= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein."

Transkript

1 Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen Abstand von etwa 50 Millionen Kilometer um die Sonne. Für iren mlauf benötigt sie 65 Tage und 6 Stunden, also etwas länger als ein Jar. Desalb ist jedes vierte Jar ein Scaltjar mit 66 Tagen. Gleiczeitig mit der Bewegung um die Sonne, dret sie sic auc einmal am Tag um ire eigene Acse. Dadurc entstet der Wecsel von Tag und Nact. Das Meer bedeckt rund 7 % der Erdoberfläce und ist damit der größte Lebensraum der. Seine Besondereiten liegen in der Tiefe, der Ausdenung und den dadurc ser weiträumigen Narungsbezieungen. a) Das Volumen der beträgt ³ (~ eine Billion ³). Welcen Radius besitzt die? b) Welcen Fläceanteil der in ² nimmt das Meer davon in Anspruc? c) Angenommen, entlang des Äquators wird eine Scnur fest um die als ideale Kugel gespannt. m wie viele Kilometer müsste diese Scnur verlängert werden, damit du im aufrecten Gang überall durc sie indurc geen könntest? Scätze zunäcst, bevor du zu recnen beginnst! Welcen der folgenden Aussagen stimmst du am eesten zu? Die Scnur muss nur um meine Körpergröße verlängert werden. Die Scnur muss um das doppelte meiner Körpergröße verlängert werden. Die Scnurverlängerung beträgt weniger als einen Kilometer. Die Scnur muss um 86,7 erweitert werden. Wiederolungsaufgabe zum Problemlösen aus Klasse 8: d) Zwei Ampibienfarzeuge (Farzeuge, die sowol über Land faren als auc über Wasser gleiten können) faren entlang des Äquators der (ideale Kugel) einander entgegen. Das erste Farzeug färt mit einer durcscnittlicen Gescwindigkeit von 00 / und das zweite Farzeug mit einer durcscnittlicen Gescwindigkeit von 0 /. Wann treffen sic die beiden Farzeuge? Welce Herangeensweisen an die Lösung dieser Aufgabe kennst du? Wie viel sind die beiden Farzeuge bis dain bereits gefaren? Welcen Teil des Kreisumfangs durcläuft jedes Farzeug zwiscen den zwei Begegnungen?

2 Lösung: Aufgabe.a) V r V Kugel 4 π r π Der Erdradius beträgt Aufgabe.b) O OKugel 4 π r Das Meer nimmt 7% der Erdoberfläce ein. O ,9 ² 7% OKugel 7% 4 π r 7% ,9 ² 0, Das Meer bedeckt ² der Erdoberfläce. Aufgabe.c) Die dritte Antwort ist rictig: Die Scnurverlängerung beträgt weniger als einen Kilometer. Kreis π r 40.00, 7 Meine Köpergröße beträgt,65m: ( 6.7 0, ) + Mensc π Mensc 40.00, 8 Der Scnur muss um 0,0 0 m länger als der Erdumfang sein, damit ic indurc passe! Aufgabe.d) π r 40.00, 7 zurückgelegterweg Gescwindi gkeit v benötigte Zeit Die beiden Farzeuge benötigen folgende Zeiten, um die zu umrunden: s 40.00,7 t 400, v 00 s 40.00,7 t, 58 v 0 s t

3 Lösungsvariante : grapisc y Weg, den das erste Farzeug noc zurücklegen muss, um die einmal zu umrunden y zurückgelegter Weg des zweiten Farzeugs y y 40.00,7 00 t 0 t Treffpunkt zweier Farzeuge, die die umrunden: Weg in Zeit in Nac ca. 8 Stunden treffen sic die beiden Farzeuge. Das erste Farzeug ist in dieser Zeit 8.00 gefaren und das zweite Farzeug.840. Das entsprict für das erste Farzeug ca. 45,47 % und das zweite Farzeug ca. 54,56 % des Erdumfangs. Lösungsvariante : algebraisc y + y 40.00,7 y 00 t y 0 t 00 t + 0 t 40.00,7 0 t 40.00,7 t 8,96 Die beiden Farzeuge treffen sic nac 8,96. Das erste Farzeug ist in dieser Zeit 8.96 gefaren, das zweite.85,. Das entsprict für das erste Farzeug ca. 45,46 % und das zweite Farzeug ca. 54,55 % des Erdumfangs.

4 Lösungsvariante : Tabelle Zeit in Farzeug Farzeug Summe Zeit in Farzeug Farzeug Summe Nac ca. 8 treffen sie sic! Das erste Farzeug ist in dieser Zeit 8.00 und das zweite Farzeug.840 gefaren. Das entsprict für das erste Farzeug ca. 45,47 % und das zweite Farzeug ca. 54,56 % des Erdumfangs.

5 Aufgabe : Der Baum Der Stamm eines Baumes verzweigt sic erst in einiger Höe über dem Boden. Er gibt den Menscen Auskunft darüber, wie alt er ist, denn er wäcst in jedem Jar um einen kreisförmigen Ring an. Die Breite der Jaresringe ängt von den Wetterbedingungen im Jaresverlauf ab. Es kann jedoc gesagt werden, dass der mfang des Stammes um durcscnittlic,5 cm pro Jar zunimmt! Mance Baumarten wie Rosenölzer und Tannen wacsen allerdings scneller, andere wie Eiben, Linden und Rostkastanien wacsen langsamer. Welces Volumen besitzt die Baumkrone des nebensteenden Baumes? Lösung: Modellierungsanname: Die Baumkrone ist eine ideale Kugel! Der Baum ist, wenn wir mit dem Lineal nacmessen,,8 cm oc. Das entsprict (wie angegeben) einer realen Höe von 0 m. Der Durcmesser der Baumkrone beträgt ungefär,4 cm, d.. der reale Durcmesser der Baumkrone beträgt demzufolge:,4cm d 0 m 6, m,8cm 4 4 6,m V Baumkrone r π π,8m Die Baumkrone besitzt ein reales Volumen von,8 m³.

6 Aufgabe : Kugel und Würfel Eine Kugel und ein Würfel aben denselben Mittelpunkt und entweder gleices Volumen oder gleice Oberfläce. Berecne für beide Fälle a) den Radius r der Kugel, wenn der Würfel die Kantenlänge a 0 cm at, b) die Kantenlänge a des Würfels, wenn die Kugel den Radius r 0 cm at. c) Begründe, dass in beiden Fällen die Kugel die Würfelfläcen scneidet, aber nict die Würfelkanten. Tipp: Horizontalscnitt, Pytagoras Lösung: a) Kantenlänge a 0 cm V W ( 0cm) 8000cm O W 6 (0cm) 400cm V K 4 π 8000cm r O K π 400cm 4 r 8000cm r, 4cm 4π 400cm r, 8cm 4π b) Radius r 0 cm 4 π V K (0cm) V W.50cm a.50cm O K π O W 4 (0cm) 506,6cm 506,6cm 6 a 506,6cm a.50cm, cm a 8, 9cm 6

7 c) Die Kugel scneidet die Würfelfläcen, weil r > a: Werte aus a) Werte aus b),4cm > 0cm ;,8cm > 0cm 0cm >, cm ; 0cm > 8, 9cm Mit Hilfe einer Mittelebene des Würfels lässt sic die Fläcendiagonale b mit dem Satz des Pytagoras bestimmen. Die Kugel scneidet die Kanten nict, wenn r < b. Werte aus a) b a + a a (0cm) 8, 8cm Werte aus b),4cm < 8, 8cm ;,8cm < 8, 8cm b a (,cm) 45, 5cm 0cm < 45, 5cm b a (8,9cm) 40, 9cm 0cm < 40, 9cm

Diagramm 1 Diagramm 2

Diagramm 1 Diagramm 2 Zweijärige zur Prüfung der Facsculreife fürende Berufsfacscule (BFS) Matematik (9) Hauptprüfung 008 Aufgaben Aufgabe 1 A. 1. Bestimmen Sie die Gleicungen der Geraden g und.. Geben Sie die Koordinaten der

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

3.0 Im folgenden Weg-Zeit-Diagramm ist der Bewegungsablauf eines Mountainbikers dargestellt. s in km 30

3.0 Im folgenden Weg-Zeit-Diagramm ist der Bewegungsablauf eines Mountainbikers dargestellt. s in km 30 Anwendungsaufgaben - Bewegungen 1 I nebensteenden Gescwindigkeits-Zeit- Diagra sind vier versciedene Bewegungsabläufe dargestellt. Welcer Grap geört zu welcer Bewegung? Begründe. A: Ein Farzeug färt it

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

2.7. Aufgaben zu Ähnlichkeitsabbildungen

2.7. Aufgaben zu Ähnlichkeitsabbildungen .7. Aufaben zu Änlickeitsabbildunen Aufabe 1 Strecke das Dreieck AB mit A(3 1), B( 3) und ( ) an Z(1 1) um die Streckfaktoren k 1 =, k = 1, k 3 = 1, k 4 = und k =. Aufabe Strecke das Dreieck AB mit A(

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Bereich Thema Schwierigkeit Geometrie Berechnungen in Rechtwinkligen Dreiecken II ***

Bereich Thema Schwierigkeit Geometrie Berechnungen in Rechtwinkligen Dreiecken II *** Ballon Von einem Freiballon aus werden die Orte A und B, die 2700m voneinander entfernt sind, unter den Tiefenwinkeln mit den Winkelweiten α = 66 und β = 24 angepeilt Bestimme, in welcer Höe der Ballon

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen Uwe Rat Eckleinjarten 13a. 7580 Bremeraven 0471 3416 rat-u@t-online.de Fertigungstecnik Tecnisce Kommunikation - Tecnisces Zeicnen 11 Projektionszeicnen 11. Körperscnitte und bwicklungen 11..4 Kegelige

Mehr

Reise nach Rio Klimadiagramme lesen

Reise nach Rio Klimadiagramme lesen Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac

Mehr

Überholen mit konstanter Beschleunigung

Überholen mit konstanter Beschleunigung HTL Überolen mit konstanter Seite 1 von 7 Nietrost Bernard bernard.nietrost@tl-steyr.ac.at Überolen mit konstanter Bescleunigung Matematisce / Faclice Inalte in Sticworten: Modellieren kinematiscer Vorgänge;

Mehr

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER PAKAGING DESIGN LIMBI SHMIDT SPIELE KNIFFEL MASTER 16. Präsentation 03. Dezember 2014 Für alle Kniffel-Fans dürfte Einiges bei Kniffel Master scon bekannt sein. Der blaue Text kann daer von allen überspruen

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

= 150 kmh -1. Wie groß ist die Beschleunigung und der zurückgelegte Weg, wenn die Geschwindigkeitserhöhung in der Zeit von 10 Sekunden erfolgt?

= 150 kmh -1. Wie groß ist die Beschleunigung und der zurückgelegte Weg, wenn die Geschwindigkeitserhöhung in der Zeit von 10 Sekunden erfolgt? Aufgaben zur gleicäßig becleunigen Bewegung. Ein Auo eiger eine Gecwindigkei gleicäßig on = 0 k - auf = 50 k -. Wie groß i die Becleunigung und der zurückgelege Weg, wenn die Gecwindigkeieröung in der

Mehr

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 9. Klasse

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 9. Klasse Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterrict im 9. Sculjar Matematik II Serie H9 Gymnasien des Kantons Bern Matematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beacten:

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung.

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung. Steigung 4 6 Arbeitseft+ Teste dic selbst Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berecne die Steigung. a a a Keil Keil 2 Keil 3 Keil Keil 2 Keil 3 Horizontale

Mehr

Heizung Pumpen-Auslegung Seite 1 von 5

Heizung Pumpen-Auslegung Seite 1 von 5 Heizung Pumpen-Auslegung Seite 1 von 5 Aus der Heizlastberecnung ergab sic für das gesamte Gebäude ein Wert von 25 kw. Die Vorlauftemperatur ist mit 70 C und die Rücklauftemperatur mit 50 C geplant. Die

Mehr

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen:

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen: Aufgaben zur gleicförigen Bewegung Aufgaben. Ein Radfarer are u 7.00 Ur in Leipzig und fär i der ileren Gecwindigkei 0 / nac Berlin. U 9.00 Ur fär ein Auo on deelben Punk in dieelbe Ricung ab. E beiz die

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe www.mate-aufgaben.com Matematik - Oberstufe Aufgaben und Musterlösungen zu Ableitungen, Tangenten, Normalen Zielgruppe: Oberstufe Gymnasium Scwerpunkt: Differenzenquotient, Differenzialquotient, Ableitung,

Mehr

Übungsblatt 03. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 03 PHYS4100 Grkurs IV (Pysik, Wirtscaftspysik, Pysik Leramt Otmar Marti, (otmar.marti@pysik.uni-ulm.de 28. 4. 2005 oder 29. 4. 2005 1 Aufgaben 1. Nemen Sie an, dass eine Kugel mit dem Radius

Mehr

Lösung: Variante 1: Sinussatz α = = 119 β = 35 γ = = 26 c = 5,8 sm

Lösung: Variante 1: Sinussatz α = = 119 β = 35 γ = = 26 c = 5,8 sm Aufgabe 1: Leuctturm Der Kapitän eine Sciffe mu laut einen Karten beim Paieren einer Landzunge einen betimmten Abtand zum Fetland einalten, um nict auf ein Riff aufzulaufen. Dazu peilt er den Leuctturm

Mehr

Schnellübung Lösungen, Physik 2. Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus.

Schnellübung Lösungen, Physik 2. Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. D-MATH/D-PHYS Prof. G. Dissertori Scnellübung Lösungen, Pysik 2 Studienjar SS2007 ETH Züric Füllen Sie als erstes den untensteenden Kopf mit Name und Legi-Nummer aus. Wenn Sie bei einer Aufgabe nict sofort

Mehr

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei 859. Zwei Auo faren mi erciedenen Gecwindigkeien 1 = 160 / bzw. 2 = 125 / dieelbe Srecke on 200 Länge. Beide Wagen aren gleiczeiig in derelben Ricung. Der arer de cnelleren Wagen mac nac 45min arzei 15min

Mehr

Vitamine auf Weltreise

Vitamine auf Weltreise Konzipiert vom Förderverein NaturGut Opoven Vitamine auf Weltreise Zielgruppe: Klasse 2-3 Fac: Dauer: Sacunterrict 90 Minuten Temenbereic: Zusammenang Ernärung und Klimawandel 20 % der Kinder sind zu dick,

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Aufgaben zur Physikschulaufgabe ==================================================================

Aufgaben zur Physikschulaufgabe ================================================================== Aufgaben zur Pyikculaufgabe ================================================================== 1. Ein LKW-Farer bremt von 108 km gleicmäßig über eine Entfernung von 10m auf Null erunter. a) Berecne die

Mehr

LU 17: Kreisumfang Lösungen

LU 17: Kreisumfang Lösungen athematik LU 7: Kreisumfang Lösungen 59 LU 7: Kreisumfang Lösungen Aufgabe Berechne im Kopf die fehlenden Angaben, nimm für die Zahl π den Wert 3. Gegenstand Radius r Durchmesser d Umfang u Abfalleimer

Mehr

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22 Elemente der Geometrie 9 Anang 9.1 Verältnisgleicungen Verältnisgleicungen sind spezielle Formen von Gleicungen. Es a werden zwei Quotienten gleic gesetzt. Die Gleicung! b = c d kann man auc screiben als!a:b

Mehr

Beispiele für Terme: a 7 + 4x Eine Zahl ist durchaus sinnvoll. Die Addition zweier Zahlen ist sinnvoll.

Beispiele für Terme: a 7 + 4x Eine Zahl ist durchaus sinnvoll. Die Addition zweier Zahlen ist sinnvoll. 2 Terme, Variaen, Geicungen 01 Üera Terme Merke dir: Ein Term ist ein sinnvoer matematiscer Ausdruck. Information Ein Term ist ein sinnvoer matematiscer Ausdruck, der aus Zaen, Recenzeicen und Variaen

Mehr

Facharbeit über die Berechnung von Fässern mit Beweis bzw. Herleitung der Berechnungsformeln.

Facharbeit über die Berechnung von Fässern mit Beweis bzw. Herleitung der Berechnungsformeln. Facarbeit über die Berecnung von Fässern mit Beweis bzw. Herleitung der Berecnungsformeln. erfaßt von Ing. Walter Hölubmer im ai 00 und ergänzt im Juni 00, Juni 00 und Dez. 009 Ein besonderer geometriscer

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

5.2 Von der durchschnittlichen zur momentanen Änderungsrate

5.2 Von der durchschnittlichen zur momentanen Änderungsrate 5.2 Von der durcscnittlicen zur momentanen Änderungsrate Was dic erwartet Kommt Zeit, kommt Rat, Die Zeit eilt alle Wunden. Fast alles ändert sic mit der Zeit. Nict immer ist der gerade vorliegende Zustand

Mehr

ma t 4 u GITARREN- UND LAUTENBÜNDE GRUNDLEGENDES DAS MONOCHORD

ma t 4 u GITARREN- UND LAUTENBÜNDE GRUNDLEGENDES DAS MONOCHORD GRUNDLEGENDES DAS MONOCHORD Scon in der Antike war es üblic, Intervalle durc Streckenteilung auf einer gespannten Saite geometrisc darzustellen. Das dabei benützte Instrument eißt Kanon oder Monocordon

Mehr

Heute schon gepoppt?

Heute schon gepoppt? Heute scon gepoppt? Benno Grabinger, Neustadt/Weinstraße, www.bennograbinger.de www.pringles.de Benno Grabinger: Pringles 1 Wie ann die Form eines Pringle matematisc bescrieben werden? Wo entsteen solce

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Drei Kreise Was ist zu tun?

Drei Kreise Was ist zu tun? 1 Drei Kreise Der Radius der Kreise beträgt drei Zentimeter. Zeichnet die Abbildung nach, falls ihr einen Zirkel zur Hand habt. Ansonsten genügt auch eine Skizze. Bestimmt den Flächeninhalt der schraffierten

Mehr

KtMMC923.doc (Word97-Format) Modul 4: Sicherung des Basiswissens durch Übung von Sachaufgaben

KtMMC923.doc (Word97-Format) Modul 4: Sicherung des Basiswissens durch Übung von Sachaufgaben Datei: KtMMC923doc (Word97-Format) Scule: Marie-Curie-Mittelcule Dona E-Mail: croetercuriem@-t-onlinede utor/ nprecpartner: Marlie Scönerr Quelle/Literaturinweie: eigene Entwicklungen Sytematice Einordnung:

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prism und Pyrmide 10 C10-01 1 5 1 Körper 1 Scnittbogen 1 Körper Scnittbogen Körper Scnittbogen Körper Scnittbogen 6 Scnittbogen Scnittbogen 5 M c = + ( ) = 10 + 5 = 15 11, c c c c Individuelle Individuelle

Mehr

Demo-Text für Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes

Demo-Text für  Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes Teil 1 it Index am Ende des Textes Stand: 22. Februar 212 Datei Nr. 1111 Friedric Buckel Geometrie Winkel und Dreiecke INTERNETBIBLITHEK FÜR SCHULTHETIK www.mate-cd.de Inalt 1. Dreunen durc Winkel messen

Mehr

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3 ZUKUNFT Februar 2015 Journalistisce Darstellungsformen Teil 3 Das Projekt zur Bildungsförderung für Auszubildende getragen von starken Partnern Initiatoren: Förderer und Stiftungspartner: INHALT Journalistisce

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

Informationen zur Kennzahlenanalyse und Unternehmensbewertung

Informationen zur Kennzahlenanalyse und Unternehmensbewertung Informationen zur Kennzalenanalyse und Unternemensbewertung Liquidität Kennzal Formel Sollwert Kommentar Cas Ratio (Liquiditätsgrad 1) ü 20-30% Widerspiegelt die Bezieung zwiscen Flüssigen Mitteln (inkl

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Rotationskörper

Rotationskörper .17.5 ottionskörper Im folgenden efssen wir uns mit Körpern, die ddurc entsteen, dss eine eene Kurve oder ein eenes Kurvenstück um eine Acse rotiert, die in der gleicen Eene liegt. Einige spezielle Typen

Mehr

Medienmitteilung Rothenburg, 26. April 2013

Medienmitteilung Rothenburg, 26. April 2013 Pistor AG Medienmitteilung Rotenburg, 26. April 2013 Gescäftsjar 2012 Ausblick 2013 Pistor mit gutem Ergebnis Die Pistor ist gut unterwegs. Im Jar 2012 wurde mit dem Bau des neuen Tiefkülcenters erneut

Mehr

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar.

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar. ysikkurs i Raen des Forbildungslerganges Indusrieeiser Facricung arazeuik anuar 008 Lösungen Wärelere Aufgabe : Eine Drucasflasce (V50l) sei gefüll i icksoff uner eine Druck von 00 bar. ϑ a) Wieviel ol

Mehr

Hydrodynamik y I - Strömungsmechanik

Hydrodynamik y I - Strömungsmechanik Pysik VL8 (0..0 Hydrodynamik y I - Strömunsmecanik Strömunen und Strömunsarten Die Kontinuitätsleicun Die Bernoulli-Gleicun Gli Strömunen und Strömunsarten Hd Hydrodynamikd Bescreibun on Massenströmen

Mehr

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt.

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt. Kraftwandler Die Energie al Eraltunggröße Ein Kraftwandler it eine mecanice Anordnung, die eine Kraft wirken lät, welce größer it al die Kraft, die aufgewendet wird (oder umgekert). Beipiel: lacenzug Aufgewendete

Mehr

Australien & Hong Kong 2014

Australien & Hong Kong 2014 Australien & Hong Kong 2014 für Dacverband österreiciscer Vereinigung Angebot vom 0.11.2013 Kunden-Nr.: 2744606 Reisezeit: Ir Ansprecpartner: Fax: 030-27594109 Reinardtstr. 15 10117 Berlin Öffnungszeiten:

Mehr

Aufgaben zur Quantenphysik

Aufgaben zur Quantenphysik ufgaben zur Quantenpysik 187. In eine Nactsictgerät wird eine Fotozelle aus der Legierung gcso verwendet, das eine ustrittsarbeit von 1,04 ev at. a) b welcer Wellenlänge werden bei Bestralen it Lict aus

Mehr

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2 Der Auftrieb Diese Aufgabe wird vom Facbereic Pysik der eibniz Universität annover gestellt. Weitere Informationen zum Studiengang der Pysik findet ir unter ttp://www.pysik.uniannover.de/ CUB APOO 13,

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Hilfe zum neuen Online-Shop

Hilfe zum neuen Online-Shop Hilfe zum neuen Online-Sop Hier finden Sie umfassend bescrieben, wie Sie sic in unserem neuen Sop zurectfinden. Wenn Sie Fragen zur Kunden-Nr., Kunden-ID oder zum Passwort aben, rufen Sie uns bitte an:

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

Einstiegsphase Analysis (Jg. 11)

Einstiegsphase Analysis (Jg. 11) Einstiegspase Analysis (Jg. 11) Ac Geradengleicungen: Eine Gerade g verlaufe durc P(-3/-2) und Q(4/3). Eine Gerade gee durc R(1/y) und stee senkrect auf g. Zeicne diese Geraden und stelle ire Gleicungen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012 Landeswettbewerb Matematik aden-württemberg Musterlösungen. Runde 0/0 Aufgabe avid wirft einen besonderen Würfel und screibt jeweils die oben liegende Zal auf. ie Abbildung zeigt ein Netz seines Würfels.

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Weg von 150 m zurück. Mit welcher Geschwindigkeit bewegt sich das Wasser in dem Fluss?

Weg von 150 m zurück. Mit welcher Geschwindigkeit bewegt sich das Wasser in dem Fluss? Aufgaben zur gleicförigen Bewegung 533. Eine Wepe caff al Höcgecwindigkei 6,5 k/. Gib die Gecwindigkei in / an. Wie wei flieg da Tier i dieer Gecwindigkei in einer alben Minue? 534. ibellen ind in der

Mehr

Geometrische Mehrgitterverfahren. Annabell Schlüter

Geometrische Mehrgitterverfahren. Annabell Schlüter Geometrisce Mergitterverfaren Annabell Sclüter 13.07.2010 Inaltsverzeicnis 1 Einleitung 2 2 Das Mergitterverfaren für lineare Probleme 3 2.1 Dämpfungseigenscaften des Jacobiverfarens............ 3 2.2

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre Mercator Scool of Management Prof. Dr. Volker Breitecker, StB Dr. Marco Tönnes, StB SS 2007 Übung zur Vorlesung Einfürung in die Betriebswirtscaftlice Steuerlere Grundlagen: 1. Zur Erzielung von Einnamen

Mehr

4 Funktionen und Änderungsraten

4 Funktionen und Änderungsraten 4.1 Änderungsraten grafisc erfasst Was dic erwartet Mit Funktionen und Grapen lassen sic viele Situationen und Vorgänge bescreiben bzw. modellieren. Bei der Interpretation der Grapen spielt oft das Änderungsveralten

Mehr

Das Mehrgitterverfahren

Das Mehrgitterverfahren KAPITEL 3 Das Mergitterverfaren Mergitterverfaren kombinieren ein iteratives Lösungsverfaren mit einer Hierarcie untersciedlicer Diskretisierungsgitter. Ausgeend von einer Näerungslösung auf einem feinen

Mehr

Sterbetafeln für die Schweiz 1998/2003

Sterbetafeln für die Schweiz 1998/2003 Sterbetafeln für die Scweiz 1998/2003 Neucâtel, 2005 Die vom Bundesamt für Statistik (BFS) erausgegebene Reie «Statistik der Scweiz» gliedert sic in folgende Facbereice: 0 Statistisce Grundlagen und Übersicten

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

GRUNDVORSTELLUNGEN BEI DER EINFÜHRUNG DER BEIDEN BEGRIFFE DIFFERENZENQUOTIENT UND DIFFERENTIALQUOTIENT

GRUNDVORSTELLUNGEN BEI DER EINFÜHRUNG DER BEIDEN BEGRIFFE DIFFERENZENQUOTIENT UND DIFFERENTIALQUOTIENT GRUNDVORSTELLUNGEN BEI DER EINFÜHRUNG DER BEIDEN BEGRIFFE DIFFERENZENQUOTIENT UND DIFFERENTIALQUOTIENT Dr. Bernard Salzger Don Bosco-Gymnasium, Ebreicsdorf-Unterwalterdorf Ebreicsdorf-Unterwaltersdorf,

Mehr

BESTE TECHNIK, GROSSARTIGE LEISTUNG DIE EFFIZIENTEN PROJEKTOREN VON CASIO

BESTE TECHNIK, GROSSARTIGE LEISTUNG DIE EFFIZIENTEN PROJEKTOREN VON CASIO BESTE TECHNIK, GROSSARTIGE LEISTUNG DIE EFFIZIENTEN PROJEKTOREN VON CASIO Mit integrierter Kostenersparnis Neben erausragender Tecnologie zeicnen sic Projektoren von CASIO vor allem durc eines aus: langfristige

Mehr

5. PLANIMETRIE, STEREOMETRIE

5. PLANIMETRIE, STEREOMETRIE 5. PLANIMETRIE, STEREOMETRIE 5.1. Planimetrie Die Planimetrie oder auc ebene Geometrie bescäftigt sic mit den in einer Ebene liegenden geometriscen Figuren. Im folgenden Abscnitt sollen die wictigsten

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Arbeit - nergie - eibung Die ncfolgenden Aufgben und Definitionen sind ein erster instieg in dieses Tem. Hier wird unterscieden zwiscen den Begriffen Arbeit und nergie. Verwendete ormelzeicen sind in der

Mehr

3 Gesetze von Newton und ihre Anwendungen

3 Gesetze von Newton und ihre Anwendungen 3 eetze von Newton und ire Anwendungen 3. Der Trägeitatz U die ecwindigkeit oder die Rictung eine Körper zu ändern it der Einflu einer Kraft nötig. Überlät an einen Körper, der ic it der ecwindigkeit v

Mehr

Kilimandscharo Tour Marangu-Route mit Mt. Meru. Adventure aktivität.teamerleben.natur 60+

Kilimandscharo Tour Marangu-Route mit Mt. Meru. Adventure aktivität.teamerleben.natur 60+ Kiliandscaro Tour Marangu-Route it Mt. Meru Adventure aktivität.teaerleben.natur 60+ geeignet Kiliandscaro Marangu-Route it Mt. Meru Kiliandscaro-Besteigung (5895) Marangu-Route Der Berg Gipfelziel als

Mehr

Polarisiertes Licht (O6)

Polarisiertes Licht (O6) Polarisiertes Lict (O6) Ziel der Versuces Aus linear polarisiertem Lict ist unter Verwendung einer λ/4-platte irkular und elliptisc polarisiertes Lict u ereugen und mit einem Analsator nacuweisen. Teoretiscer

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik. - Ersttermin -

Schriftliche Abiturprüfung Leistungskursfach Mathematik. - Ersttermin - Säcsisces Staatsministerium für Kultus Sculjar 200/02 Geltungsbereic: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Sculfremde Prüfungsteilnemer Scriftlice Abiturprüfung Leistungsursfac

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 13

Mathematische Grundlagen der Ökonomie Übungsblatt 13 Matematisce Grundlagen der Ökonomie Übungsblatt 13 Abgabe Donnerstag 4. Februar, 10:15 in H3 6+4+5+++1 = 0 Punkte Mit Lösungsinweisen zu einigen Aufgaben 51. Ire Bekannte Dido möcte, dass aus einem günstig

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Musteraufgabe: Bestimme mit einem Strommessgerät, Kabeln und einer 4,5 V Batterie den Widerstand eines Glühlämpchens.

Musteraufgabe: Bestimme mit einem Strommessgerät, Kabeln und einer 4,5 V Batterie den Widerstand eines Glühlämpchens. ut-physik: GRUDWISSE 7. KLASSE METHODIK METHODE BEISPIEL Modellvorstellungen: aturwissenscaft benutzt Modelle, um Vorgänge in der atur quantitativ zu bescreiben und vorerzusagen. Lictstralen gedact als

Mehr

Kreis- und Kreisteileberechnungen

Kreis- und Kreisteileberechnungen Kreis- und Kreisteileberechnungen Aufgabe 1: Berechne den Inhalt der getönten Fläche aus dem Radius r des größten Kreises und dem Radius a der beiden kleinen Halbkreise. Aufgabe 2: Wie groß ist der äußere

Mehr

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8 Der einface Dapfproze Clauiu Rankine Proze Seite von 8 darin ind e die Exergie, b die Anergie und U die Ugebungteperatur Wie vergleicen zunäct den Carnot cen η C Prozewirkunggrad it de Clauiu-Rankine Prozewirkunggrad

Mehr

Download. Hausaufgaben Potenzen und Wurzeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Potenzen und Wurzeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mayr Hausaufgaben Potenzen und Wurzeln Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben Potenzen und Wurzeln Üben in drei Differenzierungsstufen Dieser

Mehr

Damit kann die Kantenlänge s berechnet werden: s = s=17cm ; 3s = 51cm; 5s = 85 cm d) Volumen des Würfels: 2197cm 3

Damit kann die Kantenlänge s berechnet werden: s = s=17cm ; 3s = 51cm; 5s = 85 cm d) Volumen des Würfels: 2197cm 3 1 a) b) c) d) 3 59.57 3.905493027 3.905 (mit TR lösen) 3 656.589 8.691562701 8.692 (mit TR lösen) 3 125.125 5.001666111 5.002 (mit TR lösen) 3 30.8994 3.137978874 3.138 (mit TR lösen) e) 3 30 1256 0.287989866

Mehr

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Figuren und Körper. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Figuren und Körper. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunde Mathematik 3 5. Klasse: auszug aus dem Originaltitel: Rechtecke 1 1. Konstruiere ein Rechteck mit a = 8 cm und b = 5 cm. 2. Notiere alle Eigenschaften

Mehr

TURBOVAC i Turbomolekular-Pumpen

TURBOVAC i Turbomolekular-Pumpen TURBOVAC i Turbomolekular-Pumpen Ein großer Scritt für die Welt des Vakuums Es ist noc nie so einfac gewesen, Ire Prozesse zu optimieren. TURBOVAC (T) 350-450 i ermöglict Inen die Optimierung Irer Abpumpzeiten

Mehr

Prüfungsfach: Wahlfach Steuerlehre Punktzahl: 100. Prüfer: Prof. Dr. Volker Breithecker Bearbeitungszeit: 240 Min.

Prüfungsfach: Wahlfach Steuerlehre Punktzahl: 100. Prüfer: Prof. Dr. Volker Breithecker Bearbeitungszeit: 240 Min. Facbereic Wirtscaftswissescaft PO 95 D I P L O M P R Ü F U N G Prüfugstermi: Sommersemester 2002 Studiescwerpukt: - - - Prüfugsfac: Walfac Steuerlere Puktzal: 100 Prüfer: Prof. Dr. Volker Breitecker Bearbeitugszeit:

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch "Als. hnsuch. ferd. das Nilpfe.

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch Als. hnsuch. ferd. das Nilpfe. i Liebe Lererin, lieber Lerer, dieses Unterrictsmaterial ist speziell auf die Boardstory und das Buc "Als fe Sen nsuc suct t atte te" von Iri ris Wewe wer ausgelegt. Die Arbeitsblätter unterstützen Lesekompetenz

Mehr