Entwurf durch Polvorgabe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Entwurf durch Polvorgabe"

Transkript

1 Grundidee der Zustandsregelung Entwurf durch Polvorgabe Zustandsgröß ößen, innere Informationen aus dem Prozeß,, werden zurückgef ckgeführt. Vorteile: Bei Bei vollständiger Steuerbarkeit ist ist eine eine beliebige Plazierung der der Eigenwerte des des geschlossenen Regelkreises möglich. m Eine Eine hohe Regelgüte ist ist möglich. m Es Es existieren elegante und und ausgereifte Verfahren zum zum Reglerentwurf. Einfache Realisierung des des Reglers, wenn Zustandsgrößen meßbar.

2 Nachteile: Entwurf durch Polvorgabe (2) Zustandsraumverfahren benötigen gute gute Modelle und und Rechnerunterstützung. tzung. Einfache Interpretierbarkeit der der Reglerparameter nicht gegeben. Meistens sind sind nicht alle alle Zustandsgrößen mit mit vertretbaren Aufwand meßbar. Nicht meßbare Zustandsgrößen müssen m mit mit einem Beobachter geschätzt werden. Werden Eigenwerte in in der der komplexen Ebene weit weit nach links verschoben, so so können k nicht realisierbare Stellgrößen en auftreten. Bei Bei Systemen mit mit mehreren Eingängen ngen werden nicht alle alle Reglerparameter für ffür r die die beliebige Vorgabe der der Eigenwerte des des Regelkreises benötigt. Das Das bedeutet, es es existieren Freiheiten, deren Nutzung nicht unmittelbar klar klar ist. ist.

3 Entwurf durch Polvorgabe (3) Frage: Wohin soll man die Eigenwerte des geschlossenen Regelkreises schieben?

4 ckführung (1) Modell der der Regelstrecke: ẋ(t) = Ax(t)+Bu(t) y(t) = Cx(t) Durch Einsetzen des des Regelgesetzes u(t) = Kx(t)+Vw(t) Dimension Dimension m x x n Dimension Dimension m x x m erhält man man das das Zustandsmodell des des geschlossenen Kreises: ẋ(t) = (A BK)x(t)+BVw(t) y(t) = Cx(t) Systemmatrix Systemmatrix A G des G des geschlossenen geschlossenen Kreises Kreises

5 ckführung (2) Dimension Dimension m x x m Eine Eine ührung verändert die die Eigendynamik. Kein Soll-Ist-Vergleich ((w(t)-y(t)). (t)-y(t)).). Stationäre Genauigkeit kann über die die Vorfilter-Matrix V eingestellt werden.

6 Anforderungen an an eine Zustandsregelung ckführung (3) Stabilität: t: Die Die Eigenwerte von von A-BK müssen links links der der j-achse j liegen. (Anforderung an an K) K) Stationäre Genauigkeit: lim t Die Matrix V Aus existiert nur dann, wenn 0 kein Eigenwert der Systemmatrix (A-BK) ist und die Übertragungsmatrix folgt C(sI-A+BK) - 1 B keine Nullstellen bei 0 hat. y(t) = lim t w(t) G W (s=0)=i G W (s) = C(sI A+BK) 1 BV G W (0) = C( A+BK) 1 BV=I V = [C( A+BK) 1 B] 1

7 Polvorgabe für f r Eingrößensysteme ckführung (4) Nach Vorgabe des charakteristischen Polynoms des geschlossenen Regelkreises gibt es es eine eindeutige Lösung für f r die die Elemente des RRückführvektors k. k. Anhand der der Regelungsnormalform können k diese Elemente mit mit Hilfe eines Koeffizientenvergleichs sofort angegeben werden (vgl. Skript RT). Eine direkte Berechnung ist ist auch mittels der der sogenannten Ackermann-Formel möglich. m

8 Polvorgabe für f r Eingrößensysteme ckführung (4a)

9 ckführung (5) Polvorgabe für f r Eingrößensysteme ACKERMANN-Formel letzte letzte Zeile Zeile der der inversen inversen Steuerbarkeitsmatrix Steuerbarkeitsmatrix n+1 Koeffizienten des char. Polynoms des Regelkreises n Matlab-Funktion Funktion: k = acker(a, b, b, lambda_g)

10 Polvorgabe für f r Mehrgrößensysteme ensysteme ckführung (6) Nach Vorgabe des charakteristischen Polynoms des geschlossenen Regelkreises gibt es eskeine eindeutig Lösung für f r die die Elemente der der m x n Rückführmatrix K. K. Bei Bei Systemen mit mit mehreren Stellgrößen en können k durch eine ührung neben der der Fest- legung der der Eigenwerte noch weitere Anforderungen berücksichtigt werden: Robustheit der der Eigenwerte gegenüber Parameteränderungen (MATLAB-Funktion place). Entkopplung des Ein- Ausgangsverhalten. Berücksichtigung von Stellgrößenbeschränkun- enbeschränkun- gen.

11 Polvorgabe für f r Mehrgrößensysteme ensysteme Robuste Polfestlegung mit mit K = place(a,b,lambda_g) ckführung (7) Die RückfR ckführmatrix K wird iterativ so bestimmt, daß die die Eigenwerte des des Regelkreises die die gewünschten Lagen haben. die die Eigenvektoren der der Systemmatrix (A-BK) möglichst m orthogonal sind. sich sich die die Lagen der der Eigenwerte möglichst m wenig ändern, wenn Parameteränderungen die die Systemmatrix A-BK+ AA-BK+ des des rrückgeführten Systems stören. Diese Optimierung wird wird nur nur bei bei der der Vorgabe reeller Eigenwerte durchgeführt hrt!!

12 Entkopplung des Ein- Ausgangsverhaltens Entwurfsziel: ckführung (8)

13 Entkopplung des Ein- Ausgangsverhaltens ckführung (9)

14 Entkopplung des Ein- Ausgangsverhaltens ckführung (10)

15 ckführung (10a) Zusammenhang: Differenzgrade --Entkopplungsindizes Berechnung der Ableitungen der Ausgangsgröße y i (t): δ i ẏ i (t) = c T iẋ(t) = ct i Ax(t)+cT i Bu(t) ÿ i (t) = c T i Aẋ(t) = ct i A2 x(t)+c T i ABu(t). y (d i+1) i (t) = c T i Adi+1 x(t)+c T i Ad ibu(t) erstmalig 0 =0 für d i >0 =0 für d i >1

16 Entkopplung des Ein- Ausgangsverhaltens ckführung (11) Berechnung des des Zustandsreglers Differenzgrad Differenzgrad des des Systems Systems mit

17 Entkopplung des Ein- Ausgangsverhaltens Berechnung des des Vorfilters ckführung (12) mit Übertragungsmatrix des geschlossenen Regelkreises

18 Entkopplung des Ein- Ausgangsverhaltens Struktur des des entkoppelten Systems ckführung (13) Invariante Invariante Nullstellen Nullstellen der der Regelstrecke Regelstrecke Stabile Entkopplung nur nur möglich, m wenn die die Regelstrecke keine IN IN in in der der rechten s-halbebene s hat hat!!!!!!

19 Beispiel 2-DOF 2 Hubschraubermodell Direkte Methode ckführung (14) AG = [ 0., 0., 1., 0.] [ 0., 0., 0., 1.] [ 5.77*k_ *k_21,.326*k_21, 5.77*k_ *k_22,.326*k_22, 5.77*k_ *k_23,.326*k_23, 5.77*k_ *k_24].326*k_24] [ -.651*k_ *k_21, -.651*k_ *k_22, -.651*k_ *k_23, -.651*k_ *k_24] C(λ) = λ^4.651* λ^3 ^3*k_ * λ^3 ^3*k_ *k_13 k_13* λ^ *k_23 k_23* λ^3.651*k_12 k_12* λ^ *k_22 k_22* λ^ *k_11 k_11* λ^ *.326*k_21 k_21* λ^2 15.9* λ^2 ^2*k_23 k_23*k_14 k_ * λ^2 ^2*k *k_13 _13*k_24 k_ *k_21 k_21* λ*k_ *k_11 k_11* λ*k_ * λ*k_22 k_22*k_13 k_ * λ*k_12 k_12*k_23 k_ *k_21*k_ *k_11*k_22 Beliebige Eigenwertvorgabe über nur nur einen Eingang ist ist nicht möglich m!!

20 Beispiel 2-DOF 2 Hubschraubermodell ckführung (15) Vorgabe der Eigenwerte des geschlossenen Kreises: C(λ) = (λ+1)(λ+2)(λ+3)(λ+4) Einsetzen von = λ 4 +10λ 3 +35λ 2 +50λ+24 k 13 =k 14 =k 22 =k 24 =0 in die symbolisch berechnete charakteristische Gleichung liefert: k 23 0,326=10 k 23 = 10 0,326 = 30, k 12 k 23 15,9=50 k 12 = 15,9 k = 15,9 ( 30,675) =0.1025

21 Beispiel 2-DOF 2 Hubschraubermodell ckführung (16) und: 24 k 21 k 12 15,9=24 k 21 = 15,9 k = 15,9 0,1025 = 14,73 k 11 5,77 k 12 0,651 k 21 0,326=35 k 11 = 1 5,77 (35+k 12 0,651+k 21 0,326) = 1 5,77 (35+0,1025 0,651+14,73 0,326)=5,2418 Rückf ckführmatrix: K = [ 5,2418 0, , ,675 0 ]

22 ckführung (17) Beispiel 2-DOF 2 Hubschraubermodell Berechnung der Eigenwerte des Regelkreises: Gutes Gutes stationäres stationäres Störverhalten Störverhalten von von u 1 (t) 1 (t)-> > -> y y 1 (t) 1 (t) EW_K = V = [ ] Schlechte Schlechte Entkopplung Entkopplung von von u 1 (t) 1 (t)-> > -> y y 2 (t) 2 (t)

23 ckführung (18) Beispiel 2-DOF 2 Hubschraubermodell Berechnung der RückfR ckführmatrix mit Matlab- Funktion place: K = [ 0,9030 0,2964 0,8715 0,0517 0,4962 1,8348 0,0686 1,7620 ] EW_K = V = [ ]

24 ckführung (19) Beispiel 2-DOF 2 Hubschraubermodell Berechnung der RückfR ckführmatrix mit Matlab- Funktion place: K = [ 23,9681 4,2093 4,1235 0,6032 9, ,8260 1,2825 8,2701 ] EW_K = V = [ ]

25 ckführung (20) Beispiel 2-DOF 2 Hubschraubermodell Berechnung der Vorfiltermatrix für f r gutes Führungsverhalten u 1 (t) 1 (t) V = EW_K = [ 23, , 25 ] u 2 (t) 2 (t) K = [ 23,9681 4,2093 4,1235 0,6032 9, ,8260 1,2825 8,2701 ]

26 ckführung (21) Beispiel 2-DOF 2 Hubschraubermodell Berechnung der Vorfiltermatrix für f r gutes Störverhalten V = EW_K = [ 0, , 0221 ] K = [ 23,9681 4,2093 4,1235 0,6032 9, ,8260 1,2825 8,2701 ]

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Erreichbarkeit und Zustandsregler

Erreichbarkeit und Zustandsregler Übung 5 Erreichbarkeit und Zustandsregler 5. Kriterium für die Erreichbarkeit Betrachtet wird wieder ein zeitkontinuierliches, lineares und zeitinvariantes System (LZI bzw. LTI : Linear Time Invariant)

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Zusammenfassung der 9. Vorlesung

Zusammenfassung der 9. Vorlesung Zusammenfassung der 9. Vorlesung Analyse des Regelkreises Stationäres Verhalten des des Regelkreises Bleibende Regelabweichung für ffür r FFührungs- und und Störverhalten Bleibende Regelabweichung für

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Regelungstechnik 2. 4y Springer. Jan Lunze. Mehrgrößensysteme Digitale Regelung. 4., neu bearbeitete Auflage

Regelungstechnik 2. 4y Springer. Jan Lunze. Mehrgrößensysteme Digitale Regelung. 4., neu bearbeitete Auflage Jan Lunze Regelungstechnik 2 Mehrgrößensysteme Digitale Regelung 4., neu bearbeitete Auflage Mit 257 Abbildungen, 53 Beispielen, 91 Übungsaufgaben sowie einer Einführung in das Programmsystem MATLAB 4y

Mehr

Klausur: Regelungs- und Systemtechnik 2

Klausur: Regelungs- und Systemtechnik 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Klausur: Regelungs- und Systemtechnik 2 Kirchhoff-Hörsaal 1 Donnerstag, den 19. 09. 2013 Beginn: 09.30 Uhr Bearbeitungszeit: 120 Minuten

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik Formelsammlung für den Teilbereich Zustandsraumdarstellung der Vorlesung Einführung in die Regelungstechnik Diese Formelsammlung ist ein Auszug aus der Formelsammlung zur Systemtheorie-Vorlesung von Matthias

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Übungsskript Regelungstechnik 2

Übungsskript Regelungstechnik 2 Seite 1 von 11 Universität Ulm, Institut für Mess-, Regel- und Mikrotechnik Prof. Dr.-Ing. Klaus Dietmayer / Seite 2 von 11 Aufgabe 1 : In dieser Aufgabe sollen zeitdiskrete Systeme untersucht werden.

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Zustandsraum: Historische Einordnung

Zustandsraum: Historische Einordnung Zustandsraum: Historische Einordnung Die Grundlagen der Zustandsraummethoden wurden im Zeitraum 1955 1965 von Kalman und seinen Kollegen in dem Research Institute for Advanced Studies in Baltimore entwickelt.

Mehr

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich Regelsysteme 1 5. Tutorial: Stabilitätskriterien George X. Zhang Institut für Automatik ETH Zürich HS 2015 George X. Zhang Regelsysteme 1 HS 2015 5. Tutorial: Stabilitätskriterien Gliederung 5.1. Stabilität

Mehr

Zusammenfassung der 7. Vorlesung

Zusammenfassung der 7. Vorlesung Zusammenfassung der 7. Vorlesung Beschreibung und Analyse dynamischer Systeme im Zustandsraum Methoden zur Berechnung der Transitionsmatrix Φ(t) = e At Numerische Integration Reihenentwicklung Mit Hilfe

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Moderne Methoden der Regelungstechnik I

Moderne Methoden der Regelungstechnik I Technische Universität München Vorlesungsmitschrift Moderne Methoden der Regelungstechnik I Sommersemester 2014 Autor Konstantin Werner konstantin.werner@gmail.com 1. Überarbeitung Christian Dengler sumo_spider@yahoo.de

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

60 Minuten Seite 1. Einlesezeit

60 Minuten Seite 1. Einlesezeit 60 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Differentialgleichungssysteme Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 DGlSysteme - Zusammenfassung Allgemeine Differentialgleichungssysteme.Ordnung

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

4 Eigenwerte und Eigenvektoren

4 Eigenwerte und Eigenvektoren 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Moderne Methoden der Regelungstechnik

Moderne Methoden der Regelungstechnik Moderne Methoden der Regelungstechnik Professor Dr.-Ing. Ferdinand Svaricek Professur für Steuer und Regelungstechnik Fakultät für Luft und Raumfahrttechnik Universität der Bundeswehr München Vorwort Diese

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte) BSc - Sessionsprüfung 6.8.8 Regelungstechnik II (5-59-) Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 (unterschiedlich gewichtet, total 6 Punkte) Um die

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Band I: Analyse und Synthese. lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K

Band I: Analyse und Synthese. lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K J. Ackermann Abtastregelung Zweite Auflage Band I: Analyse und Synthese Mit 71 Abbildungen lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K laventa r- h' r O o JJj Sadigebiefei

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Zustandsraum und Digitale Regelung

Zustandsraum und Digitale Regelung Zustandsraum und Digitale Regelung von Erstellt am 13 April 2015 Seite 1 Inhaltsverzeichnis 2. Digitale Regelung: Einführung 3. Kurzübersicht: Zeitdiskrete Systeme 4. Stabilität zeitdiskreter Systeme 5.

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Regelungstechnik II. Übung 1

Institut für Leistungselektronik und Elektrische Antriebe. Regelungstechnik II. Übung 1 Regelungstechnik II Übung 1 Übungen Regelungstechnik II Steffen Bintz M.Sc. Tel.: (0711) 685-67371 E-Mail: steffen.bintz@ilea.uni-stuttgart.de Die Unterlagen und Aufgaben zu dieser Präsentation finden

Mehr

Lösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit

Lösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit Prof. Dr.-Ing. Jörg Raisch Dr.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Veranstaltung Mehrgrößenregelsysteme Aufgabe

Mehr

SIMULINK. Regelkreise

SIMULINK. Regelkreise SIMULINK Regelkreise Dipl.-Ing. U. Wohlfarth Inhalt Modellierung einer Regelstrecke in Simulink Analyse der Streckeneigenschaften in Matlab Berechnung von Reglerkoeffizienten in Matlab Auslegung eines

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Zusammenfassung: Eigenwerte, Eigenvektoren, Diagonalisieren Eigenwertgleichung: Bedingung an EW: Eigenwert Eigenvektor charakteristisches Polynom Für ist ein Polynom v. Grad, Nullstellen. Wenn EW bekannt

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Einführung in die Regelungstechnik

Einführung in die Regelungstechnik Einführung in die Regelungstechnik Alexander Schaefer 1 Inhalt Was ist Regelungstechnik? Modellbildung Steuerung Anwendungsbeispiel Regelung Reglertypen 2 Was ist Regelungstechnik? Ingenieurwissenschaft

Mehr

Funnel-Regelung für elektrische Schaltkreise

Funnel-Regelung für elektrische Schaltkreise Fuel-Regelug für elektrische Schaltkreise Fachbereich Mathematik, Uiversität Hamburg Elgersburg, 5. März 2014 Fuel-Regelug für elektrische Schaltkreise Fuel-Regelug für elektrische Schaltkreise Beispiel:

Mehr

Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen

Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen Professur Mathematik in Industrie und Technik Fakultät für Mathematik, Technische Universität Chemnitz Arbeitsbericht zum

Mehr

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung Grundlagen der Regelungstechnik

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Erster Akt: Begriffe und Beispiele

Erster Akt: Begriffe und Beispiele Eigenvektoren 1 Erster Akt: Begriffe und Beispiele 2 Sei L : A A eine lineare Abbildung von einem Vektorraum A in sich sich selbst. (Man denke an z. B. an A = R 2.) 3 Ein Vektor a A, a 0, heißt ein Eigenvektor

Mehr

Anwendungen des Eigenwertproblems

Anwendungen des Eigenwertproblems Anwendungen des Eigenwertproblems Lineare Differentialgleichungssysteme 1. Ordnung Lineare Differentialgleichungssysteme 2. Ordnung Verhalten der Lösung von linearen autonomen DGLS Hauptachsentransformation

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik Aufgabe Punkte Geben Sie die Matrixbeschreibung der Quadrik {x R 3x 3x 8x x +x +4x +7 = 0} an Berechnen Sie die euklidische Normalform der Quadrik und ermitteln Sie die zugehörige Koordinatentransformation

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen

Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Jan Lunze Regelungstechnik 1 Systemtheoretische Grundlagen, Analyse

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

Regelungstechnik 1. Oldenbourg Verlag München Wien

Regelungstechnik 1. Oldenbourg Verlag München Wien Regelungstechnik 1 Lineare und Nichtlineare Regelung, Rechnergestützter Reglerentwurf von Prof. Dr. Gerd Schulz 3., überarbeitete und erweiterte Auflage Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 29.8.2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 69 Punkte) Um die

Mehr

Euklidische Normalformen der dreidimensionalen Quadriken

Euklidische Normalformen der dreidimensionalen Quadriken Euklidische Normalformen der dreidimensionalen Quadriken Es existieren 17 verschiedene Typen räumlicher Quadriken mit folgenden Normalformen: Euklidische Normalform der dreidimensionalen Quadriken 1-1

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte) Prof. Dr. H. P. Geering Prof. Dr. L. Guzzella BSc - Sessionsprüfung 7..8 egelungstechnik II 5-59- Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 unterschiedlich

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Algebraische Kurven. Holger Grzeschik

Algebraische Kurven. Holger Grzeschik Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre

Mehr

Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess

Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Verteidigung der Diplomarbeit: Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen

Mehr

5. Übung zur Linearen Algebra II -

5. Übung zur Linearen Algebra II - 5. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 2. Aufgabe 7 5 A := 2. 3 2 (i) Berechne die Eigenwerte und Eigenvektoren von A. (ii) Ist A diagonalisierbar?

Mehr

Automatisierungstechnik

Automatisierungstechnik Automatisierungstechnik Methoden für die Überwachung und Steuerung kontinuierlicher und ereignisdiskreter Systeme von Jan Lunze mit 401 Abbildungen, 74 Anwendungsbeispielen und 84 Übungsaufgaben Oldenbourg

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

Trigonalisierung einer Matrix Version ( )

Trigonalisierung einer Matrix Version ( ) Trigonalisierung einer Matrix Version (21.05.04) > with(linalg): > B:=matrix(4,4,[3,-1,1,-1, 2,1,0,-2, -1,0,4,0, 1,-1,0,2]); 3 1 1 1 B := 2 1 0 2 1 0 4 0 1 1 0 2 B ist Darstellungsmatrix des Endomorphismus

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

14 Übungen zu Regelung im Zustandsraum Teil 2

14 Übungen zu Regelung im Zustandsraum Teil 2 Zoltán Zomotor Versionsstand: 9. März 25, :32 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3./de/

Mehr

Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus

Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus Betriebsanleitung für gewöhnliche lineare Differentialgleichungen Prof. Dr. Dirk Ferus Version vom 30.10.2005 Inhaltsverzeichnis 1 Homogene skalare Gleichungen. 1 1.1 Einfache reelle Nullstellen.............................

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte) BSc - Sessionsprüfung 7.8.23 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet,

Mehr

Martin Horn Nicolaos Dourdoumas. Regelungstechnik. Rechnerunterstützter Entwurf zeitkontinuierlicher und zeitdiskreter Regelkreise

Martin Horn Nicolaos Dourdoumas. Regelungstechnik. Rechnerunterstützter Entwurf zeitkontinuierlicher und zeitdiskreter Regelkreise Martin Horn Nicolaos Dourdoumas Regelungstechnik Rechnerunterstützter Entwurf zeitkontinuierlicher und zeitdiskreter Regelkreise ein Imprint der Pearson Education München Boston San Francisco Harlow, England

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr