K2 MATHEMATIK KLAUSUR 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "K2 MATHEMATIK KLAUSUR 3"

Transkript

1 K2 MATHEMATIK KLAUSUR 3 NACHTERMIN Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max Punkte Notenpunkte PT P. (max Punkte WT Ana a b c Summe P. (max Punkte WT Geo a b c S Summe P. (max Punkte Pflichtteil ( Bestimmen Sie die erste Ableitung der Funktion f(x = 2 cos(4x 2 e x (2 Berechnen Sie das Integral e 2x dx. (3 Lösen Sie die Gleichung (ln x 2 = ln x. (4 Sei t die Tangente und n die Normale an das Schaubild der Funktion f(x = (x 3e 2x + 7 an der Stelle x = 3. Geben Sie die Gleichung von n, sowie den Schnittpunkt von t und n an.

2 (5 Die folgenden Diagramme zeigen die Schaubilder von drei der folgenden vier Funktionen: f (x = x 2 x, f 2(x = x x +, f 3 (x = x x f 4(x = a x x b Ordnen Sie die Schaubilder den Funktionen zu und begründen Sie Ihre Entscheidungen. Bestimmen Sie den Wert von a und b in f 4. (6 Bestimmen Sie eine Koordinatengleichung einer Ebene E, welche die Gerade ( 2 ( g : x = 4 + t senkrecht schneidet. Welche besondere Lagen haben g bzw. E? (7 Lösen Sie das lineare Gleichungssystem 4x x 2 + x 3 = x + 7x 2 x 3 = 5 x 6x 2 + 2x 3 = 2 (8 a Zwei gleich starke Tennisspieler spielen drei Spiele. Mit welcher Wahrscheinlichkeit gewinnt ein Spieler höchstens zwei Spiele? b Zwei gleich starke Tennisspieler spielen so lange, bis ein Spieler insgesamt drei Spiele gewonnen hat. Berechnen Sie den Erwartungswert für die Anzahl der durchzuführenden Spiele. (9 Die folgenden Zeilen zeigen einen Teil der Lösung einer Geometrieaufgabe: ( 2 [ ( ( 5 2 ] ( 2 ( 5 g : x = + t = + t 2 3 g mit E : 2 5t + (2 t 3( + 3t =. a Was war gegeben? Wie lautete die Aufgabe? b Lösen Sie die Aufgabe vollständig.

3 Analysis An einer Autobahnbaustelle wird die Stauentwicklung im Berufsverkehr untersucht. Aus den erhobenen Messdaten wird die momentane Änderungsrate der Staulänge durch die Funktionenschar f a mit der Gleichung f a (t = 3 4 t3 9 4 at a2 t ( t 2a, t in Stunden seit Beobachtungsbeginn, f a (t in km/h. Dabei ist a ein Wert, der vom Verkehrsaufkommen abhängt. Im Beobachtungsbeginn um 6. Uhr beginnen sich die Fahrzeuge zu stauen. a Sei zuerst a = 2. Wie groß ist die momentane Änderungsrate der Staulänge bei Beobachtungsbeginn? Wann wächst der Stau am schnellsten? Berechnen Sie die Nullstellen von f 2 (t und geben Sie eine Interpretation dieser Werte im Sachzusammenhang. Wie lang ist der Stau um 9. Uhr? Zu welchen Zeiten nimmt die Staulänge zu, wann nimmt sie ab? b Bestimmen Sie, wann der Stau (für a = 2 die Länge von 2 km erreicht. Wann ist die Staulänge maximal? c Bestimmen Sie einen Term für die Staulänge bei beliebigem a.

4 Geometrie / Stochastik Geometrie. Ein Flugzeug befindet sich um 4.3 Uhr in der Position P (2,5 und eine Minute später im Punkt Q(4 7,8 ( LE = km. Das Flugzeug bewegt sich geradlinig von P nach Q und ändert seine Geschwindigkeit nicht. Die x x 2 -Ebene repräsentiert die Grundebene. a Berechnen Sie die Geschwindigkeit des Flugzeugs in km/h. Geben Sie eine Geradengleichung für die Flugbahn g an, auf der das Flugzeug fliegt. b Im Punkt W (38 9 2,4 befindet sich um 4.5 Uhr ein senkrecht aufsteigender Wetterballon. Prüfen Sie, ob der Punkt W auf der Flugbahn des Flugzeugs liegt. Entscheiden, ob das Flugzeug mit dem Wetterballon zusammenstößt. Bestimmen Sie die Koordinaten des Punktes R, in dem das Flugzeug seine Reiseflughöhe von,5 km erreicht. c In der Ebene durch die Punkte A( 2 3,465, B( 3,465 und C( 2 3,565 verläuft die untere Grenzschicht einer Wolkendecke. Ermitteln Sie die Koordinaten des Punktes, in dem das Flugzeug in die Wolkendecke eintritt. Stochastik. Eine Firma, die Handys herstellt, behauptet, dass höchstens 4 % der Geräte defekt seien. Bei einer Stichprobe von 25 Stück findet man defekte Handys. Kann man daraus mit einer Irrtumswahrscheinlichkeit von höchstens 5 % schließen, dass die Firmenangabe nicht zutrifft?

5 Lösungen Pflichtteil. ( Produktregel: (2 e 2x dx = 2 ln(2x e f (x = 6x sin(4x 2 e x 2 cos(4x 2 e x (3 Ausklammern oder Substitution? Ersteres: = 2 ln(2e 2 ln( = ln(2e. 2 (ln x 2 ln x = ln x (ln x = Also ln x = und damit x = oder lnx = und damit x 2 = e. (4 f(3 = 7; f (x = e 2x 2(x 3e 2x ; m = f (3 = e 6 ; Aus m m = folgt e 6 m =, d.h. m = e 6. Einsetzen liefert 7 = 3e 6 + b, also b = 7 3e 6. Also ist n : y = e 6 x + 7 3e 6. Tangente und Normale schneiden sich natürlich in P (3 7. (5 Da f 3 (x zwei senkrechte Asymptoten besitzt (nämlich x = und x =, müssen die Schaubilder zu f, f 2 und f 4 gehören. Einsetzen von ergibt f ( = 2, f 2 ( = und f 4 ( = a. Weil das zweite Schaubild durch ( 3 geht, muss es zu f 4 gehören, und es muss a = 3 sein. Da dieses Schaubild senkrechte Asymptote x = besitzt, muss b = sein. Weiter gehört das erste Schaubild zu f 2 und das dritte zu f. (6 Normalenvektor von E ist der Richtungsvektor von g, also ist E : 5x 2 + 6x 3 = eine mögliche Ebene (der Punkt, durch den E gehen soll, kann beliebig gewählt werden. Die Gerade g ist parallel zur x 2 x 3 -Ebene, die Ebene E ist parallel zur x -Achse. (7 Es ergibt sich x =, x 2 =, x 3 = 2. (8 a Die Aufgabe (shame on us ist etwas schlampig formuliert. Mögliche Interpretationen: Zwei Spieler A und B sind gleich stark. Mit welcher Wahrscheinlichkeit gewinnt A höchstens zwei Spiele? In diesem Fall ist das Gegenereignis, dass A all drei Spiele gewinnt; die gesuchte Wahrscheinlichkeit ist also p(ggg = 8 = 7 8.

6 Zwei Spieler A und B sind gleich stark. Mit welcher Wahrscheinlichkeit gewinnt einer der beiden (also A oder B höchstens zwei Spiele? In diesem Fall ist die Wahrscheinlichkeit, da ja nicht beide drei Spiele gewinnen können. Natürlich war Interpretation gemeint. b Sei X die Anzahl der gewonnenen Spiele; dann gibt es die Möglichkeiten X = 3, 4, 5. Die dazugehörigen Pfade sind X Pfad p 3 GGG, V V V 4 4 GGV G, GV GG, V GGG, V V GV, V GV V, GV V V GGV V G, GV GV G, GV V GG, V GGV G, V GV GG, V V GGG, V V GGV, V GV GV, V GGV V, GV V GV, GV GV V, GGV V V 3 8 Die letzte Wahrscheinlichkeit kann man auch via Gegenereignis zu = 3 8 berechnen. Jetzt ist E(X = = 33 8 = 4, 25. Im Schnitt muss man also etwas mehr als 4 Spiele spielen. (9 Stellen Sie die Gleichung der Geraden g durch die beiden Punkte A( 2 und B(5 2 auf, und bestimmen Sie den Schnittpunkt von g und der Ebene E : 2x + x 2 3x 3 =.

7 Analysis. a f 2 ( = : zu Beobachtungsbeginn ist die Änderungsrate km/h. Maximum von f 2 : t =, 84, f 2 (, 84 = 2, 3. Der Stau wächst am schnellsten nach,84 h (und zwar mit 2,3 km/h. Nullstellen von f 2 sind t =, t 2 = 2 und t 3 = 4. Zu diesen Zeitpunkten ist die Staulänge konstant. Staulänge: 3 f 2(t dt =.6875; um 9. h ist der Stau,7 km lang. Die Staulänge nimmt zu, wenn f 2 (t positiv ist, also für < t < 2, d.h. von 6. h bis 8. h. Die Staulänge nimmt ab, wenn f 2 (t negativ ist, also für 2 < t < 4, d.h. von 8. h bis. h. b T f 2(t dt = 2 liefert (GTR t.5, d.h. der Stau ist etwa um 7.9 h maximal. Der Stau ist maximal, wenn f 2 (t eine Nullstelle mit VZW von plus nach minus besitzt, also für t = 2. c Die Staulänge zum Zeitpunkt T ist gegeben durch F a (T = T f a (t dt = 3 6 t4 3 4 at a2 t 2 T = 3 6 T at a2 T 2.

8 Geometrie. a v = s = P Q = 2 t , 3 2 = 3, 4, d.h. das Flugzeug hat eine Geschwindigkeit von 3,4 km/min 85 km/h. ( 2 26 Flugbahn: x = + t(.,5,3 ( 38 ( 2 26 b Punktprobe: 9 = + t(. alle drei Zeilen liefern t = 3; also liegt 2,4,5,3 W auf der Flugbahn. Weil das Flugzeug um 4.6 h (t = 3 in W ist, der Wetterballon aber schon um 4.5 h, stoßen die beiden nicht zusammen. Höhe,5 km: x 3 =, 5 liefert, 5 =, 5 +, 3t, also t = 3: das Flugzeug erreicht die Reiseflughöhe nach 3 min. c Parametergleichung der Ebene ABC: x = + r ( 2 3,465 ( 2 + s (, Normalenvektor ( ( ( 2 n = 2 =,, 2 also E : 2x + x 2 2x 3 = d. Einsetzen von A liefert d = 693. Schneiden von Flugbahn und Ebene ergibt 2(2 + 2t + ( + 6t 2(, 5 +, 3t = 693, also t = 5. Einsetzen ergibt den gesuchten Punkt P (

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

K2 MATHEMATIK KLAUSUR 1. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 1. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 1 14.03.2016 Aufgabe PT WTA WTGS Gesamtpunktzahl (max) 30 15 15 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 4 5 3 4 4 3 WT Ana A.1a) b) c) Summe P. (max) 7 5 3 15 WT Geo G.a)

Mehr

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 4.0.206 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 30 5 5 60 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana A.a b c Summe P. (max 7 5 3 5 Punkte

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3

Mehr

K2 KLAUSUR Pflichtteil

K2 KLAUSUR Pflichtteil K2 KLAUSUR 10.02.2012 MATHEMATIK Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 Punkte (max) 2 2 3 4 5 3 4 3 Punkte Wahlteil Analysis Aufgabe a b c Punkte (max) 9 5 4 Punkte Wahlteil Geometrie Aufgabe a b c Punkte

Mehr

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Pflichtteil Aufgabe : Bilden Sie die erste Ableitung der Funktion mit +5 ( VP) Verwende Produkt- und Kettenregel

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2012 Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit:

Mehr

Skizzieren Sie das Schaubild von f einschließlich der Asymptote.

Skizzieren Sie das Schaubild von f einschließlich der Asymptote. G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4

Mehr

Zentrale schriftliche Abiturprüfung Mathematik

Zentrale schriftliche Abiturprüfung Mathematik LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2012 mit CAS Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit:

Mehr

Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion

Mehr

Abiturprüfung Mathematik 004 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f() = + 3 Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 15 15 2 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 3 4 2 Punkte WT Ana A.1a b c d Summe

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil Aufgabe : Bilden Sie die Ableitung der Funktion f

Mehr

Mathematik Abitur 2014 Lösungen

Mathematik Abitur 2014 Lösungen Mathematik Abitur Lösungen Richard Reindl Analysis Aufgabengruppe Teil A. f (x) = lnx (lnx), f (x) = = lnx = = x = e, f(e) = e < x < e : lnx < = f (x) < = f fallend x > e : lnx > = f (x) > = f steigend.

Mehr

K2 KLAUSUR MATHEMATIK

K2 KLAUSUR MATHEMATIK K2 KLAUSUR MATHEMATIK NACHTERMIN 16.02.2012 Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 (max) 2 2 3 4 5 3 4 3 Wahlteil Analysis Aufgabe a b c (max) 10 3 5 Wahlteil Geometrie Aufgabe a b c (max) 7 4 5 Gesamtpunktzahl

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Geometrie II 2 Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Geometrie II 2 Lösungen 1 Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Geometrie II 2 Lösungen klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe II 2 In einem Koordinatensystem beschreibt

Mehr

Zusammenfassung Abitursstoff Mathematik

Zusammenfassung Abitursstoff Mathematik Zusammenfassung Abitursstoff Mathematik T. Schneider, J. Wirtz, M. Blessing 2015 Inhaltsverzeichnis 1 Analysis 2 1.1 Monotonie............................................ 2 1.2 Globaler Verlauf........................................

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 14 Wahlteil B www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 14 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung

Mehr

Abitur Mathematik Baden-Württemberg 2012

Abitur Mathematik Baden-Württemberg 2012 Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

6x 2. x 1. Eine Stammfunktion ist damit F( x) x 4sin x

6x 2. x 1. Eine Stammfunktion ist damit F( x) x 4sin x K 4..15 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe 1: [P]

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x

b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x K1 Punkte: / Note: Schnitt:.10.1 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Zentralabitur 2012 Mathematik Grundkurs Aufgaben Erwartungshorizonte

Zentralabitur 2012 Mathematik Grundkurs Aufgaben Erwartungshorizonte LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentralabitur 01 Aufgaben Erwartungshorizonte LAND BRANDENBURG Ministerium für Bildung,

Mehr

Abiturprüfung Baden-Württemberg 2003

Abiturprüfung Baden-Württemberg 2003 c 2003 by Rainer Müller - http://www.emath.de 1 Lösung Abiturprüfung Baden-Württemberg 2003 Leistungskurs Mathematik - Analysis 1 Die Skizze oben zeigt den vertikalen Schnitt längs der Rotationsachse eines

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 24. Mai 2013 *Aufgabe 1. Bestimmen Sie für die folgenden Funktionen jeweils die Gleichung der Tangentialebene für alle Punkte auf der Fläche. Wann ist die Tangentialebene

Mehr

5 Geraden im R Die Geradengleichung. Übungsmaterial 1

5 Geraden im R Die Geradengleichung. Übungsmaterial 1 Übungsmaterial 5 Geraden im R 5. Die Geradengleichung Eine Gerade ist eindeutig festgelegt durch zwei Punkte oder durch einen Punkt und eine Richtung. Beispiel: Die Gerade g durch die Punkte A(-//) und

Mehr

Prüfungsteil 2, Aufgabe 5 Analytische Geometrie

Prüfungsteil 2, Aufgabe 5 Analytische Geometrie Abitur Mathematik Nordrhein-Westfalen 1GK Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 GK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1. SCHRITT:

Mehr

Klausur unter abiturähnlichen Bedingungen Grundkursfach Mathematik - Ersttermin - Material für die Teilnehmerin. Allgemeine Arbeitshinweise

Klausur unter abiturähnlichen Bedingungen Grundkursfach Mathematik - Ersttermin - Material für die Teilnehmerin. Allgemeine Arbeitshinweise Leibnizschule - Gymnasium Schuljahr 2008/09 Klausur unter abiturähnlichen Bedingungen Grundkursfach Mathematik - Ersttermin - Material für die Teilnehmerin Allgemeine Arbeitshinweise Ihre Arbeitszeit (einschließlich

Mehr

Der folgende Katalog soll Beispiele dafür aufzeigen, was konkret verlangt werden kann, ohne dabei den Anspruch auf Vollständigkeit zu erheben.

Der folgende Katalog soll Beispiele dafür aufzeigen, was konkret verlangt werden kann, ohne dabei den Anspruch auf Vollständigkeit zu erheben. Fundus für den Pflichtbereich / Mathematik-Abitur ab 4 Themenbereiche Der Pflichtteil soll aus kleineren Aufgaben bestehen, die ohne Hilfsmittel zu bearbeiten sind. Er soll die Grundkompetenzen abprüfen.

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Wahlteil Analysis 2 Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com April 2016 1 Aufgabe

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Abiturprüfung 2011 mit ausführlichen Lösungen (Baden-Württemberg)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Abiturprüfung 2011 mit ausführlichen Lösungen (Baden-Württemberg) Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe-Abiturprüfung 20 mit ausführlichen Lösungen (Baden-Württemberg) Das komplette Material finden Sie hier: School-Scout.de Abitur-Prüfung

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Passerellen Prüfungen 2009 Mathematik

Passerellen Prüfungen 2009 Mathematik Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.

Mehr

MATURITÄTSPRÜFUNGEN 2008

MATURITÄTSPRÜFUNGEN 2008 Kantonsschule Romanshorn MATURITÄTSPRÜFUNGEN 2008 Mathematik 3 Std. Maturandin, Maturand (Name, Vorname) Klasse 4 Md hcs... Hilfsmittel Taschenrechner Fundamentum Mathematik und Physik oder Formelsammlung

Mehr

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3)

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3) Ein Raumviereck ABCD kann eben sein oder aus zwei gegeneinander geneigten Dreiecken bestehen. In einem ebenen Viereck schneiden sich die Diagonalen. Überprüfen Sie, ob die gegebenen Vierecke eben sind.

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

(3+2). Klausur Lösung

(3+2). Klausur Lösung EI M5 2011-12 MATHEMATIK (3+2). Klausur Lösung 1. Aufgabe (2 Punkte) Bilde die erste Ableitung der Funktion f mit für reelle Zahlen x. Dies ist eine Verkettung von e-funktion und sin(x). Also Kettenregel

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung: Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung aus.

Mehr

Beispiel mit Hinweisen 1 1/3 Dreieck

Beispiel mit Hinweisen 1 1/3 Dreieck Beispiel mit Hinweisen 1 1/3 Dreieck Zeige für das Dreieck ABC [ A(5/5), B(29/15), C(5/15) ] die Richtigkeit von folgender Behauptung: Die drei Verbindungsstrecken der Eckpunkte mit den Berührungspunkten

Mehr

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt. FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen

Mehr

Lösungen ==================================================================

Lösungen ================================================================== Lösungen ================================================================== Aufgabe Bestimme f '(x) a) f(x) = e x f '(x) = e x ( ) = 4 e c x b) f(x) = x e x f '(x) = e x ( ) = + e x c) f(x) = 3 e (x+)

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen 1 Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe I 1 Die Abbildung zeigt den Verlauf

Mehr

a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung

a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung Analysis Aufgabe 1.1 Gegeben ist die Funktion f mit 1 3 2 f x x 4 3x 9x 5 und G f Definitionsmenge IR. Die Abbildung zeigt den Graphen von f. a) Bestimmen Sie rechnerisch die Koordinaten und die Art der

Mehr

Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1.!!! Dokumentieren Sie alle Ansätze und Zwischenrechnungen!!!

Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1.!!! Dokumentieren Sie alle Ansätze und Zwischenrechnungen!!! Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1 Mittwoch, 1. Oktober 014 Zeit : 90 Minuten Name :!!! Dokumentieren Sie alle Ansätze und Zwischenrechnungen!!! Teil

Mehr

Abschlussprüfung an der Berufsoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Berufsoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Berufsoberschule im Schuljahr 00/0 Fach (B) Prüfungstag. Mai 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

1 Ergänzen Sie für die Funktionen u, v und w mit u (x) = cos (2 x), v (x) = 2 x 2 und w (x) = 9 x 1

1 Ergänzen Sie für die Funktionen u, v und w mit u (x) = cos (2 x), v (x) = 2 x 2 und w (x) = 9 x 1 Neue Funktionen aus alten Funktionen: Produkt, Quotient, Verkettung Sind die Funktionen u mit u () = und v mit v () = cos () gegeben, so erhält man die Verkettung u v () = u v () dieser beiden Funktionen,

Mehr

Mündliche Matura-Aufgaben: Analysis

Mündliche Matura-Aufgaben: Analysis Mündliche Matura-Aufgaben: Analsis A1) Schreiben Sie mit dem Summenzeichen. 15 + 19 + 23 +... + 87 A2) Berechnen Sie: lim x x 3 + 3x 5 x x 3 A3) Welches Glied der Folge 8, 24, 72, 216,... ist das erste,

Mehr

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt: K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Ministerium für Schule und Weiterbildung NRW M LK 1NT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK 1NT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite von 9 Unterlagen für die Lehrkraft Abiturprüfung 00 Mathematik, Leistungskurs Aufgabenart Lineare Algebra/Geometrie ohne Alternative Aufgabenstellung siehe Prüfungsaufgabe 3 Materialgrundlage Fotografie

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 26 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

Mögliche Lösung. Ebenen im Haus

Mögliche Lösung. Ebenen im Haus Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung

Mehr

c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende.

c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. VP b) Das Schaubild von hat für 36 genau zwei Wendepunkte. c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. 3. Gegeben ist die Funktionenschar mit

Mehr

Lösungen der Musteraufgaben 2017. Baden-Württemberg

Lösungen der Musteraufgaben 2017. Baden-Württemberg Baden-Württemberg: Musteraufgaben 07 Lösungen www.mathe-aufgaben.com Lösungen der Musteraufgaben 07 Baden-Württemberg allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Baden-Württemberg:

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

ÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅ

ÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅ halbzeiten_rep_gesundheitlich-soziales_profil.nb Halbzeiten-Repetition gesundheitlich-soziales Profil Termumformungen:. Vereinfachen Sie: a) ( - a ) ( b b) Hx + 8 x + 6L H5 - xl ÅÅÅÅ Hx - 5 xl Hx - 6L

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ihlenburg Ott Deusch Mathematik für berufliche Gmnasien Jahrgangsstufen und Analsis und Stochastik Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 5. Auflage 05 ISBN 978--80-8- Das

Mehr

Mathematik - Arbeitsblatt Lineare Funktionen

Mathematik - Arbeitsblatt Lineare Funktionen Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des

Mehr

7 Aufgaben im Dokument. Aufgabe P5/2010

7 Aufgaben im Dokument. Aufgabe P5/2010 Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

Musteraufgaben Fachoberschule 2017 Mathematik

Musteraufgaben Fachoberschule 2017 Mathematik Musteraufgaben Fachoberschule 07 Funktionsuntersuchung /8 Gegeben ist die Funktion f mit der Funktionsgleichung f(x) = 0,05x 0,75x +,x +,8 und dem Definitionsbereich x [0;0]. Der Graph G f der Funktion

Mehr

Abiturprüfung Mathematik 03 Baden-Württemberg (ohne CAS) Wahlteil - Aufgaben Analytische Geometrie / Stochastik B Aufgabe B. In einem würfelförmigen Ausstellungsraum mit der Kantenlänge 8 Meter ist ein

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüung Fachhochschulreie 204 Baden-Württemberg Augabe 2 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com September 204 Gegeben ist die Funktion mit

Mehr

LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge

LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge Zweite Fassung Mai 04 Duale Hochschule Baden-Württemberg Stuttgart Campus Horb Testfragen Schreiben Sie das Ergebnis in das dafür vorgesehene

Mehr

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben. Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel

Mehr

Mathematik im Berufskolleg II

Mathematik im Berufskolleg II Bohner Ott Deusch Mathematik im Berufskolleg II Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 6. Auflage 6 ISBN 978--8-- Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

WM.3.1 Die Polynomfunktion 1. Grades

WM.3.1 Die Polynomfunktion 1. Grades WM.3.1 Die Polynomfunktion 1. Grades Wenn zwischen den Elementen zweier Mengen D und W eine eindeutige Zuordnungsvorschrift vorliegt, dann ist damit eine Funktion definiert (s. Abb1.), Abb1. wobei D als

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von 5 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 011 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr