Signalübertragung und -verarbeitung

Größe: px
Ab Seite anzeigen:

Download "Signalübertragung und -verarbeitung"

Transkript

1 LEHRSTUHL FÜR INFORMATIONSÜBERTRAGUNG Laboratorium für Nachrichtentechnik Prof. Dr. Ing. J. Huber Friedrich Alexander Universität Erlangen Nürnberg D Schriftliche Prüfung im Fach Signalübertragung und -verarbeitung 30. Juli Aufgaben 90 Punkte Hinweise: Beachten Sie die Hinweise zu den einzelnen Teilaufgaben. Sollten Sie Teilaufgaben nicht lösen können, so beachten Sie ggf. die angegebenen Werte zum Weiterrechnen. Diese Werte entsprechen nicht immer der Lösung! Viele Teilaufgaben sind damit unabhängig lösbar! Falls Sie zusätzliche Bearbeitungsblätter benötigen, wenden Sie sich bitte an die Klausuraufsicht.

2 Seite 2. Aufgabe 22 Punkte Analoge Modulationsverfahren Für den Aufbau eines analogen Campusradios werden zwei mögliche Realisierungsformen betrachtet. Zum einen soll ein Konzept mittels Amplitudenmodulation (AM)näher untersucht werden, zum anderen ein Konzept mittels Frequenzmodulation (FM). Für die Auslegung der Sendeanlage werden folgende Rahmenbedingungen angenommen: uellensignal: Bandbreite des uellensignals: Aussteuerpegel des uellensignals: Trägerfrequenz: Maximal zur Verfügung stehende HF-Bandbreite: Sendeleistung: Musik (mono) 5 khz -20 db 00 MHz 20 khz 25 W Für einen Empfänger dieses Radiosenders werden folgende Annahmen zu Grunde gelegt: Signaldämpfung durch den Übertragungskanal (mit Berücksichtigung der Antennengewinne): Störung durch thermisches Rauschen mit der zweiseitigen Rauschleistungsdichte wirksam am Empfängereingang: 30 db W/Hz a) Geben Sie den Aussteuergrad des uellensignals an. Wert zum Weiterrechnen: 0,036 b) Berechnen Sie die Nutzsignalleistung am Empfängereingang. Wert zum Weiterrechnen: 3pW c) Berechnen Sie das Vergleichssignalstörleistungsverhältnis am Empfängereingang. Wert zum Weiterrechnen: Zunächst wird eine Realisierung mittels Zweiseitenband-Amplitudenmodulation mit Träger bei einem Modulationsgrad von 0,8 untersucht. d) Berechnen Sie den Prozentsatz der Sendeleistung, der für die Aussendung des (informationslosen)trägersignals aufgewendet werden muss. e) Welcher Störabstand (in db)ergibt sich für das demodulierte Empfängerausgangssignal (beim Einsatz von AM mit Träger)?

3 Seite 3 Im Folgenden wird eine Realisierung mittels Frequenzmodulation untersucht. f) Berechnen Sie den für das FM-Sendesignal möglichen maximalen Frequenzhub, wenn eine Übertragung in hoher ualität angestrebt wird. Hinweis: Wert zum Weiterrechnen: 70 khz g) Welcher Störabstand (in db)ergibt sich für das demodulierte Empfängerausgangssignal (beim Einsatz von FM, hoher HF-Störabstand vorausgesetzt)? Die bisher durchgeführten Berechnungen führen zu dem Ergebnis, dass Amplitudenmodulation zu einen wesentlich schlechteren Störabstand im Empfängerausgangssignal führt als Frequenzmodulation. h) Wodurch ist dieses deutlich schlechtere Abschneiden der amplitudenmodulierten Übertragung begründet? Um das amplitudenmodulierte Konzept doch noch konkurrenzfähig zu machen, wird der Einsatz eines Empfangsverstärkers vorgeschlagen. i) Um wieviel db steigt der Störabstand im demodulierten Empfängerausgangssignal (NF-Signal), wenn ein (weiterer) Verstärker zwischen HF-Eingangsstufe und dem AM-Demodulator zwischengeschaltet wird?

4 Seite 4 2. Aufgabe 6 Punkte Informationstheorie Gegeben sei eine ternäre (3-wertige)gedächtnislose Informationsquelle mit den Symbolen X {A, B, C}. a) Welchen Wert kann die Entropie einer ternären Informationsquelle maximal aufweisen? Im Folgenden soll davon ausgegangen werden, dass die a-priori Wahrscheinlichkeit für das Symbol B doppelt so hoch wie die Wahrscheinlichkeit für das Symbol A ist: Pr{B} =2Pr{A}. b) Welcher Wertebereich ist für Pr{A} zulässig? c) Kann der maximale Wert der Entropie gemäß Teilaufgabe a)von der vorliegenden uelle prinzipiell erreicht werden? Falls ja, für welchen Wert von Pr{A} ist dies der Fall? Falls nein, warum nicht? Im weiteren Verlauf soll Pr{A} = 0,25 fest gewählt sein. d) Welche Codewortlänge ist für eine direkte Zuordnung von den ternären uellensymbolen zu binären Codewörtern fester Länge notwendig? e) Konstruieren Sie den Baum einer Huffman-Codierung. Es sollen uellenwörter aus einzelnen Symbolen X (uellwortlänge )auf binäre Codewörter variabler Länge abgebildet werden. Welche mittlere Codewortlänge wird durch diese uellencodierung erzielt? Wert zum Weiterrechnen:,5 Codesymbole/uellensymbol f) Beurteilen Sie die durch die Huffman-Codierung erzielte mittlere Codewortlänge. Ist eine weitere Verbesserung möglich? Falls ja, durch welche Maßnahmen?

5 Seite 5 3. Aufgabe 6 Punkte Pulscodemodulation (PCM) Gegeben seien die Wahrscheinlichkeitsdichtefunktionen f qi (q i )und die Leistungsdichtespektren Φ qi q i (f), i =,2,3 von drei zeit- und wertkontinuierlichen uellensignalen q (t), q 2 (t)und q 3 (t). f q (q ) Φ q q (f) q 2kHz 2kHz f f q2 (q 2 ) Φ q2 q 2 (f) q 2 5kHz 5kHz f f q3 (q 3 ) Φ q3 q 3 (f) q 3 8kHz 8kHz f Diese Signale sind mittels jeweils gut an die Signaleigenschaften angepasste PCM-Übertragungssysteme digital zu übertragen. a) Geben Sie die jeweils minimale Abtastfrequenz f A an, die nötig ist, um die Signale wieder störungsarm rekonstruieren zu können. b) Beurteilen Sie bei welchen Signalen durch eine nicht gleichmäßige uantisierung die Leistung des uantisierungsgeräusches verringert werden kann und bei welchen nicht. Kurze Begründung!

6 Seite 6 c) Beurteilen Sie bei welchen Signalen der Einsatz von differentieller Pulscodemodulation (DPCM)sinnvoll ist. Kurze Begründung! d) Gegeben sind nachfolgende drei Kompressorkennlinien k (q), k 2 (q)und k 3 (q). Geben Sie an bei welchen Signalen (q (t), q 2 (t)und q 3 (t)) diese jeweils sinnvoll einzusetzen sind. Kurze Begründung! k (q) k 2 (q) k 3 (q) q q q Im Folgenden wird nur noch das Signal q 2 (t)betrachtet. Nach der Abtastung (Abtastfrequenz f A =/T A )liegt das zeitdiskrete, wertkontinuierliche Signal q[k] =q 2 (kt A )vor. Von diesem Signal sind die Wahrscheinlichkeitsdichtefunktion f q (q): f q (q) = { 3 2 ( q )2, <q< 0, sonst und die Autokorrelationsfunktion φ qq [κ] =E{q[k + κ]q[k]} bekannt: φ qq [κ] σ 2 q σ 2 q /2 σq 2 /4 σq 2 / κ Wir betrachten differentielle Pulscodemodulation (DPCM)mit dem nachstehenden Prädiktionsfehlerfilter. Grades. q[k] e[k] h 0 z e) Berechnen Sie den optimalen Koeffizienten h 0 des Prädiktionsfehlerfilters, für den die Varianz σ 2 e des Fehlersignals minimiert wird. f) GebenSiedenPrädiktionsgewinn G P in db an.

7 Seite 7 4. Aufgabe 22 Punkte Digitale Übertragung Betrachtet wird eine Datenübertragung mittels Sprachband-Modem gemäß dem ITU-T Standard V.32 über 2-Draht Telefonleitungen. Als Modulationsverfahren wird digitale uadraturamplituden-modulation (AM)verwendet. Die Trägerfrequenz beträgt 800 Hz. Für die Übertragung im Sprachband eines Telefonsystems steht ausschließlich der Frequenzbereich Hz zur Verfügung. Die Sendeleistung darf den Wert 3 dbm nicht überschreiten. Vereinfachend wird angenommen, dass die Signaldämpfung abhängig von der Länge des Übertragungsweges in diesem Frequenzbereich einheitlich 4 db/km beträgt. Als Störung wird nur thermisches Rauschen berücksichtigt. Dieses kann als additives weißes gaußsches Rauschen mit der zweiseitigen Rauschleistungsdichte von 0 20 W/Hz, wirksam am Empfängereingang, modelliert werden. a) Warum wird für diese Anwendung nicht Basisbandübertragung, sondern trägermodulierte Übertragung verwendet? Für die uncodierte Übertragung sieht der Standard zwei Datenraten vor: 4800 bit/s und 9600 bit/s. Bei beiden Varianten beträgt die Symbolrate 2400 Symbole/s. b) Wieviele Signalpunkte besitzt jeweils die Konstellation? c) Welcher maximale roll-off-faktor kann bei Verwendung von cos-roll-off Impulsen jeweils verwendet werden? d) Wie groß ist für beide Varianten die spektrale Effizienz? Im Folgenden soll die ualität einer Übertragung über eine 5 km lange Leitung mit einer Datenrate von 4800 bit/s untersucht werden. e) Geben Sie die maximal zulässige Sendeleistung in Watt an. Wert zum Weiterrechnen: 25 µw f) Wie hoch ist die empfangene Energie je bit, wenn der Sender mit der maximal zulässigen Leistung sendet? Wert zum Weiterrechnen: 5 0 Ws g) Welcher Wert ergibt sich für das Vergleichssignalstörleistungsverhältnis E b /N 0 vor der Detektion? Geben Sie diesen Wert auch in db an (Vergleichssignalstörabstand). Was folgern Sie an Hand dieses Ergebnisses für die zu erwartende Bitfehlerwahrscheinlichkeit?

8 Seite 8 h) Mit welcher maximalen Datenrate könnte ein informationstheoretisch optimales Übertragungsverfahren Daten fehlerfrei übertragen?

9 Seite 9 5. Aufgabe 4 Punkte Diskrete Fourier Transformation (DFT) Betrachtet werden zwei endliche Folgen der Länge 8 (k =0,,...,7): x[k] =,, 0, 0, 0, 0, 0, 0 y[k] =,,,, 0, 0, 0, 0 a) Berechnen Sie die DFT-Spektren X[µ] = DFT 8 {x[k]} und Y [µ] = DFT 8 {y[k]} (Transformationslänge M = 8). Die DFT-Spektren sollen als Polynom in w 8 (w 8 : Transformationskern der DFT der Länge 8)dargestellt werden. Hinweis: Die Spektren sollen nicht für einzelne Werte von µ ausgerechnet werden, sondern die Ergebnisse sollen als Funktionen in der Variable µ dargestellt werden. b) Welche Symmetrie-Eigenschaften weisen der Realteil und der Imaginärteil von X[µ] und Y [µ] jeweils auf? c) Berechnen Sie die zyklische Faltung z[k] der beiden Folgen x[k] und y[k]: z[k] def = x[k] y[k]. d) Bestimmen Sie mittels der DFT-Spektren (in Darstellung als Polynome in w 8 gemäß Teilaufgabe a)) eine Folge v[k] der Länge 8 so, dass die zyklische Faltung von x[k] mit v[k] die Folge y[k] ergibt: y[k]! = x[k] v[k].

{w, e, o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

{w, e, o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. LEHRSTUHL FÜR INFORMATIONSÜBERTRAGUNG Laboratorium für Nachrichtentechnik μ Prof. Dr. Ing. J. Huber Friedrich Alexander Universität Erlangen Nürnberg D Schriftliche Prüfung im Fach Signalübertragung und

Mehr

Schriftliche Prüfung. im Fach. Nachrichtentechnische Systeme. 11. Oktober Aufgaben. 110 Punkte

Schriftliche Prüfung. im Fach. Nachrichtentechnische Systeme. 11. Oktober Aufgaben. 110 Punkte KLehrstuhl für Informationsübertragung Lehrstuhl für Informationstechnik mit Schwerpunkt Kommunikationselektronik Schriftliche Prüfung im Fach Nachrichtentechnische Systeme. Oktober 0 7 Aufgaben 0 Punkte

Mehr

Signalübertragung und -verarbeitung

Signalübertragung und -verarbeitung ILehrstuhl für Informationsübertragung Schriftliche Prüfung im Fach Signalübertragung und -verarbeitung 6. Oktober 008 5Aufgaben 90 Punkte Hinweise: Beachten Sie die Hinweise zu den einzelnen Teilaufgaben.

Mehr

Schriftliche Prüfung. im Fach Nachrichtenübertragung. 17. Februar 2006 Dauer: 120 min 4 Aufgaben. 120 Punkte

Schriftliche Prüfung. im Fach Nachrichtenübertragung. 17. Februar 2006 Dauer: 120 min 4 Aufgaben. 120 Punkte Laboratorium für Nachrichtentechnik Professor Dr. Ing. J. Huber Friedrich Alexander Universität Erlangen Nürnberg Schriftliche Prüfung im Fach Nachrichtenübertragung 17. Februar 2006 Dauer: 120 min 4 Aufgaben

Mehr

Abschlussprüfung Nachrichtentechnik 03. August 2015

Abschlussprüfung Nachrichtentechnik 03. August 2015 Abschlussprüfung Nachrichtentechnik 03. August 2015 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

Schriftliche Prüfung. im Fach. Nachrichtentechnische Systeme. Neue Studienordnung (7,5 ECTS) 20. Februar Aufgaben.

Schriftliche Prüfung. im Fach. Nachrichtentechnische Systeme. Neue Studienordnung (7,5 ECTS) 20. Februar Aufgaben. KLehrstuhl für Informationsübertragung Lehrstuhl für Informationstechnik mit Schwerpunkt Kommunikationselektronik Schriftliche Prüfung im Fach Nachrichtentechnische Systeme Neue Studienordnung (7,5 ECTS)

Mehr

6. April Dauer: 120 min 4 Aufgaben. 120 Punkte

6. April Dauer: 120 min 4 Aufgaben. 120 Punkte Laboratorium für Nachrichtentechnik Professor Dr. Ing. J. Huber Friedrich Alexander Universität Erlangen Nürnberg Schriftliche Prüfung im Fach Nachrichtenübertragung 6. April 2006 Dauer: 120 min 4 Aufgaben

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.

Mehr

Puls-Code-Modulation. Thema: PCM. Ziele

Puls-Code-Modulation. Thema: PCM. Ziele Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden

Mehr

Klausur zur Vorlesung Informationstheorie

Klausur zur Vorlesung Informationstheorie INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 0167 Hannover Klausur zur Vorlesung Informationstheorie Datum:.02.2006 Uhrzeit: 9:00 Uhr Zeitdauer: 2 Stunden Hilfsmittel: ausgeteilte

Mehr

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 3 (6. Mai 10. Mai 2013)

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 3 (6. Mai 10. Mai 2013) Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. K.D. Kammeyer Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: Zeit: Ort: Umfang: 05. April 2005,

Mehr

Übungsaufgaben zur Vorlesung Quellencodierung

Übungsaufgaben zur Vorlesung Quellencodierung Übungsaufgaben zur Vorlesung Quellencodierung Aufgabe 1: Gegeben seien die Verbundwahrscheinlichkeiten zweier diskreter Zufallsvariablen x und y: P(x, y) x 1 = 1 x 2 = 2 x 3 = 3 y 1 = 1 0.1 0.1 0.1 y 2

Mehr

4. April 2008. Dauer: 120 min 5 Aufgaben. 120 Punkte

4. April 2008. Dauer: 120 min 5 Aufgaben. 120 Punkte Ä ÀÊËÌÍÀÄ ÊÁÆ ÇÊÅ ÌÁÇÆË ÊÌÊ ÍÆ Laboratorium für Nachrichtentechnik Professor Dr. Ing. J. Huber Friedrich Alexander Universität Erlangen Nürnberg Schriftliche Prüfung im Fach Nachrichtenübertragung 4. April

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Name Studiengang (Hauptfach) Vorname Fachrichtung (Nebenfach)... Note Matrikelnummer Unterschrift der Kandidatin/des Kandidaten 1 I II TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Informatik Midterm-Klausur

Mehr

Übung 4. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer

Übung 4. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Übung 4 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Technische Universität München Fakultät für Informatik 09.05.2016 / 10.05.2016 1/12

Mehr

Musterlösung zur Aufgabe A1.1

Musterlösung zur Aufgabe A1.1 Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise

Mehr

Klausur Informationstheorie und Codierung

Klausur Informationstheorie und Codierung Klausur Informationstheorie und Codierung WS 2013/2014 23.01.2014 Name: Vorname: Matr.Nr: Ich fühle mich gesundheitlich in der Lage, die Klausur zu schreiben Unterschrift: Aufgabe A1 A2 A3 Summe Max. Punkte

Mehr

Fachprüfung. Nachrichtencodierung

Fachprüfung. Nachrichtencodierung Fachprüfung Nachrichtencodierung 6. August 2009 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name: Vorname: Matr.-Nr.: Unterschrift:

Mehr

Übertragungsverfahren der Nachrichtentechnik 2 Ex Beispiele zum 1. Übungstest

Übertragungsverfahren der Nachrichtentechnik 2 Ex Beispiele zum 1. Übungstest Ex Beispiele zum 1. Übungstest 1 PAM Grundlagen Aufgabe 1.1 Zur Übertragung eines einzelnen binären Symbols über einen verzerrungsfreien Kanal mit additivem weißem Gaußschem Rauschen (Leistungsdichtespektrum

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik Inhaltsverzeichnis: Thema Unterpunkt eite Modulation allgemein Definition 8-2 Frequenzmultiplex 8-2 Zeitmultiplex 8-2 Übersicht Modulationsverfahren Amplitudenmodulation (AM) 8-3 Winkelmodulation (WM)

Mehr

Lösungen 4.1 Analoge Übertragung mit PCM

Lösungen 4.1 Analoge Übertragung mit PCM J. Lindner: Informationsübertragung Lösungen Kapitel 4 Lösungen 4. Analoge Übertragung mit PCM 4. a) Blockbild einer Übertragung mit PCM: q(t) A D 8 bit linear f Amin = 8kHz q(i) digitales ˆq(i) Übertragungs-

Mehr

100 db + 30 log 10 1km. [db]

100 db + 30 log 10 1km. [db] LEHRSTUHL FÜR NACHRICHTENTECHNIK II Digitale Übertragung und Mobilkommunikation μ Professor Dr. Ing. J. Huber G UNIVERSITÄT ERLANGEN NÜRNBERG Schriftliche Prüfung im Fach Nachrichtenübertragung 3. September

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

Grundlagen der digitalen und analogen Nachrichtenübertragungssysteme

Grundlagen der digitalen und analogen Nachrichtenübertragungssysteme Hans Dieter Luke Signalübertragung Grundlagen der digitalen und analogen Nachrichtenübertragungssysteme Sechste, neubearbeitete und erweiterte Auflage mit 221 Abbildungen, 6 Tabellen und 185 Aufgaben mit

Mehr

Einführung Bitübertragungsschicht

Einführung Bitübertragungsschicht Einführung Bitübertragungsschicht 01010001 Kanal 01010001 Information Information Transformation Störeinflüsse (Rauschen, Echo, etc.) Transformation Bitübertragungsschicht (Physical Layer): Übertragung

Mehr

1 Wahrscheinlichkeitsdichtefunktion

1 Wahrscheinlichkeitsdichtefunktion 1 Wahrscheinlichkeitsdichtefunktion Es wird zunächst der Begriff der Wahrscheinlichkeitsdichtefunktion vorgestellt, die zur statistischen Beschreibung von zufälligen Prozessen oder zufälligen Signalen

Mehr

Spektrum und Bandbreite

Spektrum und Bandbreite Spektrum und Bandbreite 0.0 0 1f 2f 3f 4f 5f 6f Spektrum: Bandbreite: Grundlagen der Rechnernetze Physikalische Schicht 12 Aperiodische Signale in der Frequenzdomäne Bildquelle: de.wikipedia.org/wiki/frequenzspektrum

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

Schriftliche Prüfung. im Fach. Nachrichtenübertragung. 14. Oktober 2010. 5 Aufgaben. 120 Punkte

Schriftliche Prüfung. im Fach. Nachrichtenübertragung. 14. Oktober 2010. 5 Aufgaben. 120 Punkte KLehrstuhl für Informationsübertragung Schriftliche Prüfung im Fach Nachrichtenübertragung 14. Oktober 2010 5 Aufgaben 120 Punkte Hinweise: Für die Bestnote sind ca. 100 Punkte erforderlich. Die Aufgabenstellung

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Inhaltsverzeichnis Einleitung Darstellung von Signalen und Spektren Aufbau und Signale eines Software Defined Radio -Systems

Inhaltsverzeichnis Einleitung Darstellung von Signalen und Spektren Aufbau und Signale eines Software Defined Radio -Systems Inhaltsverzeichnis 1 Einleitung.................................. 1 1.1 Software Defined Radio-Systeme.................... 1 1.1.1 Verarbeitung imdigitalteil................... 2 1.1.2 Hardware und Software

Mehr

Klausur zur Digitalen Kommunikationstechnik

Klausur zur Digitalen Kommunikationstechnik Klausur zur Digitalen Kommunikationstechnik Prof. Dr. Henrik Schulze, Fachhochschule Südwestfalen, Standort Meschede 16. Januar 2015 Name Matr.-Nr. Vorname Unterschrift Aufgabe 1 2 3 4 Summe Note Punkte

Mehr

NTM1-Modul Schlussprüfung

NTM1-Modul Schlussprüfung ZHAW, NTM1, HS, 1 NTM1-Modul Schlussprüfung Name: 5 + 5 + 5 + 5 + 5 + 5 = 30 Punkte Vorname: 1: 2: 3: 4: 5: 6. Punkte: Note: Teilaufgaben sind möglichst unabhängig gehalten. Benutzen sie immer die Vorgaben!

Mehr

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche

Mehr

Übung 4: Physical layer and limits

Übung 4: Physical layer and limits Wintersemester 217/218 Rechnernetze Universität Paderborn Fachgebiet Rechnernetze Übung 4: Physical layer and limits 217-11-3 1. Basisband/Breitband Diese Aufgabe soll den Unterschied zwischen Basisband-

Mehr

Einführung in die Nachrichtenübertragung

Einführung in die Nachrichtenübertragung Klausur Einführung in die Nachrichtenübertragung Vorlesung und Rechenübung - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:................................... Matr.Nr:..........................

Mehr

Kanalkapazität. Gestörter Kanal. Grundlagen der Rechnernetze Physikalische Schicht 25

Kanalkapazität. Gestörter Kanal. Grundlagen der Rechnernetze Physikalische Schicht 25 Kanalkapazität Gestörter Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärke Distanz Grundlagen der

Mehr

Klausur zur Vorlesung Informationstheorie

Klausur zur Vorlesung Informationstheorie INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 07 Hannover Klausur zur Vorlesung Informationstheorie Datum: 0.0.00 Uhrzeit: 09:00 Uhr Zeitdauer:

Mehr

Aufgabe 7.1 Bei einer digitalen Übertragung liege folgendes Modell vor:

Aufgabe 7.1 Bei einer digitalen Übertragung liege folgendes Modell vor: 1 Aufgabe 7.1 Bei einer digitalen Übertragung liege folgendes Modell vor: Q x q x akf digitale Übertrag. q y akf S y Quellensymboldauer T q = 1ms diskreter Kanal Q x sei eine stationäre Markov-Quelle nullter

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.

Mehr

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8 Fachhochschule Aachen Campus Aachen Hochfrequenztechnik Hauptstudium Wintersemester 2007/2008 Dozent: Prof. Dr. Heuermann Spektrumanalyse Erstellt von: Name: Mario Schnetger Inhalt I. Einleitung 2 II.

Mehr

Nachrichtenübertragung. Grundmodell eines Nachrichtensystems Signalwandlung Signalaufbereitung Signalübertragung

Nachrichtenübertragung. Grundmodell eines Nachrichtensystems Signalwandlung Signalaufbereitung Signalübertragung Nachrichtenübertragung Grundmodell eines Nachrichtensystems Signalwandlung Signalaufbereitung Signalübertragung Übertragungsabschnitte Telekommunikationsnetz Quelle VSt/Switch/Router Verts/Regen VSt/Switch/Router

Mehr

Fachprüfung. Signal- und Systemtheorie

Fachprüfung. Signal- und Systemtheorie Fachprüfung Signal- und Systemtheorie 15. September 2010 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Formelblatt (2 DIN A4-Seiten) Name: Vorname: Matr.-Nr.: Unterschrift:

Mehr

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse 31. Oktober 2016 Eigenschaften diskreter Signale Quantisierung Frequenzbereichsmethoden Anhang Wesentliches Thema heute: 1 Eigenschaften

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Wintersemester 204/205 Signale und Systeme II Übungsaufgaben Übung Datum Themen Aufgaben

Mehr

Auf und Ab im Mobilfunk

Auf und Ab im Mobilfunk Auf und Ab im Mobilfunk Was die Übertragung von der Basisstation zu den Teilnehmern (Downlink) von der Gegenrichtung (Uplink) lernen kann Robert F.H. Fischer LEHRSTUHL FÜR INFORMATIONSÜBERTRAGUNG Laboratorium

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr

Digital Signal Processing

Digital Signal Processing - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese

Mehr

Klausur zur Digitalen Kommunikationstechnik

Klausur zur Digitalen Kommunikationstechnik Klausur zur Digitalen Kommunikationstechnik Prof. Dr. Henrik Schulze, Fachhochschule Südwestfalen, Standort Meschede 17. Januar 014 Die Klausur dauert 10 Minuten. Insgesamt sind 48 Punkte erreichbar. Erlaubte

Mehr

Grundlagen der Rechnernetze. Physikalische Schicht

Grundlagen der Rechnernetze. Physikalische Schicht Grundlagen der Rechnernetze Physikalische Schicht Übersicht Frequenz, Spektrum und Bandbreite Kanalkapazität Encoding und Modulation Beispiele für Übertragungsmedien Grundlagen der Rechnernetze Physikalische

Mehr

Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15

Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15 Inhaltsverzeichnis Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15 Kapitel 1 Einleitung 17 1.1 Historischer

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Name Studiengang (Hauptfach) Vorname Fachrichtung (Nebenfach)... Note Matrikelnummer Unterschrift der Kandidatin/des Kandidaten 1 I II TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Informatik Midterm-Klausur

Mehr

Digitale Signalverarbeitung sehen, hören und verstehen

Digitale Signalverarbeitung sehen, hören und verstehen Digitale Signalverarbeitung sehen, hören und verstehen Hans-Günter Hirsch Hochschule Niederrhein, Krefeld email: hans-guenter.hirsch@hs-niederrhein.de http://dnt.kr.hs-niederrhein.de Folie 1 Gliederung

Mehr

Nachrichtenübertragung

Nachrichtenübertragung Nachrichtenübertragung (Vorlesung I + II und Rechenübung I + II) - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:...........................

Mehr

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse 23. Oktober 2017 Eigenschaften diskreter Signale Quantisierung Frequenzbereichsmethoden Anhang Wesentliches Thema heute: 1 Eigenschaften

Mehr

Systeme II 8. Die physikalische Schicht (Teil 4)

Systeme II 8. Die physikalische Schicht (Teil 4) Systeme II 8. Die physikalische Schicht (Teil 4) Thomas Janson, Kristof Van Laerhoven*, Christian Ortolf Folien: Christian Schindelhauer Technische Fakultät : Rechnernetze und Telematik, *: Eingebettete

Mehr

Grundlagen der Technischen Informatik. Informationsgehalt. Kapitel 4.1

Grundlagen der Technischen Informatik. Informationsgehalt. Kapitel 4.1 Informationsgehalt Kapitel 4.1 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916) Quelle Sender

Mehr

AfuTUB-Kurs Prinzip der Nachrichtenübertragung

AfuTUB-Kurs Prinzip der Nachrichtenübertragung Technik Klasse E 14: Modulation & Demodulation Amateurfunkgruppe der TU Berlin https://dk0tu.de WiSe 2017/18 SoSe 2018 cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

Systeme II. Christian Schindelhauer Sommersemester Vorlesung

Systeme II. Christian Schindelhauer Sommersemester Vorlesung Systeme II Christian Schindelhauer Sommersemester 2006 5. Vorlesung 10.04.2006 schindel@informatik.uni-freiburg.de 1 Basisband und Breitband Basisband (baseband) Das digitale Signal wird direkt in Strom-

Mehr

3 Codierung diskreter Quellen. Quelle Quellcodierer Kanalcodierer reduziert die benötigte Datenmenge. fügt Daten zur Fehlerkorrektur ein.

3 Codierung diskreter Quellen. Quelle Quellcodierer Kanalcodierer reduziert die benötigte Datenmenge. fügt Daten zur Fehlerkorrektur ein. 3 Codierung diskreter Quellen 3 Einführung 32 Ungleichmäßige Codierung 33 Präfix-Codes 34 Grenzen der Code-Effizienz 35 Optimal-Codierung 3 Zusammenfassung < 24 / 228 > 3 Codierung diskreter Quellen Quelle

Mehr

Kanalkapazität. Grundlagen der Rechnernetze Physikalische Schicht 25

Kanalkapazität. Grundlagen der Rechnernetze Physikalische Schicht 25 Kanalkapazität Gestörter t Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärk ke Distanz Grundlagen

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

MIMO-Verfahren für OQAM-OFDM-Systeme

MIMO-Verfahren für OQAM-OFDM-Systeme p.1 Übersicht 1 Motivation 2 Aufbau einer SISO-OQAM-OFDM-TMUX-Filterbank 3 Aufbau der MIMO-Übertragungssysteme 4 MIMO mit räumlicher Diversität 5 MIMO mit Raummultiplex 6 Fazit p.2 Motivation Aktuell:

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei

Mehr

Übung 2. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017)

Übung 2. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017) Übung 2 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T SS27) Dennis Fischer dennis.fischer@tum.de http://home.in.tum.de/fischerd Institut für Informatik Technische Universität

Mehr

Grundlagen der digitalen Kommunikationstechnik

Grundlagen der digitalen Kommunikationstechnik Carsten Roppel Grundlagen der digitalen Kommunikationstechnik Übertragungstechnik - Signalverarbeitung - Netze mit 368 Bildern, 42 Tabellen und 62 Beispielen Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006

Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006 Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006 Institut für Nachrichtentechnik und Hochfrequenztechnik Bitte beachten Sie: Sie dürfen das Vorlesungsskriptum, einen Taschenrechner

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur SS 2017 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

Fachprüfung. Nachrichtencodierung

Fachprüfung. Nachrichtencodierung Fachprüfung Nachrichtencodierung 14. März 2006 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name:... Matr.-Nr.:... Unterschrift:...

Mehr

Informationstheorie und Codierung

Informationstheorie und Codierung Informationstheorie und Codierung 3. Codierung diskreter Quellen Gleichmäßiger Code Ungleichmäßiger Code Fano-, Huffman-Codierung Optimalcodierung von Markoff-Quellen Lauflängencodes nach Golomb und Rice

Mehr

Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1

Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1 Leitungscodierung bit Slide 1 Spektren leitungscodierter Signale bit Slide 2 Übertragungsfunktion des Cosinus- Rolloff Filters -f g f g Im Fall von NRZ ist: f g 1 2 T bit Slide 3 Augendiagramm Die nachstehenden

Mehr

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren

Mehr

Übung 3. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017)

Übung 3. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017) Übung 3 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T SS27) Dennis Fischer dennis.fischer@tum.de http://home.in.tum.de/fischerd Institut für Informatik Technische Universität

Mehr

A3.9: Viterbi Algorithmus: Grundlegendes

A3.9: Viterbi Algorithmus: Grundlegendes A3.9: Viterbi Algorithmus: Grundlegendes Die Grafik zeigt ein Trellisdiagramm und definiert gleichzeitig die Fehlergrößen Γ i (S 0 ) und Γ i (S 1 ) zu den Zeitpunkten i = 0 bis i = 5. Aus diesem Trellis

Mehr

P (X = 0) = P (X = 2) = 2

P (X = 0) = P (X = 2) = 2 Aufgabe 3% Gegeben ist der diskrete Kanal in Abbildung mit ufallsvariable X {,, } am Sender und Y {A, B} am Empf anger. Nehmen Sie an, dass gilt p P (X ) p p P (X ) P (X ) X Y.8. A.5.5 B..8 Abbildung :

Mehr

Analoge und digitale Modulationsverfahren

Analoge und digitale Modulationsverfahren Rudolf Mäusl Jürgen Göbel Analoge und digitale Modulationsverfahren Basisband und Trägermodulation Hüthig Verlag Heidelberg 1 Einleitung 1 1.1 Warum modulieren? 1 1.2 Was ist Modulation? 4 1.3 Übersicht

Mehr

Übung zu Drahtlose Kommunikation. 1. Übung

Übung zu Drahtlose Kommunikation. 1. Übung Übung zu Drahtlose Kommunikation 1. Übung 22.10.2012 Termine Übungen wöchentlich, Montags 15 Uhr (s.t.), Raum B 016 Jede Woche 1 Übungsblatt http://userpages.uni-koblenz.de/~vnuml/drako/uebung/ Bearbeitung

Mehr

d 1 P N G A L S2 d 2

d 1 P N G A L S2 d 2 Abschlussprüfung Nachrichtentechnik 28. Juli 2014 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

2. Eigenschaften digitaler Nachrichtensignale

2. Eigenschaften digitaler Nachrichtensignale FH OOW / Fachb. Technik / Studiengang Elektrotechnik u. Automatisierungstechnik Seite 2-2. Eigenschaften digitaler Nachrichtensignale 2. Abgrenzung zu analogen Signalen Bild 2.- Einteilung der Signale

Mehr

Laborpraktikum Grundlagen der Kommunikationstechnik

Laborpraktikum Grundlagen der Kommunikationstechnik Institut für Elektronik, Signalverarbeitung und Kommunikationstechnik Laborpraktikum Grundlagen der Kommunikationstechnik Versuch Analoge Pulsmodulationsverfahren KT 03 Pulsamplitudenmodulation PAM Pulsdauermodulation

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

6.1 Direktempfang. Blockschaltbild eines OOK-Empfängers. Photodiode

6.1 Direktempfang. Blockschaltbild eines OOK-Empfängers. Photodiode Blockschaltbild eines OOK-Empfängers rauschfreier opt. Verstärker s(t) g(t) w(t) Photodiode 2 R y k n(t) optisches Filter incl. Polfilter das Verhalten wird im äquivalenten Tiefpass-Bereich analysiert

Mehr

A1.1: Zur Kennzeichnung aller Bücher

A1.1: Zur Kennzeichnung aller Bücher A1.1: Zur Kennzeichnung aller Bücher Seit den 1960er Jahren werden alle Bücher mit einer 10 stelligen International Standard Book Number versehen. Die letzte Ziffer dieser sog. ISBN 10 Angabe berechnet

Mehr

Technische Grundlagen der Informatik Test Minuten Gruppe A

Technische Grundlagen der Informatik Test Minuten Gruppe A Technische Grundlagen der Informatik Test 1 08.04.2016 90 Minuten Gruppe A Matrikelnr. Nachname Vorname Unterschrift Deckblatt sofort ausfüllen und unterschreiben! Bitte deutlich und nur mit Kugelschreiber

Mehr

dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]:

dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: Beispiel: Leistungsgröße P out [dbw] bei Leistungsgröße P in [dbw] und Dämpfung L [db] Leistungsgröße P out [W] Grundlagen

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Einführung in NTM. Roland Küng, 2013

Einführung in NTM. Roland Küng, 2013 Einführung in NTM Roland Küng, 2013 1 Where to find the information? Skript Slides Exercises Lab https://home.zhaw.ch/~kunr/ntm.html 2 3 Aufgabe beim Entwurf eines nachrichtentechnischen Systems Erzeugung

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016 Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3

Mehr