3 Häufigkeitsverteilungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3 Häufigkeitsverteilungen"

Transkript

1 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal oder ordinalskaliertes Merkmal mit k Ausprägungen A 1, A 2,..., A k. Beispiel: X = Berufsstatus, k = 5: A 1 = selbstständig A 2 = angestellt A 3 = Arbeiter A 4 = arbeitslos A 5 = Beamter An n Untersuchungseinheiten, diese seien von 1 StatSoz 50

2 bis n durchnummeriert, wurden die Merkmalsausprägungen x 1,..., x n beobachtetet. Absolute Häufigkeit (frequency): Anzahl der Untersuchungseinheiten, die Ausprägung A j besitzen, formal h j = Anzahl der Daten x i mit x i = A j j = 1,..., k (der Buchstabe j ist hier ein sogenannter Laufindex, der zwischen 1 und k variiert). Es gilt h h k = k j=1 h j = n Relative Häufigkeit (relative frequency): r j = h j /n, j = 1,..., k StatSoz 51

3 Es gilt 0 r j 1 und k j=1 r j = k j=1 h j n = 1 n k j=1 h j = n n = 1 Angabe relativer Häufigkeiten in Prozent (Bezeichnung %): Prozentuale Häufigkeiten (percentage): p j = 100 r j j = 1,..., k Es gilt 0 p j 100 und k p j = k 100 r j = 100 ( k r j ) = 100 j=1 j=1 j=1 }{{} =1 StatSoz 52

4 Definition: Die Zusammenstellung der Merkmalsausprägungen mit den dazugehörigen (absoluten, relativen oder prozentualen) Häufigkeiten heißt Häufigkeitsverteilung (frequency distribution) des betreffenden Merkmals. Bemerkung: Da die Häufigkeitsverteilung auf Daten basiert, nennt man sie auch empirische Verteilung. StatSoz 53

5 Eine Häufigkeitsverteilung lässt sich übersichtlich in einer Häufigkeitstabelle (frequency table) darstellen: Tabelle 3 1 Häufigkeitstabelle Ausprägung absolute relative prozentuale Häufigkeit Häufigkeit Häufigkeit A 1 h 1 r 1 p 1 % A 2. h 2. r 2. p 2 %. A k h k r k p r % Summe n 1 100% Aus einer Häufigkeitsverteilung lassen sich erste Einsichten in die Struktur der Daten gewinnen. Zum Beispiel lassen sich die folgenden Fragen beantworten: StatSoz 54

6 Wie groß ist der Stellenwert einer einzelnen Merkmalsausprägung (Frage nach der Gewichtigkeit einer Ausprägung)? Welche Ausprägung besitzt den höchsten Stellenwert, trat also am häufigsten auf? Wie stark unterscheiden sich einzelne Ausprägungen im Hinblick auf ihre zugehörigen Häufigkeiten? Bei ordinalen Daten können wir noch zusätzlich fragen: Treten kleine Ausprägungswerte in etwa so häufig auf wie große Ausprägungswerte? Treten die häufigsten Werte in der,,mitte, also bei den mittleren Ausprägungswerten auf? StatSoz 55

7 Beispiel: Eine Gemeinde besitze hinsichtlich des Merkmals Berufsstatus die folgende Häufigkeitsverteilung: Tabelle 3 2 Häufigkeitsverteilung des Merkmals Berufsstatus Ausprägung h j r j (gerundet) A 1 selbstständig A 2 angestellt A 3 Arbeiter A 4 arbeitslos A 5 Beamter Summe Graphische Darstellungen: Säulendiagramm,Stabdiagramm (bar chart): Zeigt absolute bzw. relative Häufigkeiten als Funktion der Merkmalsausprägungen; Abszisse: Ausprägungen, Ordinate: Häufigkeiten. StatSoz 56

8 Darstellungsmittel ist die Höhe der Säule, d.h. die Höhe repräsentiert die (absolute oder relative) Häufigkeit. Abbildung 3 1 Säulendiagramm zu Tabelle 3 2 Kreisdiagramm,Tortendiagramm (pie chart): Zeigt Kreissektoren als Funktion der Merkmalsausprägungen; besonders geeignet für nominale Daten. StatSoz 57

9 Winkel, der einen Kreisausschnitt einer Kategorie festlegt, ist proportional zur relativen Häufigkeit: r j = Winkel des Kreissektors für A j in Grad 360 also = α j 360 α j = r j 360, j = 1,..., k Es gilt dann α i α j = r i r j = h i h j für 1 i, j k StatSoz 58

10 Beispiel: Berufsstatus Daten aus Tabelle 3 2: j α j Abbildung 3 2 Kreisdiagramm zu Tabelle 3 2 StatSoz 59

11 3.2 Klassierung von Daten Sind bei einem Merkmal unendlich viele Ausprägungen möglich, so ist die Anfertigung einer Häufigkeitsverteilung kaum zu empfehlen (auch unter Berücksichtigung einer vorgegebenen Messgenauigkeit). Es entstehen bei der Angabe aller Häufigkeiten sehr viele Nullen, hervorgerufen durch nicht beobachtete Merkmalswerte. Beispiel 3.1 Man möchte etwas über das Pendlerverhalten einer Gemeinde wissen. Dazu wurden 30 Autopendler nach ihrer Fahrzeit (in Minuten) von der Wohnung zur Arbeitsstätte befragt. Die Daten der von 1 bis 30 durchnummerierten Individueen sind in der folgenden Tabelle zusammengefasst: StatSoz 60

12 Tabelle 3 3 Pendler Daten Individuum Nr. Fahrzeit Individuum Nr. Fahrzeit geordnet: Die Merkmalsausprägungen 1, 2, 3, 4, 7, 8, 13, 15, 18, 20, 25 usw. wurden nicht beobachtet. StatSoz 61

13 Idee : Einteilung aller (reellen) Stichprobenwerte x 1,..., x n in sogenannte Klassen. Bezüglich der Klassenbildung gibt es zwar keine allgemein gültigen, strengen Regeln, aber einige Grundsätze, die es zu beachten gilt: Regel 1: Die Klassengrenzen sollten einfache Zahlenwerte sein. Regel 2: Klassen dürfen sich nicht überschneiden. Regel 3: Die Klassen müssen alle Beobachtungen erfassen. Regel 4: Die Klassenbreiten sind konstant zu wählen. Regel 5: Die Anzahl der Klassen ist geeignet zu wählen. StatSoz 62

14 Die Klassen müssen so gewählt werden (Regel 2), dass die Zuordnung einer Beobachtung zu einer Klasse eindeutig ist. Dazu muss geklärt sein, welcher Klasse eine Beobachtung zugeordnet wird, die auf eine Klassengrenze fällt. Die Eindeutigkeit der Zuordnung wird dadurch erreicht, dass man die Klassen als halboffene Intervalle festlegt (z. B. links abgeschlossen und rechts offen). Die Klassenanzahl richtet sich nach dem Stichprobenumfang. Als Anhaltspunkt dient die Regel k n. Einige Zahlenwerte: n n mögliche Wahl von k , ,7, ,9,10,11 Bei k Klassen [c 0, c 1 ), [c 1, c 2 ),..., [c k 1, c k ) StatSoz 63

15 sind die Zahlen c 0,..., c k so gewählt, dass c 0 < c 1 <... < c k gilt. Per Definition gehört eine Beobachtung x i zur Klasse [c j 1, c j ), falls c j 1 x i < c j gilt. Man spricht von Klassierung (grouped data) auch von Klassenbildung bzw. Gruppierung der Daten. Damit Regel 3 erfüllt ist, muss die oberste Klassengrenze größer sein als die größte Beobachtung c k > x (n). Oder man wählt als oberste Intervallgrenze die größte Beobachtung, also c k = x (n), wobei dann diese Intervallgrenze zur Klasse gehören muss. Die unterste Klassengrenze c 0 muss mindestens so klein wie die kleinste Beobachtung, c 0 x (1) sein. StatSoz 64

16 Unter der absoluten Häufigkeit bezüglich der Klasse [c j 1, c j ) versteht man die Anzahl der Beobachtungen, die zur Klasse [c j 1, c j ) gehören, formal h j = Anzahl der x i mit c j 1 x i < c j j = 1,..., k. Für die absoluten Klassenhäufigkeiten gilt aufgrund der Regeln 2 und 3 k j=1 h j = n Die relative Häufigkeit bezüglich der Klasse [c j 1, c j ) ist r j = h j n, j = 1,..., k StatSoz 65

17 Für die relativen Klassenhäufigkeiten gilt k r j = 1 n k h j = 1 j=1 j=1 Diese Häufigkeiten geben also an, wie sich die Stichprobenwerte auf die einzelnen Klassen verteilen. Bei Klassierung der Daten geht man davon aus, dass sich alle Beobachtungswerte einer Klasse [c j 1, c j ) gleichmäßig über die Klasse verteilen (Gleichverteilung innerhalb der Klasse), so dass die Klassenmitte c j 1 + c j 2 Repräsentant dieser Klasse ist. StatSoz 66

18 Fortsetzung von Bsp. 3.1: Pendler Daten Tabelle 3 4 Häufigkeitsverteilung zu Tabelle 3 3 Histogramm Klasse h j r j gerundet [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) 0 0 [60,70) 0 0 [70,80) Die graphische Darstellung der (absoluten oder relativen) Klassenhäufigkeiten erfolgt durch ein Histogramm (histogram). Dieses zeigt (absolute oder relative) Klassenhäufigkeiten als Funktion der Klassen. StatSoz 67

19 Über den Klassen werden Rechtecke (Balken) abgetragen, wobei die Höhen der Rechtecke die (absoluten oder relativen) Klassenhäufigkeiten wiedergeben (Die Höhe als Darstellungsmittel ist nur erlaubt, wenn Regel 4 erfüllt ist!!!) Abbildung 3 3 Histogramm zu Tabelle 3 4 StatSoz 68

20 Vorsicht bei ungleichen Klassenbreiten! Das Darstellungsmittel ist dann die Fläche des Rechtecks, d.h. die Fläche (nicht die Höhe!) entspricht der Häufigkeit (sonst kann es zu Fehlinterpretationen kommen!). Als Höhe des Rechtecks wählt man die Häufigkeit, dividiert durch die Klassenbreite, also h j c j c j 1 bzw. r j c j c j 1, j = 1,..., k Die Fläche F j des Rechtecks (Höhe Breite) über der Klasse [c j 1, c j ) ist dann h j bzw. r j. StatSoz 69

21 3.3 Verteilungsverläufe Gleichverteilung (uniform distribution) Alle Merkmalsausprägungen treten (annähernd) gleich häufig auf. Abbildung 3 4 Beispiel für eine Gleichverteilung StatSoz 70

22 Linksschiefe Verteilung (negatively skewed) Verteilungsfläche fällt nach links langsamer ab als nach rechts; Linksschiefe=Rechtssteilheit. Abbildung 3 5 Beispiel für eine linksschiefe Verteilung StatSoz 71

23 Rechtsschiefe Verteilung (positively skewed) Verteilungsfläche fällt nach rechts langsamer ab als nach links (kommt in der Praxis häufiger vor); Rechtsschiefe=Linkssteilheit. Abbildung 3 6 Beispiel für eine rechtsschiefe Verteilung StatSoz 72

24 Symmetrische Verteilung Weder rechts noch linksschief; es gibt eine Symmetrieachse, sodass sich die rechte Verteilungsfläche spiegelbildlich zur linken Verteilungsfläche verhält. Abbildung 3 7 Beispiel für eine symmetrische Verteilung mit angepasster Normalverteilung StatSoz 73

25 Multimodale Verteilung unimodal=eingipflig bimodal=zweigipflig multimodal=mehrgipflig Die Verteilungen in den Abbildungen 3 5, 3 6 und 3 7 sind unimodal. Abbildung 3 8 Beispiel für eine bimodale Verteilung Bemerkung: Multimodalität deutet auf eine geschichtete Stichprobe (stratified sample) hin. StatSoz 74

26 Beachte: Bei relativen Häufigkeiten gilt stets Gesamtfläche der Balken = 1 bzw. bei Angaben in Prozent Gesamtfläche der Balken = 100 Referenzverteilungen Keine empirische Verteilung; Referenzverteilungen sind theoretische Verteilungen, deren Verlaufsformen durch mathematische Funktionen beschrieben werden. Wichtige Beispiele: StatSoz 75

27 Normalverteilung (Gaußsche Glockenkurve): ϕ(x) = c e x2 /2, x R Abbildung 3 9 Die Dichte ϕ Diese Verteilung ist unimodal und symmetrisch um die y Achse: ϕ(x) = ϕ( x). Die Konstante c wird so gewählt, dass ϕ(x) dx = 1 gilt. Lösung: c = 1 2π StatSoz 76

28 Chi Quadrat Verteilung f n (x) = { 0, x 0 c n e x/2 x n/2 1, x > 0 n N. Dabei wird die Konstante c n so gewählt, dass f n (x) dx = 1 gilt. Die Funktion f n heißt Dichte der χ 2 Verteilung mit n Freiheitsgraden. Abbildung 3 10 Die Dichten f 4 (links) und f 8 Diese Verteilungen sind unimodal und rechtsschief. StatSoz 77

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Grafische Darstellung von Häufigkeitsverteilungen (1)

Grafische Darstellung von Häufigkeitsverteilungen (1) Grafische Darstellung von Häufigkeitsverteilungen () Grafische Darstellungen dienen... - Einführung - der Unterstützung des Lesens und Interpretierens von Daten. der Veranschaulichung mathematischer Begriffe

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52 2 Häufigkeitsverteilungen 2.0 Grundbegriffe Ziel: Darstellung bzw. Beschreibung (Exploration) einer Variablen. Ausgangssituation: An n Einheiten ω 1,..., ω n sei das Merkmal X beobachtet worden. x 1 =

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Tutorial: Balken- und Tortendiagramm

Tutorial: Balken- und Tortendiagramm Tutorial: Balken- und Tortendiagramm In der Tabelle ist die Notenverteilung von 510 Teilnehmern an Mathematik Proseminaren angegeben (NA bedeutet einen unbekannten Wert). Der Sachverhalt sollte in zwei

Mehr

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK PROF. DR. CHRISTINA BIRKENHAKE Inhaltsverzeichnis 1. Merkmale 2 2. Urliste und Häufigkeitstabellen 9. Graphische Darstellung von Daten 10 4. Lageparameter 1

Mehr

Verteilungen und ihre Darstellungen

Verteilungen und ihre Darstellungen Verteilungen und ihre Darstellungen Übung: Stamm-Blatt-Diagramme Wie sind die gekennzeichneten Beobachtungswerte eweils zu lesen? Tragen Sie in beiden Diagrammen den Wert 0.452 an der richtigen Stelle

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Deskriptive Statistik Auswertung durch Informationsreduktion

Deskriptive Statistik Auswertung durch Informationsreduktion Deskriptive Statistik Auswertung durch Informationsreduktion Gliederung Ø Grundbegriffe der Datenerhebung Total-/Stichprobenerhebung, qualitatives/quantitatives Merkmal Einteilung der Daten (Skalierung,

Mehr

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter, hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Ziele 2. Lageparameter 3.

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1 1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker,

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Statistik 1 für SoziologInnen. Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten

Statistik 1 für SoziologInnen. Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten Statistik 1 für SoziologInnen Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten Univ.Prof. Dr. Marcus Hudec Absolute Häufigkeiten diskreter Merkmale X sei ein diskretes

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst.

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst. Übungsblatt 1 - Häufigkeiten, Mittelwert, Erwartungswert Das erste Übungsblatt ist als Einstieg ins Thema Wahrscheinlichkeitsrechnung gedacht und umfasst die Themen relative/absolute Häufigkeiten, Mittelwert

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Statistik 1 für SoziologInnen. Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten. Univ.Prof. Dr.

Statistik 1 für SoziologInnen. Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten. Univ.Prof. Dr. Statistik 1 für SoziologInnen Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten Univ.Prof. Dr. Marcus Hudec Absolute Häufigkeiten diskreter Merkmale X sei ein diskretes

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Spezielle Eigenschaften der Binomialverteilung

Spezielle Eigenschaften der Binomialverteilung Spezielle Eigenschaften der Binomialverteilung Wir unterscheiden: 1) die Wahrscheinlichkeitsfunktion einer diskreten Variablen 2) die Verteilungsfunktion einer diskreten Variablen. 1) Die Wahrscheinlichkeitsfunktion

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

2 Empirische Häufigkeitsverteilungen

2 Empirische Häufigkeitsverteilungen 2 Empirische Häufigkeitsverteilungen 2.1 Häufigkeit und Verteilung In diesem Kapitel werden Sie mit den Grundelementen einer statistischen Datenauswertung bekannt gemacht; dazu zählen die Häufigkeitsverteilung

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Analyse von Kontingenztafeln

Analyse von Kontingenztafeln Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden.

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

Box-Plots. Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.rechnung. Beschreibende Statistik 174 / 258

Box-Plots. Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.rechnung. Beschreibende Statistik 174 / 258 174 / 258 Box-Plots Ziel: übersichtliche Darstellung der Daten. Boxplot zu dem Eingangsbeispiel mit n=5: Descr_Boxplot0.sas Prozeduren: UNIVARIATE, GPLOT, BOXPLOT 174 / 258 Box-Plots Ziel: übersichtliche

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr

Teil II. Der Weg zur schließenden Statistik: Von den Daten zu Wahrscheinlichkeiten. StatSoz 127

Teil II. Der Weg zur schließenden Statistik: Von den Daten zu Wahrscheinlichkeiten. StatSoz 127 Teil II Der Weg zur schließenden Statistik: Von den Daten zu Wahrscheinlichkeiten StatSoz 127 6 Zufallsstichprobe und Parameter 6.1 Parameter einer Grundgesamtheit 6.2 Zufallsstichprobe und Bias 6.3 Stichprobenfehler

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Statistik. Ronald Balestra CH St. Peter

Statistik. Ronald Balestra CH St. Peter Statistik Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. Januar 2010 Inhaltsverzeichnis 1 Statistik 1 1.1 Beschreibende Statistik....................... 1 1.2 Charakterisierung von Häufigkeitsverteilungen...........

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Kapitel 3: Eindimensionale Häufigkeitsverteilungen

Kapitel 3: Eindimensionale Häufigkeitsverteilungen Kapitel 3: Eindimensionale Häufigkeitsverteilungen. Unklassierte Daten...29 a) Häufigkeitsverteilung...29 b) Tabellen und Graphiken...3 c) Summenhäufigkeiten...34 2. Klassierte Daten...38 a) Größenklassen...38

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister

Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister Quantitative Auswertung II Korpuslinguistik Heike Zinsmeister 16.12.2011 Unterschiedstest Fall 1: unabhängige Stichproben Daten eine unabhängige Variable auf Nominal- oder Kategorialniveau eine abhängige

Mehr

Lerneinheit Statistik

Lerneinheit Statistik Lerneinheit Statistik In dieser Lerneinheit findest du zu verschiedenen statistischen Themen jeweils ein durchgerechnetes Musterbeispiel und anschließend ähnliche Beispiele zum eigenständigen Arbeiten.

Mehr

Zusammenhangsanalyse in Kontingenztabellen

Zusammenhangsanalyse in Kontingenztabellen Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel

Mehr

Musterlösung zur Aufgabensammlung Statistik I Teil 3

Musterlösung zur Aufgabensammlung Statistik I Teil 3 Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Angewandte Statistik mit R

Angewandte Statistik mit R Reiner Hellbrück Angewandte Statistik mit R Eine Einführung für Ökonomen und Sozialwissenschaftler 2., überarbeitete Auflage B 374545 GABLER Inhaltsverzeichnis Vorwort zur zweiten Auflage Tabellenverzeichnis

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Beschreibung von Daten

Beschreibung von Daten Kapitel 1 Beschreibung von Daten 1.1 Beispiele zum Üben 1.1.1 Aufgaben Achtung: die Nummerierung ist nicht ident mit der im Buch; Bsp. 1-1 enspricht Bsp 2-20 im Buch, 1-2 2-21 im Buch usw. 1 1 In einem

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Der χ 2 -Test (Chiquadrat-Test)

Der χ 2 -Test (Chiquadrat-Test) Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 1. Grundbegriffe der beschreibenden Statistik Statistische Einheiten, Grundgesamtheit

Mehr

Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 1 1. Klausur Wintersemester 2012/2013 Hamburg, 19.03.2013 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Lagemaße Worum geht es in diesem Modul? Allgemeines zu Lagemaßzahlen Arithmetisches Mittel aus einer Urliste

Lagemaße Worum geht es in diesem Modul? Allgemeines zu Lagemaßzahlen Arithmetisches Mittel aus einer Urliste Lagemaße Worum geht es in diesem Modul? Allgemeines zu Lagemaßzahlen Arithmetisches Mittel aus einer Urliste Berechnung des arithmetischen Mittels aus Häufigkeitstabellen Weitere Lagemaße Worum geht es

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt.

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Bivariate Analyse: Tabellarische Darstellung: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Beispiel: Häufigkeitsverteilung

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Statistik I für Betriebswirte Vorlesung 10

Statistik I für Betriebswirte Vorlesung 10 Statistik I für Betriebswirte Vorlesung 10 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 13. Juni 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG GLIEDERUNG Statistik eine Umschreibung Gliederung der Statistik in zwei zentrale Teilbereiche Deskriptive Statistik Inferenzstatistik

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Funktionen in der Mathematik

Funktionen in der Mathematik R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Häufigkeitsverteilung

Häufigkeitsverteilung 2. Eindimensionale Häufigkeitsverteilungen Thema dieses Abschnitts ist die Auswertung eindimensionalen (univariaten) Datenmaterials, d.h. Daten zu einem einzigen Merkmal einer Grundgesamtheit oder Stichprobe.

Mehr

Muster einer Fachabschlußklausur (90 Min.)

Muster einer Fachabschlußklausur (90 Min.) Muster einer Fachabschlußklausur (90 Min.) Mathematik 3 für Wirtschaftsingenieure Teilnehmer (Name, Vorname): Matrikelnummer: erreichte Punkte Max. erreichte Punkte Max. Aufg. 1 11 Aufg. 5 15 Aufg. 2 9

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Statistik I im Sommersemester 2006

Statistik I im Sommersemester 2006 Statistik I im Sommersemester 2006 Themen am 23.4.2007: Univariate Häufigkeitsverteilungen I Darstellung univariater Verteilungen in Häufigkeitstabellen Verteilungsfunktionen und Quantile Grafische Darstellungen

Mehr