Entwurf durch Polvorgabe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Entwurf durch Polvorgabe"

Transkript

1 Grundidee der Zustandsregelung Entwurf durch Polvorgabe Zustandsgröß ößen, innere Informationen aus dem Prozeß,, werden zurückgef ckgeführt. Vorteile: Bei Bei vollständiger Steuerbarkeit ist ist eine eine beliebige Plazierung der der Eigenwerte des des geschlossenen Regelkreises möglich. m Eine Eine hohe Regelgüte ist ist möglich. m Es Es existieren elegante und und ausgereifte Verfahren zum zum Reglerentwurf. Einfache Realisierung des des Reglers, wenn Zustandsgrößen meßbar.

2 Nachteile: Entwurf durch Polvorgabe (2) Zustandsraumverfahren benötigen gute gute Modelle und und Rechnerunterstützung. tzung. Einfache Interpretierbarkeit der der Reglerparameter nicht gegeben. Meistens sind sind nicht alle alle Zustandsgrößen mit mit vertretbaren Aufwand meßbar. Nicht meßbare Zustandsgrößen müssen m mit mit einem Beobachter geschätzt werden. Werden Eigenwerte in in der der komplexen Ebene weit weit nach links verschoben, so so können k nicht realisierbare Stellgrößen en auftreten. Bei Bei Systemen mit mit mehreren Eingängen ngen werden nicht alle alle Reglerparameter für ffür r die die beliebige Vorgabe der der Eigenwerte des des Regelkreises benötigt. Das Das bedeutet, es es existieren Freiheiten, deren Nutzung nicht unmittelbar klar klar ist. ist.

3 Entwurf durch Polvorgabe (3) Frage: Wohin soll man die Eigenwerte des geschlossenen Regelkreises schieben?

4 ckführung (1) Modell der der Regelstrecke: ẋ(t) = Ax(t)+Bu(t) y(t) = Cx(t) Durch Einsetzen des des Regelgesetzes u(t) = Kx(t)+Vw(t) Dimension Dimension m x x n Dimension Dimension m x x m erhält man man das das Zustandsmodell des des geschlossenen Kreises: ẋ(t) = (A BK)x(t)+BVw(t) y(t) = Cx(t) Systemmatrix Systemmatrix A G des G des geschlossenen geschlossenen Kreises Kreises

5 ckführung (2) Dimension Dimension m x x m Eine Eine ührung verändert die die Eigendynamik. Kein Soll-Ist-Vergleich ((w(t)-y(t)). (t)-y(t)).). Stationäre Genauigkeit kann über die die Vorfilter-Matrix V eingestellt werden.

6 Anforderungen an an eine Zustandsregelung ckführung (3) Stabilität: t: Die Die Eigenwerte von von A-BK müssen links links der der j-achse j liegen. (Anforderung an an K) K) Stationäre Genauigkeit: lim t Die Matrix V Aus existiert nur dann, wenn 0 kein Eigenwert der Systemmatrix (A-BK) ist und die Übertragungsmatrix folgt C(sI-A+BK) - 1 B keine Nullstellen bei 0 hat. y(t) = lim t w(t) G W (s=0)=i G W (s) = C(sI A+BK) 1 BV G W (0) = C( A+BK) 1 BV=I V = [C( A+BK) 1 B] 1

7 Polvorgabe für f r Eingrößensysteme ckführung (4) Nach Vorgabe des charakteristischen Polynoms des geschlossenen Regelkreises gibt es es eine eindeutige Lösung für f r die die Elemente des RRückführvektors k. k. Anhand der der Regelungsnormalform können k diese Elemente mit mit Hilfe eines Koeffizientenvergleichs sofort angegeben werden (vgl. Skript RT). Eine direkte Berechnung ist ist auch mittels der der sogenannten Ackermann-Formel möglich. m

8 Polvorgabe für f r Eingrößensysteme ckführung (4a)

9 ckführung (5) Polvorgabe für f r Eingrößensysteme ACKERMANN-Formel letzte letzte Zeile Zeile der der inversen inversen Steuerbarkeitsmatrix Steuerbarkeitsmatrix n+1 Koeffizienten des char. Polynoms des Regelkreises n Matlab-Funktion Funktion: k = acker(a, b, b, lambda_g)

10 Polvorgabe für f r Mehrgrößensysteme ensysteme ckführung (6) Nach Vorgabe des charakteristischen Polynoms des geschlossenen Regelkreises gibt es eskeine eindeutig Lösung für f r die die Elemente der der m x n Rückführmatrix K. K. Bei Bei Systemen mit mit mehreren Stellgrößen en können k durch eine ührung neben der der Fest- legung der der Eigenwerte noch weitere Anforderungen berücksichtigt werden: Robustheit der der Eigenwerte gegenüber Parameteränderungen (MATLAB-Funktion place). Entkopplung des Ein- Ausgangsverhalten. Berücksichtigung von Stellgrößenbeschränkun- enbeschränkun- gen.

11 Polvorgabe für f r Mehrgrößensysteme ensysteme Robuste Polfestlegung mit mit K = place(a,b,lambda_g) ckführung (7) Die RückfR ckführmatrix K wird iterativ so bestimmt, daß die die Eigenwerte des des Regelkreises die die gewünschten Lagen haben. die die Eigenvektoren der der Systemmatrix (A-BK) möglichst m orthogonal sind. sich sich die die Lagen der der Eigenwerte möglichst m wenig ändern, wenn Parameteränderungen die die Systemmatrix A-BK+ AA-BK+ des des rrückgeführten Systems stören. Diese Optimierung wird wird nur nur bei bei der der Vorgabe reeller Eigenwerte durchgeführt hrt!!

12 Entkopplung des Ein- Ausgangsverhaltens Entwurfsziel: ckführung (8)

13 Entkopplung des Ein- Ausgangsverhaltens ckführung (9)

14 Entkopplung des Ein- Ausgangsverhaltens ckführung (10)

15 ckführung (10a) Zusammenhang: Differenzgrade --Entkopplungsindizes Berechnung der Ableitungen der Ausgangsgröße y i (t): δ i ẏ i (t) = c T iẋ(t) = ct i Ax(t)+cT i Bu(t) ÿ i (t) = c T i Aẋ(t) = ct i A2 x(t)+c T i ABu(t). y (d i+1) i (t) = c T i Adi+1 x(t)+c T i Ad ibu(t) erstmalig 0 =0 für d i >0 =0 für d i >1

16 Entkopplung des Ein- Ausgangsverhaltens ckführung (11) Berechnung des des Zustandsreglers Differenzgrad Differenzgrad des des Systems Systems mit

17 Entkopplung des Ein- Ausgangsverhaltens Berechnung des des Vorfilters ckführung (12) mit Übertragungsmatrix des geschlossenen Regelkreises

18 Entkopplung des Ein- Ausgangsverhaltens Struktur des des entkoppelten Systems ckführung (13) Invariante Invariante Nullstellen Nullstellen der der Regelstrecke Regelstrecke Stabile Entkopplung nur nur möglich, m wenn die die Regelstrecke keine IN IN in in der der rechten s-halbebene s hat hat!!!!!!

19 Beispiel 2-DOF 2 Hubschraubermodell Direkte Methode ckführung (14) AG = [ 0., 0., 1., 0.] [ 0., 0., 0., 1.] [ 5.77*k_ *k_21,.326*k_21, 5.77*k_ *k_22,.326*k_22, 5.77*k_ *k_23,.326*k_23, 5.77*k_ *k_24].326*k_24] [ -.651*k_ *k_21, -.651*k_ *k_22, -.651*k_ *k_23, -.651*k_ *k_24] C(λ) = λ^4.651* λ^3 ^3*k_ * λ^3 ^3*k_ *k_13 k_13* λ^ *k_23 k_23* λ^3.651*k_12 k_12* λ^ *k_22 k_22* λ^ *k_11 k_11* λ^ *.326*k_21 k_21* λ^2 15.9* λ^2 ^2*k_23 k_23*k_14 k_ * λ^2 ^2*k *k_13 _13*k_24 k_ *k_21 k_21* λ*k_ *k_11 k_11* λ*k_ * λ*k_22 k_22*k_13 k_ * λ*k_12 k_12*k_23 k_ *k_21*k_ *k_11*k_22 Beliebige Eigenwertvorgabe über nur nur einen Eingang ist ist nicht möglich m!!

20 Beispiel 2-DOF 2 Hubschraubermodell ckführung (15) Vorgabe der Eigenwerte des geschlossenen Kreises: C(λ) = (λ+1)(λ+2)(λ+3)(λ+4) Einsetzen von = λ 4 +10λ 3 +35λ 2 +50λ+24 k 13 =k 14 =k 22 =k 24 =0 in die symbolisch berechnete charakteristische Gleichung liefert: k 23 0,326=10 k 23 = 10 0,326 = 30, k 12 k 23 15,9=50 k 12 = 15,9 k = 15,9 ( 30,675) =0.1025

21 Beispiel 2-DOF 2 Hubschraubermodell ckführung (16) und: 24 k 21 k 12 15,9=24 k 21 = 15,9 k = 15,9 0,1025 = 14,73 k 11 5,77 k 12 0,651 k 21 0,326=35 k 11 = 1 5,77 (35+k 12 0,651+k 21 0,326) = 1 5,77 (35+0,1025 0,651+14,73 0,326)=5,2418 Rückf ckführmatrix: K = [ 5,2418 0, , ,675 0 ]

22 ckführung (17) Beispiel 2-DOF 2 Hubschraubermodell Berechnung der Eigenwerte des Regelkreises: Gutes Gutes stationäres stationäres Störverhalten Störverhalten von von u 1 (t) 1 (t)-> > -> y y 1 (t) 1 (t) EW_K = V = [ ] Schlechte Schlechte Entkopplung Entkopplung von von u 1 (t) 1 (t)-> > -> y y 2 (t) 2 (t)

23 ckführung (18) Beispiel 2-DOF 2 Hubschraubermodell Berechnung der RückfR ckführmatrix mit Matlab- Funktion place: K = [ 0,9030 0,2964 0,8715 0,0517 0,4962 1,8348 0,0686 1,7620 ] EW_K = V = [ ]

24 ckführung (19) Beispiel 2-DOF 2 Hubschraubermodell Berechnung der RückfR ckführmatrix mit Matlab- Funktion place: K = [ 23,9681 4,2093 4,1235 0,6032 9, ,8260 1,2825 8,2701 ] EW_K = V = [ ]

25 ckführung (20) Beispiel 2-DOF 2 Hubschraubermodell Berechnung der Vorfiltermatrix für f r gutes Führungsverhalten u 1 (t) 1 (t) V = EW_K = [ 23, , 25 ] u 2 (t) 2 (t) K = [ 23,9681 4,2093 4,1235 0,6032 9, ,8260 1,2825 8,2701 ]

26 ckführung (21) Beispiel 2-DOF 2 Hubschraubermodell Berechnung der Vorfiltermatrix für f r gutes Störverhalten V = EW_K = [ 0, , 0221 ] K = [ 23,9681 4,2093 4,1235 0,6032 9, ,8260 1,2825 8,2701 ]

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und Analyse dynamischer Systeme im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit Unterscheidung:

Mehr

Zusammenfassung der 4. Vorlesung. ensysteme. Mehrgrößensysteme

Zusammenfassung der 4. Vorlesung. ensysteme. Mehrgrößensysteme Mehrgrößensysteme ensysteme Zusammenfassung der 4. Vorlesung Standardform für ffür r nicht steuerbare Systeme Pole Pole und und Nullstellen von von MIMO-Systemen Pole Pole der der Übertragungsmatrix? Smith-McMillan-Form

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

Erreichbarkeit und Zustandsregler

Erreichbarkeit und Zustandsregler Übung 5 Erreichbarkeit und Zustandsregler 5. Kriterium für die Erreichbarkeit Betrachtet wird wieder ein zeitkontinuierliches, lineares und zeitinvariantes System (LZI bzw. LTI : Linear Time Invariant)

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Regelungstechnik 2. <ÖSpri ringer. Mehrgrößensysteme, Digitale Regelung. Jan Lunze. 5., neu bearbeitete Auflage

Regelungstechnik 2. <ÖSpri ringer. Mehrgrößensysteme, Digitale Regelung. Jan Lunze. 5., neu bearbeitete Auflage Jan Lunze Regelungstechnik 2 Mehrgrößensysteme, Digitale Regelung 5., neu bearbeitete Auflage Mit 265 Abbildungen, 55 Beispielen, 94 Übungsaufgaben sowie einer Einführung in das Programmsystem MATLAB

Mehr

Regelungstechnik. Mehrgrößenregelung - Digitale Regelungstechnik- Fuzzy-Regelung von Gerd Schulz. Mit 118 Beispielen und 56 Aufgaben mit Lösungen

Regelungstechnik. Mehrgrößenregelung - Digitale Regelungstechnik- Fuzzy-Regelung von Gerd Schulz. Mit 118 Beispielen und 56 Aufgaben mit Lösungen Regelungstechnik Mehrgrößenregelung - Digitale Regelungstechnik- Fuzzy-Regelung von Gerd Schulz Mit 118 Beispielen und 56 Aufgaben mit Lösungen Oldenbourg Verlag München Wien I Mehrgrößen-Regelsysteme

Mehr

Flachheit Eine nützliche Methodik auch für lineare Systeme

Flachheit Eine nützliche Methodik auch für lineare Systeme Flachheit Eine nützliche Methodik auch für lineare Systeme Michael Zeitz Institut für Systemdynamik Universität Stuttgart Flachheits-Methodik [FLIESS et al. 92ff] Lineare SISO und MIMO Systeme M. Zeitz

Mehr

Zusammenfassung der 7. Vorlesung

Zusammenfassung der 7. Vorlesung Zusammenfassung der 7. Vorlesung Steuer- und Erreichbarkeit zeitdiskreter Systeme Bei zeitdiskreten Systemen sind Steuer-und Erreichbarkeit keine äquivalente Eigenschaften. Die Erfüllung des Kalmankriteriums

Mehr

Regelungstechnik 2. 4y Springer. Jan Lunze. Mehrgrößensysteme Digitale Regelung. 4., neu bearbeitete Auflage

Regelungstechnik 2. 4y Springer. Jan Lunze. Mehrgrößensysteme Digitale Regelung. 4., neu bearbeitete Auflage Jan Lunze Regelungstechnik 2 Mehrgrößensysteme Digitale Regelung 4., neu bearbeitete Auflage Mit 257 Abbildungen, 53 Beispielen, 91 Übungsaufgaben sowie einer Einführung in das Programmsystem MATLAB 4y

Mehr

Regelungstechnik II. Heinz Unbehauen. Zustandsregelungen, digitale und nichtlineare Regelsysteme. 9., durchgesehene und korrigierte Auflage

Regelungstechnik II. Heinz Unbehauen. Zustandsregelungen, digitale und nichtlineare Regelsysteme. 9., durchgesehene und korrigierte Auflage Heinz Unbehauen Regelungstechnik II Zustandsregelungen, digitale und nichtlineare Regelsysteme 9., durchgesehene und korrigierte Auflage Mit 188 Abbildungen und 9 Tabellen Studium Technik vieweg IX Inhalt

Mehr

Klausur: Regelungs- und Systemtechnik 2

Klausur: Regelungs- und Systemtechnik 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Klausur: Regelungs- und Systemtechnik 2 Kirchhoff-Hörsaal 1 Donnerstag, den 19. 09. 2013 Beginn: 09.30 Uhr Bearbeitungszeit: 120 Minuten

Mehr

Klausur: Regelungs- und Systemtechnik 2

Klausur: Regelungs- und Systemtechnik 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Klausur: Regelungs- und Systemtechnik 2 Humboldt-Hörsaal Dienstag, den 07. 02. 2012 Beginn: 10.30 Uhr Bearbeitungszeit: 120 Minuten Modalitäten

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Schriftliche Prüfung aus Regelungssysteme am

Schriftliche Prüfung aus Regelungssysteme am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungssysteme am 12.10.2018 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Springer-Lehrbuch. Regelungstechnik 2. Mehrgrößensysteme, Digitale Regelung. von Jan Lunze. Neuausgabe

Springer-Lehrbuch. Regelungstechnik 2. Mehrgrößensysteme, Digitale Regelung. von Jan Lunze. Neuausgabe Springer-Lehrbuch Regelungstechnik 2 Mehrgrößensysteme, Digitale Regelung von Jan Lunze Neuausgabe Regelungstechnik 2 Lunze schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

Zusammenfassung der 9. Vorlesung

Zusammenfassung der 9. Vorlesung Zusammenfassung der 9. Vorlesung Analyse des Regelkreises Stationäres Verhalten des des Regelkreises Bleibende Regelabweichung für ffür r FFührungs- und und Störverhalten Bleibende Regelabweichung für

Mehr

Zusammenfassung der 9. Vorlesung

Zusammenfassung der 9. Vorlesung Zusammenfassung der 9. Vorlesung Analyse des Regelkreises Stationäres Verhalten des Regelkreises Bleibende Regelabweichung für Führungs- und Störverhalten Bleibende Regelabweichung für verschiedene Eingangssignale

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am..9 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4 erreichbare

Mehr

Analyse und Entwurf von Mehrgrößenregelung im Frequenzbreich

Analyse und Entwurf von Mehrgrößenregelung im Frequenzbreich Fakultät Elektrotechnik und Informationstechnik Institut für Regelungs - und Steuerungstheorie Prof Dr-Ing habil Dipl Math Klaus Röbenack Analyse und Entwurf von Mehrgrößenregelung im Frequenzbreich Prof

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Regelungstechnik I (WS 12/13) Klausur ( )

Regelungstechnik I (WS 12/13) Klausur ( ) Regelungstechnik I (WS 12/13) Klausur (05.03.2013) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Zustandsraum und Digitale Regelung

Zustandsraum und Digitale Regelung Zustandsraum und Digitale Regelung von Version 2018 Seite 1 Inhaltsverzeichnis 2. Digitale Regelung: Einführung 3. Kurzübersicht: Zeitdiskrete Systeme 4. Stabilität zeitdiskreter Systeme 5. Deadbeat-Regler

Mehr

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik Formelsammlung für den Teilbereich Zustandsraumdarstellung der Vorlesung Einführung in die Regelungstechnik Diese Formelsammlung ist ein Auszug aus der Formelsammlung zur Systemtheorie-Vorlesung von Matthias

Mehr

120 Minuten Seite 1. Einlesezeit

120 Minuten Seite 1. Einlesezeit 120 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Birgit Steffenhagen. Formelsammlung. Regelungstechnik. Mit 300 Bildern. Fachbuchverlag Leipzig im Carl Hanser Verlag

Birgit Steffenhagen. Formelsammlung. Regelungstechnik. Mit 300 Bildern. Fachbuchverlag Leipzig im Carl Hanser Verlag Birgit Steffenhagen Formelsammlung Regelungstechnik Mit 300 Bildern Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundbegriffe 11 1.1 Systeme und Signale 11 1.2 Steuerung und Regelung

Mehr

Floquet Theorie II. 1 Einführung

Floquet Theorie II. 1 Einführung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 18.10.2011 Sebastian Monschang 1 Einführung Auf den Ergebnissen des ersten Vortrags basierend werden wir in diesem Vortrag gewöhnliche lineare Differentialgleichungssysteme

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

0 1 = A = f. cos(x 1,R ) 2r3 R βx 2,R 2r 2 R βu R c 1. b = f. c T = h. d = h. = 0 0 Pkt. Lineariserung des Ersatzsystems: 1.5 Pkt.

0 1 = A = f. cos(x 1,R ) 2r3 R βx 2,R 2r 2 R βu R c 1. b = f. c T = h. d = h. = 0 0 Pkt. Lineariserung des Ersatzsystems: 1.5 Pkt. 1 Lösung Aufgabe 1). a) Es existieren zwei mögliche Zustandssätze x = [ ϕt) ϕt) ] T oder x = [ st) ṡt) ] T. Stellgröße u = v W t) und Ausgangsgröße y = st) b) Aus dem Drehimpulserhaltungssatz bzw. der

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 29.06.2016 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Systems 1 am 24.11.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Prüfungsmodus: O VO+UE (TM) O VO (BM)

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 31.03.017 Arbeitszeit: 150 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 13:00 Uhr

Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 13:00 Uhr Prüfungsklausur Grundlagen der Regelungstechnik I, II am 03.09.016 von 10:00 13:00 Uhr Aufgabe 1 3 4 5 Summe Erreichbare Punkte 15 1 14 5 5 100 Erreichte Punktzahl Wichtig: Bitte beachten Sie! 1. Namen

Mehr

Heinz Unbehauen. Regelungstechnik III. Identifikation, Adaption, Optimierung. 3., verbesserte Auflage

Heinz Unbehauen. Regelungstechnik III. Identifikation, Adaption, Optimierung. 3., verbesserte Auflage Heinz Unbehauen Regelungstechnik III Identifikation, Adaption, Optimierung 3., verbesserte Auflage V] Friedr. Vieweg & Sohn Braunschweig/Wiesbaden Inhalt 1. Grundlagen der statistischen Behandlung von

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 13 1. Die Matrix A±I ist singulär falls es einen Vektor x 0 gibt der die Gleichung (A±I)x = 0 erfüllt, d.h. wenn A ± I als

Mehr

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl Universität des Saarlandes, Lehrstuhl für Systemtheorie und Regelungstechnik SCHRIFTLICHE PRÜFUNG aus SYSTEMTHEORIE UND REGELUNGSTECHNIK I am 28.7.26 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 2 3

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

Zusammenfassung der 5. Vorlesung

Zusammenfassung der 5. Vorlesung Zusammenfassung der 5. Vorlesung Wurzelortskurven-Verfahren (ortsetzung) Bestimmung des dynamischen Verhaltens eines geschlossenen Regelkreises mit Hilfe der Übertragungsfunktion G 0 (s) des offenen Kreises.

Mehr

INSTITUT FÜR REGELUNGSTECHNIK

INSTITUT FÜR REGELUNGSTECHNIK Lösung Übung 3 Aufgabe: Kaskadenregelung a Berechnung der Teilübertragungsfunktion G 3 s: V4 G 3 s Y 3s Xs T 4 s + + V 5 V 3 T 5 s + T 3 s + V4 T 5 s + T 4 s + V 5 V 3 T 4 s +T 5 s + T 3 s + V 3 [V 4 T

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Systeme der Regelungstechnik mit MATLAB und Simulink

Systeme der Regelungstechnik mit MATLAB und Simulink Systeme der Regelungstechnik mit MATLAB und Simulink Analyse und Simulation von Prof. Dr.-Ing. Helmut Bode Oldenbourg Verlag München Inhalt Vorwort 1 Einleitung 1 2 Einführung in MATLAB 11 2.1 Eingaben

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 6 Eigenwerte

Mehr

Zusatzmaterial zu Kapitel 4

Zusatzmaterial zu Kapitel 4 1 ERMITTLUNG DER TRANSITIONSMATRIX MIT DER SYLVESTER-FORMEL 1 Zusatzmaterial zu Kapitel 4 1 Ermittlung der Transitionsmatrix mit der Sylvester- Formel Wir nehmen an, dass das Zustandsmodell eines linearen

Mehr

Johannes Kepler Universität Linz Institut für Regelungstechnik und Prozessautomatisierung

Johannes Kepler Universität Linz Institut für Regelungstechnik und Prozessautomatisierung Johannes Kepler Universität Linz Institut für Regelungstechnik und Prozessautomatisierung Schriftliche Prüfung aus Automatisierungstechnik Vorlesung, am 3. Februar 04 Name: Vorname(n): Matr.Nr.: SKZ: Aufgabe

Mehr

Inhaltsverzeichnis. Teil 1: Einführung. Verzeichnis der Anwendungsbeispiele...XVII. Inhaltsübersicht des zweiten Bandes...XXIII

Inhaltsverzeichnis. Teil 1: Einführung. Verzeichnis der Anwendungsbeispiele...XVII. Inhaltsübersicht des zweiten Bandes...XXIII Verzeichnis der Anwendungsbeispiele...XVII Inhaltsübersicht des zweiten Bandes...XXIII Hinweise zum Gebrauch des Buches...XXV Teil 1: Einführung 1 Zielstellung und theoretische Grundlagen der Regelungstechnik...

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s) 2. Teilklausur WS 17/18 Gruppe A Name: Matr.-Nr.: Aufgabe 1 (6 Punkte) Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße y: q r u y V (s) P (s) R(s) Auf den

Mehr

^ Springer Vieweg. Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse. und Entwurf einschleifiger Regelungen. 10., aktualisierte Auflage

^ Springer Vieweg. Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse. und Entwurf einschleifiger Regelungen. 10., aktualisierte Auflage Jan Lunze Regelungstechnik 1 Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen 10., aktualisierte Auflage mit 419 Abbildungen, 75 Beispielen, 172 Übungsaufgaben sowie einer Einführung

Mehr

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Höhere Mathematik II für den Studiengang BAP Hausaufgabe 2 04.11.2008 1 Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Lösungen 1. Geben Sie die allgemeine Lösung der folgenden Differenzialgleichungen

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 1.10. 011 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MALAB-Übungen: O

Mehr

Analyse und Entwurf von zeitkontinuierlichen Regelkreisen im Zustandsraum

Analyse und Entwurf von zeitkontinuierlichen Regelkreisen im Zustandsraum Analyse und Entwurf von zeitkontinuierlichen Regelkreisen im Zustandsraum 6 Den weiteren Betrachtungen liegt ein lineares, zeitinvariantes System der Form ẋ = Ax + Bu, t >, x() = x (61a) y = Cx + Du, t

Mehr

Höhere Mathematik III für Physik

Höhere Mathematik III für Physik 8..8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Höhere Mathematik III für Physik 5. Übungsblatt - Lösungsvorschläge Aufgabe (Homogene Anfangswertprobleme) Lösen Sie erst die folgenden Differentialgleichungssysteme

Mehr

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K Aufgaben Aufgabe : Stellen Sie für das im folgenden Signalflussbild dargestellte dnamische Sstem ein Zustandsraummodell auf. u 2 7 5 Aufgabe 2: Wir betrachten das folgende Regelsstem vierter Ordnung: r

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichungen für Ingenieure WS 06/07 6. Vorlesung Michael Karow Themen heute: 1. Die geschlossene Lösungsformel für lineare DGL mit konstanten Koeffizienten. 2. Die Matrixexponentialfunktion

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 25.09.2014 Name / Vorname(n): Matrikel-Nummer: Bonuspunkte aus den Matlab-Übungen: ja nein 1

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

2. VORDIPLOMPRÜFUNG / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben.

2. VORDIPLOMPRÜFUNG / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben. Institut für Mess- und Regeltechnik. VORDIPLOMPRÜFUNG / D-MAVT 8.. 3 REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte Hilfsmittel: Minuten 8 (gleich

Mehr

2. Übung: Lineare dynamische Systeme

2. Übung: Lineare dynamische Systeme 2. Übung: Lineare dynamische Systeme Aufgabe 2.. Gegeben sind die beiden autonomen Systeme und x (2.) {{ A 2 2 x. (2.2) {{ A 2 Berechnen Sie die regulären Zustandstransformationen x = V z und x = V 2 z,

Mehr

Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten Prozess

Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten Prozess Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Verteidigung des Großen Beleges Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C.

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Regelungstechnik B Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski 10.03.2011 Übungsaufgaben zur Regelungstechnik B Aufgabe 0

Mehr

Musterlösungen für die Nachklausur in LinAlg vom

Musterlösungen für die Nachklausur in LinAlg vom Musterlösungen für die Nachklausur in LinAlg vom 10.10.16 1. Finden Sie mindestens ) zwei Dreh )Matrizen ) M R 2 2 mit der Eigenschaft 1 0 M = : M = ± 1 1 2 ±1 1 k k 1 k 2. Sei A R 3 3 die Matrix A = 0

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (25 Punkte) a) Teilaufgabe: 15 Punkte Gegeben sei die folgende Differenzialgleichung dritter Ordnung: mit den Anfangswerten: y (3) (t) + 4 ÿ(t) + ẏ(t) 6 y(t) = 12 u(t)

Mehr

Inhaltsverzeichnis. Birgit Steffenhagen. Kleine Formelsammlung Regelungstechnik ISBN: Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Birgit Steffenhagen. Kleine Formelsammlung Regelungstechnik ISBN: Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Birgit Steffenhagen Kleine Formelsammlung Regelungstechnik ISBN: 978-3-446-41467-9 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41467-9 sowie im Buchhandel.

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich Regelsysteme 1 5. Tutorial: Stabilitätskriterien George X. Zhang Institut für Automatik ETH Zürich HS 2015 George X. Zhang Regelsysteme 1 HS 2015 5. Tutorial: Stabilitätskriterien Gliederung 5.1. Stabilität

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1 Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Lineare Abbildungen, Eigenwerte Lösungen Lösungshinweise: a nicht linear, denn zb fα α, αy +, α + αz T α, αy +, α + z

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Zusammenfassung der 7. Vorlesung

Zusammenfassung der 7. Vorlesung Zusammenfassung der 7. Vorlesung Beschreibung und Analyse dynamischer Systeme im Zustandsraum Methoden zur Berechnung der Transitionsmatrix Φ(t) = e At Numerische Integration Reihenentwicklung Mit Hilfe

Mehr

Praktikum - Zustandsraum (ZR)

Praktikum - Zustandsraum (ZR) Praktikum - Zustandsraum (ZR) Lehrveranstaltung: Regelung im Zustandsraum Hörerschaft: MMB-H, MEC Version: 28. Juni 2012 Autor: Dirk Bräuer Themenschwerpunkt: Modellierung und Regelung von Systemen im

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Die inhomogene Differentialgleichung höherer Ordnung.

Die inhomogene Differentialgleichung höherer Ordnung. Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 9.05.07 Arbeitszeit: 50 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Nächste Termine: 28.., 4.2. Wiederholung vom letzten Mal Regelkreis Geschlossener Regelkreis

Mehr