mit der konstanten Winkeleschwindikeit ω 1 anetrieben. 3

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Tehnishe Universität Münhen Zentrum Mathematik Bernhard Werner Geometriekalküle WS 205/6 www-m0.ma.tum.de/geometriekalkuelews56 Lösunen zu Aufabenblatt 3 (8. November 205) Präsenzaufaben Aufabe. Dualisieren.

Mehr

1 Michaelis-Menten-Kinetik

1 Michaelis-Menten-Kinetik Physikalische Chemie II Lösung 2 9. Dezember 206 Michaelis-Menten-Kinetik. Das Geschwindigkeitsgesetz für die zeitliche Änderung der ES-Konzentration ist durch folgendes Geschwindigkeitsgesetz beschrieben:

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 09. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 09. 07. 2007 Klausur Die Klausur

Mehr

21. Februar Korrektur

21. Februar Korrektur Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard, R. Seifried WS 0/ P. ebruar 0 Bachelor-Prüfun in Technischer Mechanik II/III ufabe (6 Punkte) Ein Ellipsentrainer

Mehr

System: Das mathematische Pendel

System: Das mathematische Pendel System: Das mathematische Pendel Verhaltensbeschreibun durch eine Formel (für die Größen) Zuan zur Formel Nutzun der Formel Näherun Datennahme Beispiel für modulares Vorehen Benötites und Benutztes: (Winkel

Mehr

Fachhochschule Hannover

Fachhochschule Hannover Fchhochschule Hnnoer..7 Fchbereich schinenbu Zeit: 9 min Fch: Physik im WS 67 Hilfsmittel: Formelsmmlun zur Vorlesun. Ein Tennisbll soll 5 m senkrecht nch oben eworfen werden.. Welche Anfnseschwindikeit

Mehr

Übungen zur Physikvorlesung für Wirtschaftsingenieure WS2003

Übungen zur Physikvorlesung für Wirtschaftsingenieure WS2003 Übunen zur Physikvrlesun für Wirtschaftsinenieure WS2003 Lösunsvrschläe zum Übunsblatt 2 1. Ein June verma einen Schlaball unter einem Abwurfwinkel vn 30 52m weit zu werfen. Welche Weite könnte er bei

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Algebraische Geometrie 2 Lösungen zum Langen Übungsblatt

Algebraische Geometrie 2 Lösungen zum Langen Übungsblatt Karlsruher Institut für Technoloie (KIT) Institut für Alebra und Geometrie 17.05.2011 JProf. Dr. Gabriela Weitze-chmithüsen Dipl.-Math. André Kappes Alebraische Geometrie 2 Lösunen zum Lanen Übunsblatt

Mehr

Daniel Bilic; Martin Raiber; Hannes Heinzmann

Daniel Bilic; Martin Raiber; Hannes Heinzmann Physik- Praktikum Daniel Bilic; Martin Raiber; Hannes Heinzmann M5 Schwinunen mit Auftrieb 1. Vertikale Schwinun eines Reaenzlases im Wasser Versuchsdurchführun: a) Wir füllten ein Reaenzlas so weit mit

Mehr

Physik Mathematisches Pendel

Physik Mathematisches Pendel Physik Mathematisches Pende 1. Zie des Versuches Bestätiun der Schwinunseichun des mathematischen Pendes Bestimmun der Erdbescheuniun. Aufaben Indirekte Bestimmun von fünf Pendeänen i durch jeweiie Messun

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

f) Ideales Gas - mikroskopisch

f) Ideales Gas - mikroskopisch f) Ideales Gas - mikroskopisch i) Annahmen Schon gehabt: Massenpunkte ohne Eigenvolumen Nur elastische Stöße, keine Wechselwirkungen Jetzt dazu: Wände vollkommen elastisch, perfekte Reflektoren Zeitliches

Mehr

Rechnen mit Gehaltsgrößen

Rechnen mit Gehaltsgrößen Rechnen mit Gehaltsrößen Herstellen von Lösunen und Umrechnen von Gehaltsrößen 1. Es sollen 750 ml Natriumcarbonat-Lösun mit c= 0, /L herestellt werden. a Welche Masse an Na CO ist einzuwieen? b Welche

Mehr

2.15 Linienverbreiterung

2.15 Linienverbreiterung 2.15 Linienverbreiterun Bei den bisherien Rechnunen wurden die Eneriezustände immer als beliebi scharf anenommen. Dies ist allerdins selbst für isolierte Atome nicht richti, da die Zustände aufrund der

Mehr

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum Versuchsprotokoll zum Fadenpendel (F3) am Arbeitsplatz 3 durcheführt

Mehr

1 Lambert-Beersches Gesetz

1 Lambert-Beersches Gesetz Physikalische Chemie II Lösung 6 23. Oktober 205 Lambert-Beersches Gesetz Anhand des idealen Gasgesetzes lässt sich die Teilchenkonzentration C wie folgt ausrechnen: C = N V = n N A V pv =nrt = N A p R

Mehr

8.6.3 Wärmeleitung von Gasen ****** 1 Motivation. 2 Experiment. Wärmeleitung von Gasen V080603

8.6.3 Wärmeleitung von Gasen ****** 1 Motivation. 2 Experiment. Wärmeleitung von Gasen V080603 8.6.3 ****** 1 Motivation Dieser Versuch zeigt qualitativ anhand der unterschiedlichem Abkühlung eines glühenden Drahtes, dass die umgekehrt proportional zur Wurzel aus der Molekularmasse und für nicht

Mehr

1. Lineare Funktionen

1. Lineare Funktionen Grundwissen zu den Geraden. Lineare Funktionen Geraden sind die Graphen linearer Funktionen. Dazu müssen wir zuerst den Beriff Funktion und dann den Beriff linear klären.. Funktion Eine Funktion ist eine

Mehr

a S 1 S 2 S G e z a/2 e y e x a/2 Abbildung 1: Werbetafel.

a S 1 S 2 S G e z a/2 e y e x a/2 Abbildung 1: Werbetafel. VU Modellbildun Beispiele zu Kpitel : Mechnische Systeme 1.) Geeben ist die in Abbildun 1 drestellte Werbetfel mit der Msse m. Die Werbetfel ist mittels zwei Seilen S 1 und S n einer Wnd befestit. Außerdem

Mehr

A. Parameter der Glasbestrahlungsanlage

A. Parameter der Glasbestrahlungsanlage A. Parameter der Glasbestrahlunsanlae CO 2 -Laser Hersteller Synrad Typ 48-2-28(W Wellenläne 10,57-10,63 μm Leistun 25 W Leistunsstabilität (Leistunsreelun 48-CL ± 2% Mode Qualität TEM 00 -Äquivalent:

Mehr

Fehlerrechnung - Physikalisches Anfängerpraktikum

Fehlerrechnung - Physikalisches Anfängerpraktikum Fehlerrechnun - Physikalisches Anfänerpraktikum Philipp B.Bahavar 1. November 01 1 Grundrößen der Fehlerrechnun 1.1 Der Mittelwert 1.1.1 Definition x = x = 1 n Im Folenden steht x für den Mittelwert einer

Mehr

Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität

Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität Darstellunstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthoonalität Tom Weber 18.11.2015 Inhaltsverzeichnis 1 Reduzibilität 2 1.1 G-Modul................................ 2 1.2 Orthonormalbasen..........................

Mehr

Rechnungen zur Applikation von Wirkstoffen

Rechnungen zur Applikation von Wirkstoffen Rechnunen zur Applikation von Wirkstoffen C1BL, C2BL 1. Ein Hund von 12,3 k erhält 0,085 10-3 /k eines Wirkstoffs verabreicht. Das Injektionsvolumen soll 10 betraen. Welche Massenkonzentration hat die

Mehr

df (r) A(r) = dm(r)ω2 r Dabei wurde nur m(r) = ρ(r) V eingesetzt. Für das ideale Gas gilt pv = nrt mit m(r) = n M. Also weiter mit nrt = m(r) V

df (r) A(r) = dm(r)ω2 r Dabei wurde nur m(r) = ρ(r) V eingesetzt. Für das ideale Gas gilt pv = nrt mit m(r) = n M. Also weiter mit nrt = m(r) V 3 Lösungen Lösung zu 53. ie Lösung ist ganz einfach: E kin = 1 mv und p = mv folgt m = 1.391 10 5 kg. araus folgt dann eine olmasse von m mol = 1.391 10 g 6.0 10 3 mol 1 = 83.77 g. Also handelt es sich

Mehr

Abbildung 1: Diffusionsverbreiterung im zeitlichen Verlauf eines Sedimentationsgeschwindigkeitsexperiments

Abbildung 1: Diffusionsverbreiterung im zeitlichen Verlauf eines Sedimentationsgeschwindigkeitsexperiments Diffusion Einführung Zusätzlich zu den Sedimentations-, Auftriebs- und Reibungskräften unterliegt ein Partikel im Zentrifugalfeld der ungerichteten und der gerichteten (wechselseitigen) Diffusion. Dabei

Mehr

Thermodynamische Aspekte des Standardmodells der Kosmologie

Thermodynamische Aspekte des Standardmodells der Kosmologie hermodynamische Aspekte des Standardmodells der Kosmoloie im Rehm 13. November 2013 1 Einleitun Das Universum entstand nach heutien Vorstellunen mit dem Urknall. Alle Materie war zu diesem Zeitpunkt in

Mehr

Abstand Punkt/Gerade

Abstand Punkt/Gerade Abstan unkt/gerae. Geeben sin er unkt un ie Gerae : x = +λ. Gesucht ist er Abstan von zu. 2. ür ein λ ilt: +λ O,.h. (+λ O = x O Hieraus lässt sich λ berechnen, allemein: λ = ( O λ einesetzt in ie Geraenleichun

Mehr

Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 10

Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 10 Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 10 1. Berechnen Sie die Viskosität von Benzoldampf bei 0 C, 0 C und 900 C, verwenden sie dabei einen mittleren Stoßquerschnitt von σ 0,88 nm.

Mehr

1. Wassersynthese. 2.1 Lösungen Buch S Lösungen Buch S. 27

1. Wassersynthese. 2.1 Lösungen Buch S Lösungen Buch S. 27 1. Wassersynthese 1.1 Sauerstoff () + Wasserstoff () Wasser () exotherm (oder: H

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Diffusion. Prüfungsfrage

Diffusion. Prüfungsfrage Prüfungsfrage Diffusion Die Diffusion. Erstes Fick sches Gesetz. Der Diffusionskoeffizient. Die Stokes-Einstein Beziehung. Diffusion durch die Zellmembrane: passive, aktive und erleichterte Diffusion Lehrbuch

Mehr

Rechnungen zur Applikation von Wirkstoffen

Rechnungen zur Applikation von Wirkstoffen Rechnunen zur Applikation von Wirkstoffen 1. Ein Hund von 12,3 k erhält 0,08510-3 /k eines Wirkstoffs verabreicht. Das Injektionsvolumen soll 10 betraen. Welche Massenkonzentration hat die Injektionslösun?

Mehr

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer

Mehr

K l a u s u r N r. 2 Gk Ph 11

K l a u s u r N r. 2 Gk Ph 11 2.12.2008 K l a u u r N r. 2 Gk Ph 11 Aufabe 1 Ein Fahrzeu durchfährt eine überhöhte Kurve, die eenüber der Horizontalen einen Winkel von 34 hat. Da Fahrzeu wird dabei mit der Kraft F e = 18000 N enkrecht

Mehr

Grundlagen der Physik 3 Lösung zu Übungsblatt 1

Grundlagen der Physik 3 Lösung zu Übungsblatt 1 Grundlagen der Physik 3 Lösung zu Übungsblatt Daniel Weiss 0. Oktober 200 Inhaltsverzeichnis Aufgabe - Anzahl von Atomen und Molekülen a) ohlensto..................................... 2 b) Helium.......................................

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Übungsarbeit z.th. Druck und Auftrieb

Übungsarbeit z.th. Druck und Auftrieb Übunsarbeit z.th. Druck und Auftrieb 1) Erkläre, wie der Schweredruck zustande kommt und leite die Formel P s ρ h her. (Zeichnun, Formeln und beründender Text.) 2) Berechne den Schweredruck, der in 865

Mehr

1. Aufgabe: (ca. 23 % der Gesamtpunkte)

1. Aufgabe: (ca. 23 % der Gesamtpunkte) . Aufabe: (ca. 3 % der Gesamtpunte) Viertelreis Gerade m A m B Zwei leich schwere Massepunte (m) leiten aus der uhe heraus reibunsfrei zwei Bahnen unterschiedlicher Geometrie hinab. Berechnen Sie a) die

Mehr

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 5. Musterlösung zum Übungsblatt 5 vom

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 5. Musterlösung zum Übungsblatt 5 vom Phyikaliche Chemie II (ür Biol./Pharm. Wi.) FS 207 Löung 5 Muterlöung zum Übungblatt 5 vom 9.3.208 ph-wert an der Zelloberläche. Die Debye-Länge ergibt ich au der Gouy-Chapman Theorie zu l D F " 0 ". ()

Mehr

XII.3 Spontane Symmetriebrechung. Higgs-Boson

XII.3 Spontane Symmetriebrechung. Higgs-Boson XII.3 Spontane Symmetriebrechun. His-Boson Im orien Abschnitt wurde das Potential V ˆΦ des His-Feldes eineführt, um seine Selbstwechselwirkun zu beschreiben. Dieser Abschnitt befasst sich enauer mit den

Mehr

HTL Steyr Ausflussvorgänge Seite 1 von 10

HTL Steyr Ausflussvorgänge Seite 1 von 10 HTL Steyr Ausflussvoräne Seite 1 von 10 Ausflussvoräne Nietrost Bernhard, bernhard.nietrost@htl-steyr.ac.at Mathematische / Fachliche Inhalte in Stichworten: Differentialleichunen 1. Ordnun, analytische

Mehr

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Serie 12. Erinnerung: Der Laplace-Operator in n 1 Dimensionen ist definiert durch

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Serie 12. Erinnerung: Der Laplace-Operator in n 1 Dimensionen ist definiert durch D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner Serie 12 1. Laplace-Operator in ebenen Polarkoordinaten Erinnerung: Der Laplace-Operator in n 1 Dimensionen ist definiert durch ( ) 2

Mehr

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # % ! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,

Mehr

Umrechnung von Gehaltsangaben und Herstellung von Lösungen

Umrechnung von Gehaltsangaben und Herstellung von Lösungen Umrechnun von Gehaltsanaben und Herstellun von ösunen C1C 1. Rechnen Sie in die in eckien Klammern aneebene Größe aus bzw. in diese um Molare Masse: M; Masse: m; Stoffmene: n, Anzahl der Moleküle: N) a)

Mehr

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man: Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle

Mehr

Grundlagen der Physik 3 Lösung zu Übungsblatt 2

Grundlagen der Physik 3 Lösung zu Übungsblatt 2 Grundlagen der Physik 3 Lösung zu Übungsblatt 2 Daniel Weiss 17. Oktober 2010 Inhaltsverzeichnis Aufgabe 1 - Zustandsfunktion eines Van-der-Waals-Gases 1 a) Zustandsfunktion.................................

Mehr

y = ( gt +C 3 )dt = 1 2 gt 2 +C 3 t +C 4. (9) (3) (4) ẋ(t = 0) = C 1 = v 0 cosα C 1 = v 0 cosα, ẏ(t = 0) = g 0+C 3 = v 0 sinα C 3 = v 0 sinα.

y = ( gt +C 3 )dt = 1 2 gt 2 +C 3 t +C 4. (9) (3) (4) ẋ(t = 0) = C 1 = v 0 cosα C 1 = v 0 cosα, ẏ(t = 0) = g 0+C 3 = v 0 sinα C 3 = v 0 sinα. Kinematik und Dnamik Mechanik II) - Prof. Popov SoSe 13, KW 1 Lösunshinweise Seite 1 Kinematik der einachsien/räumichen Beweun Version vom 9. Jui 13 Tutorium Aufabe 4 a) Aus dem Diaramm at) über t wird

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

10. Übung zur Einführung in die Plasmaphysik Prof. Kaufmann, SS 1999

10. Übung zur Einführung in die Plasmaphysik Prof. Kaufmann, SS 1999 . Übun zur Einführun in die Plasmaphsik Prof. Kaufmann, SS 999 Lösunen Gleichewicht und Stabilität Wir unterscheiden Gleichewicht und Stabilität einer Konfiuration. Gleichewicht bedeutet in unserem Sinne

Mehr

46 Der Satz von Fubini

46 Der Satz von Fubini 46 Der Satz von Fubini 227 46 Der Satz von Fubini Die Berechnung des n-dimensionalen Integrals einer Funktion f L (R n ) kann auf die eindimensionaler Integrale zurückgeführt werden. Dazu werden für R

Mehr

(1) und ist bei unserem Versuch eine Funktion der Temperatur, nicht aber der Konzentration.

(1) und ist bei unserem Versuch eine Funktion der Temperatur, nicht aber der Konzentration. Praktikum Teil A und B 15. AUFLÖSUNGSGESCHWINDIGKEIT Stand 11/4/1 AUFLÖSUNGSGESCHWINDIGKEIT EINES SALZES 1. ersuchsplatz Komponenten: - Thermostat - Reaktionsgefäß mit Rührer - Leitfähigkeitsmessgerät

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Physik 4, Probeklausur, Prof. Förster

Physik 4, Probeklausur, Prof. Förster Physik 4, Probeklausur, Prof. Förster chris@university-material.de Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.

Mehr

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2 Aufgabe 1 Mit: und ( x r(t) = = y) ( ) A sin(ωt) B cos(ωt) v(t) = r(t) t a(t) = 2 r(t) t 2 folgt nach komponentenweisen Ableiten ( ) Aω cos(ωt) v(t) = Bω sin(ωt) a(t) = ( ) Aω2 sin(ωt) Bω 2 cos(ωt) Die

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 7. Musterlösung zum Übungsblatt 7 vom

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 7. Musterlösung zum Übungsblatt 7 vom Physikalische Chemie II (für Biol./Pharm. Wiss.) S 207 Lösung 7 Musterlösung zum Übungsblatt 7 vom 0.04.207 Diffusionspotential. Zu dieser Teilaufgabe vgl. Adam, Läuger, Stark, S. 326/327 und Skript I.3.3.

Mehr