½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½

Größe: px
Ab Seite anzeigen:

Download "½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½"

Transkript

1 ÆÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ ÙÒØ Ö Î ÖÛ Ò ÙÒ Ý Ò Ö Î Ö Ð Ò Ð Ø ÓÒ ¹ źËÑ Ø ² ʺÃÓ Ò ¹

2 ½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½

3 ½º ÒÐ ØÙÒ Ý Ò Ö Ò ØÞ Ö Ñ Ô Ö Ñ ØÖ Ë ØÞÙÒ Ò ¹ Ø Ú Ò Ê Ö ÓÒ ÑÓ ÐÐ Ò ØÐ Ò Ö ÃÓÑÔÓÒ ÒØ ÙÖ ËÔÐ Ò ÑÓ ÐÐ ÖØ ÃÒÓØ Ò ÙÖ Î Ö Ð Ò Ð Ø ÓÒ Ø ÑÑØ Óܹ ÓܹÌÖ Ò ÓÖÑ Ø ÓÒ Ø ÐÐØ Ø Ú ÅÓ ÐÐ Ñ Ø Ù³ Ò Ð ÖÒ Ö ÖÓ Ù Ø Ë ØÞÙÒ Ö Ð Ö ÙÖ Ñ Ø ÆÓÖÑ ÐÚ ÖØ ÐÙÒ ¾

4 Ò Ö Ø Ò È Ö Ñ Ø Ö Û Ö Ò Ñ ØØ Ð Ö Ø ÔÐÙ Ò ¹ ÐÓ Ð ØÞØ Å Ø Ñ Ë ÑÔÐ Ö Û Ö Ð ÖÚ Ö ÒÞ Ê Ö ÓÒ ¹ ÙÒ Ö È Ö Ñ Ø Ö Ö Óܹ ÓÜ ÌÖ Ò ÓÖÑ Ø ÓÒ ¹ Ô Ö Ñ Ø Ö ÅÓ ÐÐ y = f(x) + ǫ f(x) ÙÒ ÒÒØ ÙÒ ÑÙ ØÞØ Û Ö Ò Ý Ê Ö ÓÒ ÔÐ Ò Û Ö Ñ Ø Ò Ñ ÖÒ Ð Û Ø ÐÓ Ð Ð ¹ Ò Ö ÑÓÓØ Ö Ú Ö Ð Ò ˆf(x 0 ) = n i=1 w(x i, x 0 )y i ØÞØ

5 ÑÓÓØ Ò ÔÐ Ò ÒÙØÞ Ò Ò Ö Ð ÖØ ÃÖ ÙÞÚ Ð ÖÙÒ ÞÙÖ Ë Ø¹ Ç n 3 µ Ê Ò Ö ØØ Ò Ø Ö ÒÙÖ Ó Ë ØÞÙÒ ÞÙÒ Ö Ñ Ò ² Ë ÐÚ ÖÑ Ò Ê Ö ÓÒ ÔÐ Ò Ö ÒÓÒÔ Öº ÅÓ ÐÐ ÙÖ ÃÖ ÙÞÚ Ð ÖÙÒ Ö Ù Û Ò ÞÙ Ö Ò Ò ÃÒÓØ Ò ÐÐ Ò Ò ØÞ Ò Ø Ò ÖÓ Ù Ø Ë ØÞÙÒ Û Ö ÞÙ Ø Ð¹ = Ø Ò Ø Ò Ò ØÞ ÒÓÒÔ Öº Ê Ö ÓÒ Ö Ò Ù Ò Ï ÖØ Ò Ö Ê Ö ÓÖ Ò ÖÒ ÖØ ÐØØ Ö Ë ØÞÙÒ Ñ ØØ Ð Ö Ø ÔÐÙ Ò ÖÒ Ø Ù ÙÒ Ú Ö Ø Ò ÐÐ

6 ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ y = β 0 + x 1 γ 1 β x i γ i β i x r γ r β r + e e N(0, σ 2 I n ) γ Ø ÁÒ ØÓÖÚ ØÓÖ Ñ Ø γ j = 0, β j = 0 1, β j 0 β γ ÒØ ÐØ ÐÐ Ð Ñ ÒØ ÚÓÒ β ÙÒ Ð ÆÙÐÐ Ò X γ Ø Ø Ù ÐÐ Ò ËÔ ÐØ Ò ÚÓÒ X ÞÙ γ = 1 Ö Ò

7 ÒÒ Ñ Ò ½º ÈÖ ÓÖ ÚÓÒ β γ º γ ÙÒ σ 2 β γ N(0, cσ 2 (X γx γ ) 1 ) c > 0 Ö c = 100 ÈÖ ÓÖ Û Ò Ö Ò ÓÖÑ Ø Ú Ð Ä Ð ÓÓ ÈÖ ÓÖ ÚÓÒ σ 2 º γ p(σ 2 γ) 1 σ2 Â Ö Ý ³ ÈÖ ÓÖ ¾º º γ j Ò ÔÖ ÓÖ ÙÒ º Ñ Ø p(γ j = 1) = π j 0 π j 1 j = 1,..., r π Ö j = 1 Ò ÎÓÖ ÒÒØÒ Ó Î Ö Ð Ò ÞÓ Ò ÛÙÖ 2 Ò Ø γ Ø ÔÖ ÓÖ Ï Ö ÒÐ Ø 2 r Ó Ö

8 Ë ÑÔÐ Ö º γ q γ = r j=1 γ j Ð Ó ÒÞ Ð Ö Ð Ñ ÒØ β 0 ÙÒ Ê Ù ÒÕÙ Ö Ø ÙÑÑ S(γ) = y y c 1 + c y X γ (X γx γ ) 1 X γy = y (I c 1 + c X γ(x γx γ ) 1 X γ )y Ä Ð ÓÓ p(y γ) ˆ σ {ˆ β p(y β γ, σ 2 )p(β γ σ 2 )dβ γ } p(σ 2 )dσ 2 (1 + c) q 2 S(γ) n 2

9 Å Ö Ò Ð ÈÓ Ø Ö ÓÖ ÒÙÖ Ë ØÞÙÒ ÚÓÒ γ Ò Ø p(γ y) p(y γ)p(γ) (1 + c) q 2 S(γ) n 2 r j=1 π γ j j (1 π j) 1 γ j γ Ù 2 r Ú Ö Ò Ò Ï ÖØ Ò Ø Ø Ø Ò ÜÔÐ Þ Ø ¹ ½º Û Ð ËØ ÖØÛ ÖØ γ [0] = ( γ [0] ) 1,..., γ[0] r Ö ÒÙÒ Ñ Ð Ë ÑÔÐ Ö ¾º Þ Ù Þ Ú Ù p(γ j y, γ j i ) j = 1,..., r = p ( ) γ j γ j y, γ j i π j (1 π j) 1 γ q j (1 + c) 2 S(γ) n 2

10 Ö ÑÔÐ Ò Ô Ö Ó Ð Ò ÁØ Ö Ø ÓÒ Ò γ [k] Ò Ê ÓÒ Ò Ï Ö Ò Ó Ö Ï Ö ÒРغ Ï ÖØ Û Ö Ò ÒÙØÞØ ÙÑ Ò ÚÓÒ Ë ØÞÙÒ ½º ÈÓ Ø Ö ÓÖ ¹ÅÓ Ù ÚÓÒ γ ÅÓ Ù Ð Å Ü ÑÙÑ Ö ÈÓ Ø Ö ÓÖ ÞÙ ØÞ Ò Ê Ö ÓÒ Ô Ö Ñ Ø Ö Ñ Ø ÃÉ¹Å Ø Ó Ò Ò ÚÓÒ ˆγ M ØÞØ ¾º ÔÓ Ø Ö ÓÖ ¹ ÖÛ ÖØÙÒ Û ÖØ ÚÓÒ β ˆβ = 1 K K k=1 E post ( β y, γ [k])

11 º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ y i = f(x i ) + e i, i = 1,..., n, e i N(0, σ 2 ) ˆf(x) = b 0 + γ 1 b 1 x + γ 2 b 2 x 2 + γ 3 b 3 x 3 + m k=1 γ kβ k (x x k ) 3 + x 1,..., x m Ò ÃÒÓØ Ò min(x i ) < x 1 <... < x m < max(x i ) ÙÖ Ò Ò Ù Ò ËÔÐ Ò Û Ö ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ ÞÙ Ò Ñ Ð Ò Ö Ò ÅÓ ÐÐ ½¼

12 ÑÙÐ ÖØ Ô Ð Î Ö Ð Ö Ý Ò Ò Ë ØÞ Ö Ñ Ø Ò Ñ ÖÒ Ð Û Ø Ð Ò Ö ÑÓÓØ Ö ÐÓ Ð f ½º 1 (x) = 2x 1 ¾º f 2 (x) = sin(10πx) f º 3 (x) = φ(x,0.15,0.05) 4 + φ(x,0.6,0.2) 4 Ö ÙÒ Ø ÓÒ ÛÙÖ Ò ½¼¼ Ó ØÙÒ Ò Ò Ö ÖØ ÛÓ e i N(0, σ 2 ) ÙÒ x i U(0,1) ½½

13 ËØÙ Ò Ö Ð Ö ÛÙÖ Ò ÒÙØÞØ ½º ÐÓÛ ÒÓ Ñ Ø σ = 1 8 ¾º Ñ ÙÑ ÒÓ Ñ Ø σ = 1 4 º ÒÓ Ñ Ø σ = 1 2 ÐÐ Ó º Ò ÃÒÓØ Ò Ò ÑØ Ð Ó m = 24 Ñ Ø Ø X r = 28 ËÔ ÐØ Ò Ë ÑÔÐ Ö Û ÖÑ ÙÔ ½¼¼ ÁØ Ö Ø ÓÒ Ò ÑÔÐ Ò ½ ¼¼ ÁØ Ö Ø ÓÒ Ò ½¾

14 ÈÓ Ø Ö ÓÖ ¹ÅÓ Ù ¹Ë ØÞ Ö ˆγ M Ò ÔÔÖÓÜ Ñ Ø ÓÒ ˆf(x) Ò ØÞ Ò ÈÓ Ø Ö ÓÖ ¹ ÖÛ ÖØÙÒ Û ÖØ¹Ë ØÞ Ö ˆβ Ò ÔÔÖÓÜ Ñ Ø ÓÒ ˆf(x) Ò ØÞ Ò Ò Ö Å Ð Ø ÒÓÒÔ Öº Ë ØÞ Ö ÞÙ Ú Ö Ð Ò Ø Ö ÒØ ¹ Ö ÖØ ÕÙ Ö Ø Ð Ö ÁË µ ISE = i=1 ( f(zi ) ˆf(z i ) )2 ½

15 ½

16 ½

17 ½

18 ½

19 ½

20 ½

21 ¾¼

22 Ñ Ø Ø Ú ÅÓ ÐÐ Ù Û Ö Ð ÒÓÖÑ ÐÚ ÖØ ÐØ ÓÑÓ ¹ Ð Ö ØÞØ Û Ö Ò Óܹ ÓܹÌÖ Ò ÓÖÑ Ø ÓÒ ÙÖ ¹ Ø º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ ÖØ y i,λ = y λ i, λ > 0 log(y i ), λ = 0 y λ i, λ < 0 y i > 0 ÎÓÖ Ø Ö ÒÙÒ Ö ÈÓ Ø Ö ÓÖ ÙÒ λ Ò Ø Ö ÓÖÖ ¹ γ Ö λ Λ = { 2, 1, 0.5,0,0.5,1,2} Ð ÖØ ¾½

23 w i (y; λ) = a(y; λ) + b(y; λ)y i,λ a(.),b(.) Ó Û ÐØ Ö Å Ò ÁÒØ ÖÕÙ ÖØ Ð Ø Ò ØÖ Ò ÓÖÑ ÖØ Ò Î Ö Ð Ò ÔÔÖÓÜ Ñ Ø Ú Ð Ø Ö ÐÐ λ Ö λ Û Ö Ñ Ø À Ð Ë ÑÔÐ Ö Ð ÅÓ Ù Ö Ö Ø Ò Å ¹ Ú ÖØ ÐÙÒ ÚÓÒ p(λ y) ØÞØ Ê Ö ÓÒ ÙÒ Ø ÓÒ Û Ö Û ÚÓÖ Ö Ö Ò ØÞØ ¾¾

24 ÍÑ Ò ÅÓ Ù ÚÓÒ p(λ y) ÞÙ Ø ÑÑ Ò ÅÓ ÐÐ w(y; λ) = Xβ + e ÈÖ ÓÖ Ö β, σ 2 ÙÒ γ Û ÚÓÖ Ö Ö Ò Ë ÑÔÐ Ö ÙÑ Ù p(γ j y; γ j i ) ÞÙ Þ Ò ¾

25 p(γ y) = λ Λ p(λ, γ y) λ Λ p(y λ, γ)p(λ)p(γ) p(y λ, γ) = p(w(y; λ) λ, γ) J (λ) (1 + c) q 2 S(γ) n 2 J (λ) S(γ) = w(y; λ) { I c 1 + c w(y; λ) X γ ( ) } X 1 γ X γ X γ w(y; λ) ¾

26 ˆλ M = max λˆp(λ y) Ñ Ø ˆp(λ y) = 1 K K k=1 p(λ y, γ[k] ) ÛÓ p(λ l y, γ) = p(y λ l,γ)p(λ) λ Λ p(y λ,γ)p(λ) Ö λ l Λ ˆλ Å Ø M Ñ Ò ÒÓÒÔ Öº Ý Ë ØÞ Ö ÙÖ Ò Ë ÑÔ¹ ÒÒ Ø ÑÑ Òº ÑÙ Ö Ò Ö ÖÙÒ ÚÓÒ γ λ Ö Ù Ò¹ Ð Ö Û Ö Ò Û Ò Ö Ó Ò ÃÓÖÖ Ð Ø ÓÒ ÞÛ Ò Ò Ò Ø Ö ÖØ È Ö Ñ Ø ÖÒº ¾

27 ÑÙÐ ÖØ Ô Ð ÌÖ Ò ÓÖÑ Ø ÓÒ Ê ØÖ Ò ÓÖÑ Ø ÓÒ ÔÓ Ø Ö ÓÖ Ï³ Ø ÙÒ Ø ÓÒ f 1 ỹ i = exp(y i ) y i = a 1 + b 1 log(ỹ i ) f 2 ỹ i = (2.2 y i ) 1 2 f 3 ỹ i = (y i + 1.5) 2 y i = a 3 + b 3 (ỹ i ) y i = a 2 b 2 (ỹ i ) ¾

28 ¾

29 ¾

30 ¾

31 º ÊÓ Ù Ø Ë ØÞÙÒ Ò Î Ö Ð Û Ö ÖÓ Ù Ø ØÞØ Ò Ñ Ð Ö Ù Ò Ö Ñ Ø Ò ÆÓÖÑ ÐÚ ÖØ ÐÙÒ ÑÓ ÐÐ ÖØ Û Ö Ò ÅÓ ÐÐ y = Xβ + e Ñ Ø e N(0, σ 2 Ω) Ω = diag(ω 1,..., ω n ) ÙÒ ω i = 1, ¹Ø Ó º Ò Ù Ö Ö κ, ¹Ø Ó º Ù Ö Ö κ ÖÓ ÙÒ ÔÓ Ø Ú ω = (ω 1,..., ω n ) ÙÒ Ω = Ω ω ¼

32 ½º º γ, ω, σ 2 : β γ N ( 0, cσ 2 ( X γω 1 ω X γ ) 1 ) ÈÖ ÓÖ ÒÒ Ñ Ò ¾º º γ, ω : p ( σ 2 γ, ω ) 1 σ 2 º ω i p(ω i = κ) = π l, i.i.d. Ñ Ø κ = 100 ÙÒ π l = 0.05 Ï Ò 2 n+r Ï ÖØ Ò Ë ÑÔÐ Ö Ò Ø Ø ½

33 ÙÐÐ ÓÒ Ø ÓÒ Ð ½º p ( γ j y, γ j i, ω ), j = 1,..., r ¾º p ( ω i y, γ, ω j i ), i = 1,..., n º Î ÖØ ÐÙÒ Ò Ö Ò Ë ÑÔÐ Ö Ð Ò Ö Ò Ò ÙÖ ( ) S (γ, ω) = y Ω 1 ω Ω 1 ( ω X γ X γ Ω 1 ) 1 ω X ω X γ Ω 1 ω y Ñ Ø p(y γ, ω) (1 + c) q S(γ, ω) n 2 Ö Ø ¾

34 p(γ, ω y) ( ) n i=1 ω 2 1 r i j=1 πγ j j (1 π j) 1 γ j q (1 + c) S(γ, ω) n 2p(ω) p ( γ j y, γ j i, ω ) (1 + c) q S(γ, ω) n2 π γ j j (1 π j) 1 γ j p ( ) 1 ω i y, γ, ω j i ω 2 i S(γ, ω) n 2 p(ω) Ö ÈÓ Ø Ö ÓÖ ¹ÅÓ Ù Ø È Ö (ˆγ M, ˆω M ), p(γ, ω y) Ñ Ü ¹ Ñ ÖØ Ö ÈÓ Ø Ö ÓÖ ¹ ÖÛ ÖØÙÒ Û ÖØ ˆβ M = ( X γω 1 ω X γ ) 1 X γω 1 ω y

35 È Ö ÓÖÑ Ò Ö ÖÓ Ù Ø Ò Ý Ë ØÞ Ö Û Ö Ñ Ø Ñ Ö ÖÓ Ù Ø Ò ÖÒ Ð Û Ø ÐÓ Ð Ð Ò Ö ÑÓÓØ Ö ÙÒ Ñ Ò Ø ÑÙÐ ÖØ Ô Ð ÐÓ Ú Ö Ð Òº Ù ØÞÐ ÛÙÖ Ò ½¼ Ù Ö Ö Ò Ø Ò ÒØ Ö ÖØ ÙÑ Ë ØÞ Ö ÞÙ Ø Ø Ò Ö f 1 X 1,..., X 10 U( 15;15) Ö f 2 X 1,..., X 10 Cauchy Ö f 3 X 1,..., X 10 N(0,8 2 )

36

37

38

39 º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ Ò ÐÝ Ó ØÓÒ Ö Å Ø Ô Ð ¼ Ó ØÙÒ Ò ½ ÃÓÚ Ö Ð Ò ÚÓÒ ÒÓÒÔ Ö Ñ ØÖ ÅÓ ÐÐ w(y ; λ) = α + β 1 X 1 + β 2 X 2 + β 3 X 3 + β 4 X 4 + f 5 (X 5 ) +f 6 (X 6 ) + β 7 X 7 + f 8 (X 8 ) + β 9 X 9 + f 10 (X 10 ) +β 11 X 11 + β 12 X 12 + f 13 (X 13 ) + e

40 =Å ØØ ÐÛ ÖØ Ö ÒØÙÑ ÛÓ ÒÙÒ Ò Y X 5 Ò ËØ ØÓ ÓÜ =ÃÓÒÞ ÒØÖ Ø ÓÒ X 6 ÒÞ Ð Ò ÊÙÑ Ò = ÙÖ Ò ØØÐ X 8 Ö Û Ø Ø Ò Ø ÒÞ ÞÙ Ò Ö Ø ÔÐ ØÞ¹ =ÄÓ Ö Ø ÑÙ ÒØÖ Ò Ö Ê ÓÒ X 10 = ÖÙÒ Ø ¹ËØ Ù ÖÖ Ø ÔÖÓ ½¼ ¼¼¼µ X 13 = ÒØ Ð Ö Ú Ð ÖÙÒ Ù Ö Å ØØ Ð Ø

41 Ë ÑÔÐ Ö Ö ÈÓ Ø Ö ÓÖ ¹ÅÓ Ù ÚÓÒ λ Û ÖÑ ÙÔ ¼¼ ÁØ Ö Ø ÓÒ Ò ÑÔÐ Ò ¾¼¼ ÁØ Ö Ø ÓÒ Ò Ë ÑÔÐ Ö Ö ÈÓ Ø Ö ÓÖ ¹ÅÓ Ù ÚÓÒ (γ, ω) Û ÖÑ ÙÔ ¼¼ ÁØ Ö Ø ÓÒ Ò ÑÔÐ Ò ¼¼¼ ÁØ Ö Ø ÓÒ Ò β 2, β 3 ÙÒ β 4 Ò Ø Ò ÒØ Ö Ò Ø Ò ÅÓ ÐÐ Ù ÒÓѹ Ñ Ò ¼

42 ½

43 ¾

44

45 ÃÉ¹Ë ØÞÙÒ Ò Ö È Ö Ñ Ø Ö (ˆγ M, ˆω M Ð ÖÒ ÓÐ Ò ¹ ) Ø ÑÑØ Ø Ñ R 2 = 0.94 ÞÛº R 2 = Ö Ò ÙÒÖÓ Ù Ø Ò Ø Î Ö Ð ÞÙ Ð Ò Ö ÅÓ ÐÐ Ò À ÖÖ ÓÒ Ò ÊÙ Ò Ð ½ µ R 2 = 0.80 ÞÛº R 2 = 0.73 Ö Ò ÙÒÖÓ Ù Ø Ò Ø Ð ÓÖ Ø ÑÙ ÚÓÒ Ö Ñ Ò Ò Ö Ñ Ò ½ µ R 2 = 0.89

46 ËÑ Ø ² ÃÓ Ò Ò Ò Ò Ð ÓÖ Ø ÑÙ ÒØÛ ÐØ Ö Ñ Ø À й = ÚÓÒ Ý Ò Ö Î Ö Ð Ò Ð Ø ÓÒ ÒÓÒÔ Ö Ñ ØÖ Ê Ö ¹ ÓÔØ Ñ Ð ØÞ Ò ÒÒº Ö Ð ÓÖ Ø ÑÙ Ø Ò Ø ÒÙÖ ÓÒ ÔÐ Ò Þ ÒØ Ö ÙÒ Ù ÖÓ Ù Ø Ö Ð ÐÐ Ö Ö Ð ÓÖ Ø Ñ Ò Ò ÐÐ Ö ÙÒ Ø ÓÒ ÖØ ÓÛÓ Ð ÒÓÒÔ Ö Ñ ØÖ Ò Ø Ú Ò ÑÓ Ð¹ ÓÒ ÖÒ Ð Ù Ñ Ô Ö Ñ ØÖ Òº Ð Ò

47 Î Ð Ò Ò Ö ÙÖ Ù Ñ Ö Ñ Ø

48 a(.) ÙÒ b(.) Ö ÐØ Ñ Ò ÙÖ Ä Ò Ö Ò Ð ÙÒ Ò y n 2 = w n 2 (y; λ) y 3n y n 4 4 = w 3n (y; λ) w n 4 4 (y; λ) b(y; λ) = y 3n4 y n 4 y 3n4,λ y n 4,λ a(y; λ) = y n 2 b(y; λ)y n 2,λ J(λ) = det { w(y;λ) y } Â Ó Ö ÌÖ Ò ÓÖÑ Ø ÓÒ

Ü (k) Ü < ǫ, (Ü (k) ) < ǫ, Ü (k+½) Ü (k) < ǫ

Ü (k) Ü < ǫ, (Ü (k) ) < ǫ, Ü (k+½) Ü (k) < ǫ Å Ö Ñ Ò ÓÒ Ð Æ ÛØÓÒ Î Ö Ö Ò º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á Ð Ñ Ò Ö Ò ÙÒ Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò º ÅÖÞ ¾¼½ Å Ö Ñ Ò ÓÒ Ð Æ ÛØÓÒ Î Ö Ö Ò ½ Å Ö Ñ Ò ÓÒ Ð Æ ÛØÓÒ Î Ö Ö Ò Î ØÓÖ Ò Ú ØÓÖÛ ÖØ ÙÒ Ø ÓÒ Ò

Mehr

ÒÛ Ò ÙÒ Ô Ø Ð Ö ÒÒ ÖÙÒ ÂÈ Ñ ÚÓÖ Ò Ò ØØ Û Ø Ð ÓÑÔÖ ÓÒ ÅÈ µ ØÛ µ ÃÓÑÔÖ ÓÒ ÚÓÒ Ù Ó Ø Ò ¾

ÒÛ Ò ÙÒ Ô Ø Ð Ö ÒÒ ÖÙÒ ÂÈ Ñ ÚÓÖ Ò Ò ØØ Û Ø Ð ÓÑÔÖ ÓÒ ÅÈ µ ØÛ µ ÃÓÑÔÖ ÓÒ ÚÓÒ Ù Ó Ø Ò ¾ ÖÒ Ù Àº ÖÒ ÙÙÒ ¹ØÖ Öº Ñ Ð ¾¼½ ËÓË ÌÖ Ö ÍÒ Ú Ö ØØ Ø Ò ÓÑÔÖ ÓÒ ÒÛ Ò ÙÒ Ò ½ ÒÛ Ò ÙÒ Ô Ø Ð Ö ÒÒ ÖÙÒ ÂÈ Ñ ÚÓÖ Ò Ò ØØ Û Ø Ð ÓÑÔÖ ÓÒ ÅÈ µ ØÛ µ ÃÓÑÔÖ ÓÒ ÚÓÒ Ù Ó Ø Ò ¾ ÒÐ Ø Ò ÒÒ Ö Ð ÒÞ ÐÒ Ö Ð Ö Ï Ø Ö Ò Ø ËØ ÖÙÒ

Mehr

Î ÖØÖ Ù Ò Ú ÖÐÙ Ø Ñ ÁÒØ Ö Ò ÒÑ Ö Ø ÙÒ Ò Ø ÖÖ Ä ÙÒ Å Ð À Ò ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö Ò Ò ÙÒ Ò ÒÞ Ò

Î ÖØÖ Ù Ò Ú ÖÐÙ Ø Ñ ÁÒØ Ö Ò ÒÑ Ö Ø ÙÒ Ò Ø ÖÖ Ä ÙÒ Å Ð À Ò ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö Ò Ò ÙÒ Ò ÒÞ Ò Î ÖØÖ Ù Ò Ú ÖÐÙ Ø Ñ ÁÒØ Ö Ò ÒÑ Ö Ø ÙÒ Ò Ø ÖÖ Ä ÙÒ Å Ð À Ò ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö Ò Ò ÙÒ Ò ÒÞ Ò Ö Ð Ä ÕÙ ØØ Ò ÒÞ Ò Ø ØÙØ ÓÒ Ò ÙÒ ÁÒØ Ö Ò ÒÑ Ö Ø Î ÖØÖ Ù Ò ÁÒØ Ö Ò ÒÑ Ö Ø Û Ö Ò Ö ÃÖ Ù Û Ö ÙÒ Ò Ö Ò ÒÞ

Mehr

ÙÚ ÖÐ Ø º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Ç ØÓ Ö ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ ÙÚ ÖÐ Ø º Ç ØÓ Ö ¾¼½ ½» ½

ÙÚ ÖÐ Ø º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Ç ØÓ Ö ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ ÙÚ ÖÐ Ø º Ç ØÓ Ö ¾¼½ ½» ½ ÙÚ ÖÐ Ø º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Ç ØÓ Ö ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ ÙÚ ÖÐ Ø º Ç ØÓ Ö ¾¼½ ½» ½ ÁÒ ÐØ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ ÙÚ ÖÐ Ø º Ç ØÓ Ö ¾¼½ ¾» ½ Ò Ö Ð ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ

Mehr

ÁÒ ÐØ ½ ¾ ÈÖ Ú ÒØ Ø Ú Å ÒØ Ò Ò ¹ ÎÓÖ Ù Ò ÁÒ Ø Ò ÐØÙÒ Ñ Ò Ñ ÅÓ ÐÐ ÖÙÒ ÚÓÒ ËÝ Ø Ñ Ò Ñ ØØ Ð Å Ö ÓÚ ËÝ Ø Ñ ÅÓ ÐÐ ÖÙÒ Ö Ê Ô Ö ØÙÖÞ Ø Ö ÒÙÒ Ö ÅÌÌ ÙÒ ÅÌÌÊ Ò

ÁÒ ÐØ ½ ¾ ÈÖ Ú ÒØ Ø Ú Å ÒØ Ò Ò ¹ ÎÓÖ Ù Ò ÁÒ Ø Ò ÐØÙÒ Ñ Ò Ñ ÅÓ ÐÐ ÖÙÒ ÚÓÒ ËÝ Ø Ñ Ò Ñ ØØ Ð Å Ö ÓÚ ËÝ Ø Ñ ÅÓ ÐÐ ÖÙÒ Ö Ê Ô Ö ØÙÖÞ Ø Ö ÒÙÒ Ö ÅÌÌ ÙÒ ÅÌÌÊ Ò ÙÚ ÖÐ Ø º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ ¾ º ÂÒÒ Ö ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ ÙÚ ÖÐ Ø ¾ º ÂÒÒ Ö ¾¼½ ½» ¼ ÁÒ ÐØ ½ ¾ ÈÖ Ú ÒØ Ø Ú Å ÒØ Ò Ò ¹ ÎÓÖ Ù Ò ÁÒ Ø Ò ÐØÙÒ Ñ Ò Ñ ÅÓ ÐÐ ÖÙÒ ÚÓÒ ËÝ Ø Ñ

Mehr

Ð ÖÙÒ Ï Ö ÓÐÙÒ Å ØÖ Ü Ð Ö Ä Ò Ö Ð ÙÒ Ý Ø Ñ Ä Ö Ø ÐÐÙÒØ Ö ÙÒ Ò Å ÌÄ ÙÒ Ð Ò Ö ËÝ Ø Ñ ÃÓÒ Ø ÓÒ Þ Ð Ô Ð Ö Ø ÈÓ ÓÒ¹ÈÖÓ Ð Ñ Å ØÖ Ü ÔÐ ØØ Ò ÅÓ ÖÒ Ø Ö Ø Ú Î Ö

Ð ÖÙÒ Ï Ö ÓÐÙÒ Å ØÖ Ü Ð Ö Ä Ò Ö Ð ÙÒ Ý Ø Ñ Ä Ö Ø ÐÐÙÒØ Ö ÙÒ Ò Å ÌÄ ÙÒ Ð Ò Ö ËÝ Ø Ñ ÃÓÒ Ø ÓÒ Þ Ð Ô Ð Ö Ø ÈÓ ÓÒ¹ÈÖÓ Ð Ñ Å ØÖ Ü ÔÐ ØØ Ò ÅÓ ÖÒ Ø Ö Ø Ú Î Ö Ä Ò Ö Ð ÙÒ Ý Ø Ñ Á º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á Ð Ñ Ò Ö Ò ÙÒ Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò ½¾º ÅÖÞ ¾¼½ Ð ÖÙÒ Ï Ö ÓÐÙÒ Å ØÖ Ü Ð Ö Ä Ò Ö Ð ÙÒ Ý Ø Ñ Ä Ö Ø ÐÐÙÒØ Ö ÙÒ Ò Å ÌÄ ÙÒ Ð Ò Ö ËÝ Ø Ñ ÃÓÒ Ø ÓÒ

Mehr

Ê ÓØ ÓÖ º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Å ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ Ê ÓØ ÓÖ º Å ¾¼½ ½» ½

Ê ÓØ ÓÖ º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Å ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ Ê ÓØ ÓÖ º Å ¾¼½ ½» ½ Ê ÓØ ÓÖ º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Å ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ Ê ÓØ ÓÖ º Å ¾¼½ ½» ½ Å Ü Ñ Ð Ö ÒÞ ÙÒ Ö Ö Ö ØÚ ÖØ ÐÙÒ Ò Ø ÓÒ Ò ÙÒ Ø ÓÒ Ä : [¼, ) [¼, ) Ø Ð Ò Ñ Ú Ö Ö Ò ÐÓÛÐÝ Ú ÖÝ

Mehr

ψ(t, Ü) = e iet/ ψ(ü).

ψ(t, Ü) = e iet/ ψ(ü). Ã Ô Ø Ð Ö ÖÑÓÒ Ç Þ ÐÐ ØÓÖ ÒÞ Û Ë Ö Ò Ò ÒÒ Ò Ø Ò Ã Ø ÒÔÓØ ÒØ Ð Ö ÌÙÒÒ Ð Ø Ï Ö ØÓ ØÓÑ ÙÒ ÚÓÖ ÐÐ Ñ Ö ÖÑÓÒ Ç Þ ÐÐ ØÓÖº Ï ÒÒ Ë Ó Ò Ò Ò Ö Ù Ò Ë º Ï ÒÒ Ò Ø Ò ÖÒ Ë Ó Ð Ò Ë Ò Ò Òº Ù Ø Ò ËÔÖ ÚÓÒ ÈÖÓ ÓÖ Ò ÁÒ Ñ Ã

Mehr

ÓÒÙ ¹Å ÐÙ ËÝ Ø Ñ Ö Î Ö ÖÙÒ Û Ã Ø ÓÖ Ò ÚÓÒ Ê Ò Ò Ó Ø Ú Ò Ê Ò Þº º ÈË Þ Ð Ò ÙØÓ Ö ÀÙ Ö ÙÑ Û Ø Ø ºº ÙÒ Ò Ù Ø Ú Ò Ê Ò Ò Ø Ó Ø Ú Ñ Ö Ê Òµ Ê Ó Ö Ø Ø Ã ÒÒ Ò

ÓÒÙ ¹Å ÐÙ ËÝ Ø Ñ Ö Î Ö ÖÙÒ Û Ã Ø ÓÖ Ò ÚÓÒ Ê Ò Ò Ó Ø Ú Ò Ê Ò Þº º ÈË Þ Ð Ò ÙØÓ Ö ÀÙ Ö ÙÑ Û Ø Ø ºº ÙÒ Ò Ù Ø Ú Ò Ê Ò Ò Ø Ó Ø Ú Ñ Ö Ê Òµ Ê Ó Ö Ø Ø Ã ÒÒ Ò Ê ÓØ ÓÖ º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ ¾ º ÔÖ Ð ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ Ê ÓØ ÓÖ ¾ º ÔÖ Ð ¾¼½ ½» ½ ÓÒÙ ¹Å ÐÙ ËÝ Ø Ñ Ö Î Ö ÖÙÒ Û Ã Ø ÓÖ Ò ÚÓÒ Ê Ò Ò Ó Ø Ú Ò Ê Ò Þº º ÈË Þ Ð Ò ÙØÓ Ö ÀÙ

Mehr

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ Ø ÓÒ ÒÙÑ Ö ÁÒØ Ö Ø ÓÒ º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á º Ö Ò ÙÒ º À Ù Ò Ð ¾ º Å ¾¼½ ½» ¾ Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ

Mehr

Prof. Dr. Siegfried Trautmann Lehrstuhl für Finanzwirtschaft / FB 03 Johannes Gutenberg-Universität Mainz

Prof. Dr. Siegfried Trautmann Lehrstuhl für Finanzwirtschaft / FB 03 Johannes Gutenberg-Universität Mainz Prof. Dr. Siegfried Trautmann Lehrstuhl für Finanzwirtschaft / FB 03 Johannes Gutenberg-Universität 55099 Mainz ÃÐ Ù ÙÖ ÞÙÖ ÎÓÖÐ ÙÒ Ò ÒÞÛ ÖØ Ø ÁÁ ÏË ¾¼¼»¾¼¼ µ ¾ º ÖÙ Ö ¾¼¼ À ÖÖ» Ö Ù Æ Ñ ÎÓÖÒ Ñ Å ØÖºÆÖº

Mehr

ÖÐ ÙÒ Ò Ê ÒÑ Ò Ò Ä ÙÖ ÒØ È Ð Ö ¼º ÆÓÚ Ñ Ö ¾¼¼ ½» ¾

ÖÐ ÙÒ Ò Ê ÒÑ Ò Ò Ä ÙÖ ÒØ È Ð Ö ¼º ÆÓÚ Ñ Ö ¾¼¼ ½» ¾ ÖÐ ÙÒ Ò Ê ÒÑ Ò Ò Ä ÙÖ ÒØ È Ð Ö ¼º ÆÓÚ Ñ Ö ¾¼¼ ½» ¾ ÖÐ À ØÓÖ À ÒØ Ö Ö Ò Ö ÒÞ ÒÑ Ò Ö ÒÞ ÒÚ Ö Ö Ò ØÙÖ Ö Ö ÒÞ ÒÑ Ò Ò ÐÝØ Å Ò ¾» ¾ ÖÐ ½ ½ ½ ½ Ä Ø ÞÙÖ Ø Ö ÁÒ Ù ØÖ ÐÐ Ò Ê ÚÓÐÙØ ÓÒ ½ ÎÓÐÐÑ Ò ÖØ Ö Ï ØÙ Ð ½ ¼ Ù

Mehr

v = a b c d e f g h [v] =

v = a b c d e f g h [v] = ÂÙÒº ÈÖÓ º Öº Ö Ø Ò ËÓ Ð Ö È Ö ÓÖÒ Ò ¾ º ÂÙÐ ¾¼¼ ½º ÃÐ Ù ÙÖ ÞÙÖ ÎÓÖÐ ÙÒ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Ð ÓÖ Ø Ñ Ò ËË ¾¼¼ Æ Ñ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Å

Mehr

f (x) = t x t 1 f (x) = a x ln(a) f(x) f (x) g(x) f(x) g (x) g 2 (x)

f (x) = t x t 1 f (x) = a x ln(a) f(x) f (x) g(x) f(x) g (x) g 2 (x) Ì À Æ Á Ë À À Ç À Ë À Í Ä Ã Ä Æ ÙÐØØ Ö Ï ÖØ Ø ¹ ÙÒ Ê Ø Û Ò Ø Ò ÓÖÑ Ð ÑÑÐÙÒ É Í Æ Ì Á Ì Ì Á Î Å Ì À Ç Æ À Ö Ù Ö ¾¼½ ÖÙÔÔ ÉÙ ÒØ Ø Ø Ú Å Ø Ó Ò Å Åº½ ÓÖÑ ÐÒ ÞÙÖ Å Ø Ñ Ø Ð ØÙÒ Ò ÙÒ Ø ÓÒ Ð ØÙÒ fx = c; c IR f

Mehr

R ψ = {λ ψ, λ 0}. P ψ P H

R ψ = {λ ψ, λ 0}. P ψ P H Ã Ô Ø Ð Ç ÖÚ Ð Ù ØÒ ÙÒ ÍÒ Ø ÑÑØ Ø ÒØ Ò ÐÐ Ò Ö Ö ØØÐ Ò Ñ ÙÒ Ò ººº Ò Û Ö Ø ¹ Ø Ø Ö Ø Ö Ö È ¹ ÙÒ Ø ÓÒ ÙÒ Ñ Ø Ö Æ ØÙÖ ØÞ ººº Ò ËØ Ð Ö ØÞ Û Ò Ø Ò Ö Ò Â Ö ÙÒ ÖØ Ø ÑÑ Ò Û Ö ººº ÎÓÒ Ò Ñ Ï ÞÙÖ ÞÙ ØÖÙÑ Ò ÞÙÖ ÞÙÑ

Mehr

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½ ËÓÖØ Ö Ò ÙÒ ËÙ Ò ÎÓÖØÖ Ñ À ÙÔØ Ñ Ò Ö À ÐÐÓ Ï ÐØ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö Ô Ð Ôº Ò ÓÖÑ Ø ºÙÒ ¹ ÖÐ Ò Òº Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò»Æ ÖÒ Ö ½º Å ¾¼¼ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ½»½ ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ

Mehr

ÖÙÒ ½ ÖÙÒ ¾ ËÔ Ö ÈÖÓÞ ÓÖ» Ø Ù ÑÑ Ò ÙÒ ÂÓÒ Ë ÐÙÑ Ö Ö ¾»

ÖÙÒ ½ ÖÙÒ ¾ ËÔ Ö ÈÖÓÞ ÓÖ» Ø Ù ÑÑ Ò ÙÒ ÂÓÒ Ë ÐÙÑ Ö Ö ¾» ÖÙÒ ÎÓÖØÖ Ñ ÈÖÓ Ñ Ò Ö ÃÓÒÞ ÔØ ÚÓÒ ØÖ Ý Ø Ñ ÓÑÔÓÒ ÒØ Ò ÂÓÒ Ë ÐÙÑ Ö Ö Ô Ð Ôº Ò ÓÖÑ Ø ºÙÒ ¹ ÖÐ Òº Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò»Æ ÖÒ Ö ¾ º ÂÙÒ ¾¼¼ ÂÓÒ Ë ÐÙÑ Ö Ö ½» ÖÙÒ ½ ÖÙÒ ¾ ËÔ Ö ÈÖÓÞ ÓÖ» Ø Ù ÑÑ Ò ÙÒ ÂÓÒ

Mehr

α : Σ γ Σ α γ : Σ α Σ γ

α : Σ γ Σ α γ : Σ α Σ γ Ë Ñ Ò Ö Ö Ø ØÖ Ø ÁÒØ ÖÔÖ Ø Ø ÓÒ Á È Ò ½¼º ÂÙÐ ¾¼¼ ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ä Ö¹ ÙÒ ÓÖ ÙÒ Ò Ø Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ØØ Ò Ò ØÖ ¹ ¼ Å Ò Ò Î Ö Ö ÓÞ ÒØ ØÖ Ù Ö Æ Þ Å ÝÐÓÚ ÈÖÓ º Å ÖØ Ò ÀÓ

Mehr

a n½ x ½ +a n¾ x ¾ a nn x n = b n

a n½ x ½ +a n¾ x ¾ a nn x n = b n Ä Ò Ö Ð ÙÒ Ý Ø Ñ º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á Ð Ñ Ò Ö Ò ÙÒ Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò ½ º ÅÖÞ ¾¼½ Ä Ò Ö Ð ÙÒ Ý Ø Ñ Ä Ö Ø Ð Ö ÑÔ Ò Ð Ø Å ØÖ Ü Ð Ö Ä Ö Ø ÐÐÙÒØ Ö ÙÒ Ò Å ÌÄ ÙÒ Ð Ò Ö ËÝ Ø Ñ Ð Ö ÑÔ

Mehr

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = =

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Ë ÈÌ»ÇÃÌ ¾¼½¾ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ï Ú Ð Ö ÒÒ Ø Ù Ò Ö ÙÖ ÒØ Ò Ù ¹½¾ Ù Ô Ø Ö ÊØ ÐÖ Ø Ö ÙØ Å Ù Ò ÙÒ Ò Ã Ø Ö ÍÒ ÒÒ Ö Ò Ø Ù Û Ò Û ÐØ ÛÓ Ð Ò Ò Ò ÏÓ Òµ À ÒÛ ÙÒ Ò Û Ð Ò Ò Ð Ò Ò ÈÙÒ Ø ÙÒØ

Mehr

h : N {0, 1, 2,..., 10} k k mod 11 10, 23, 17, 42, 13, 21, 31, 1

h : N {0, 1, 2,..., 10} k k mod 11 10, 23, 17, 42, 13, 21, 31, 1 ÂÙÒº ÈÖÓ º Öº Ö Ø Ò ËÓ Ð Ö È Ö ÓÖÒ Ò ½½º ÂÙÐ ¾¼¼ ÈÖÓ ¹ÃÐ Ù ÙÖ ÞÙÖ ÎÓÖÐ ÙÒ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Ð ÓÖ Ø Ñ Ò ËË ¾¼¼ Æ Ñ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Mehr

σ 2 = 1 N SNR = σ2 X σ 2 X SNR(dB) = 10log 10

σ 2 = 1 N SNR = σ2 X σ 2 X SNR(dB) = 10log 10 ÖÒ Ù Àº ÖÒ ÙÙÒ ¹ØÖ Öº Ñ Ð ¾¼½ ËÓË ÌÖ Ö ÍÒ Ú Ö ØØ Ø Ò ÓÑÔÖ ÓÒ Î ÖÐÙ Ø Ø Ø ÃÓÑÔÖ Ñ ÖÙÒ Ú Ö Ö Ò Ò ÖÙÒ ½ Û Ò Ø Ö ÃÓÑÔÖ Ñ ÖÙÒ ¹ Û Ò Ø Ö ÓÑÔÖ Ñ ÖÙÒ ¹ Î ÖÐÙ Ø Ø Ø ÃÓÑÔÖ Ñ ÖÙÒ ÖÙÒ Ð Ò C D X X c Y Ò Ê ÔÖ ÒØ Ø ÓÒ

Mehr

ÒÐ ØÙÒ ØÖ Ù ÖØ ÅÓÖÔ ÓÐÓ Ì ÓÖ Ø ÅÓÖÔ ÓÐÓ È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º ½ º ÔÖ Ð ¾¼½ ½» ¾

ÒÐ ØÙÒ ØÖ Ù ÖØ ÅÓÖÔ ÓÐÓ Ì ÓÖ Ø ÅÓÖÔ ÓÐÓ È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º ½ º ÔÖ Ð ¾¼½ ½» ¾ Ì ÓÖ Ø ÅÓÖÔ ÓÐÓ È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º ½ º ÔÖ Ð ¾¼½ ½» ¾ ¾» ¾ Ò ÝÒØ Ø ËØÖÙ ØÙÖ ½µ È È»ÆÈ ³ ¼ ÆÈ ¼ ÌÈ Æ ¼ Ø ÚÈ Ì Ê ÔÖ ÒØ ÒØ Ò Ù ÎÈ Ú È»ÆÈ Î ¼ ¼ ÆÈ Æ ¼ Û Ö Ù ÒÓÑÑ Ò Î Ö Ò ÐÙÒ Ò» ¾

Mehr

a 2 b 2 db = 10 log db = 20 log db b 2 2

a 2 b 2 db = 10 log db = 20 log db b 2 2 À Ò ÓÙØ ÞÙÖ Î Ö Ò Ø ÐØÙÒ ÑÓÒ ØÖ Ø ÓÒ ÜÔ Ö Ñ ÒØ ÙÒ Ø ÓÒ Ò Ö ØÓÖ ÙÒ Ø ÓÒ ÙÑ Ò Î Ö Ð Ú Ö Ò Ö ÌÝÔ Ò Ø Ö È Ý ÍÒ Ú Ö ØØ ÝÖ ÙØ Ö Ø Ò Ä Ò Ò Ö ¾ º  ÒÙ Ö ¾¼¼ ½ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ÙÒ Ø ÓÒ ÙÑ Ò ¾º½ Ö º º º º

Mehr

= = = = =

= = = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Â Æ» ¾¼½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ù Ñ Ð Ò Û Ö Ê Ð Ñ Ø Ñ Ö Û Ö ÓÖÑØ Ò Òº Ø ÐÐ Ù Ø ÐÐØ Ò ËØ Ò Ñ Ö ÚÓÖ Ò Òº µ Ï Ú Ð Ú Ö Ò ÓÑÑ Ò ÚÓÖ µ Ï Ð Ø Ñ Ù Ø Ò Ú ÖØÖ Ø Ò µ Ï Ð Ø Ù Ñ ÐØ Ò Ø Ò ¾ À Ï Ò

Mehr

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö ËÔ ÖÖÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑÖ ØÙÒ ËÔ ÖÖ Òµ ÖÙ Ú ÒØ Ð Ø ÑÑØ Ð Ø ÖÙ Ñ ËÝ Ø Ñ Ö Ò¹ Å Ò ÖÒ Ù ÐØ Òµ Þ Ò ËØÖÓÑÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑ Ñ ËÝ Ø Ñ ÖÓ ÐÒ Î ÒØ Ð Ä ØÙÒ Ù ÙÖ Ò Ù ÙÒ ÚÓÒ p ËØ Ù ÖÙÒ ÙÒ ËØÖ ÑÙÒ Ö ØÙÒ

Mehr

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾»

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾» ØÓ Ë ÙÖ ØÝ ÎÇ ÁÒØÖÓ ÙØ ÓÒ Ë Ö Ø»Ë Ö Ø Ñ Ò Ñ ÒØ ÇÖ Ò ØÓÖ ÁÒ Ù ØÖ Ð ËÓ ØÛ Ö ÁÆËÇ Ö Ê Ò Ö Ø ØÞØ ÙØÓÑ Ø ÓÒ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ì Ò ÍÒ Ú Ö ØØ Ï Ò ÁÒ Ø ØÙØ ÐÓÖ Ò Ò Ù Ö Ö ÒÞ Å Ö Ó Ö Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ

Mehr

= S 11 + S 21S 12 r L 1 S 22 r L

= S 11 + S 21S 12 r L 1 S 22 r L ÈÖ Ø ÙÑ Ö ÀÓ Ö ÕÙ ÒÞØ Ò Ö ËØÙ ÒØ Ò Ö Ð ØÖÓØ Ò Ä Ò Ö Ö Ö Ù ÖÑ Ö Ë ¹Î Ö ØÖ Ö Î Ö ÓÒ ½º º Å ¾¼½¾ Ó ÙÐ Ò Ð ØÖÓØ Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ä Ö Ø ÀÓ ¹ ÙÒ À Ø Ö ÕÙ ÒÞØ Ò ÈÖÓ º Öº¹ÁÒ º Àº À Ù ÖÑ ÒÒ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË

Mehr

d 1 u 2 u 1 p 1 p 2 ζ = (m 1) 2 = d2 2 d 2 1 m = A 2 A 1

d 1 u 2 u 1 p 1 p 2 ζ = (m 1) 2 = d2 2 d 2 1 m = A 2 A 1 ¾¹¾½ Î ÖÐÙ Ø Û ÖØ Ö Ò ÙØ Ð Î ÖÐÙ Ø ÒØ Ø Ò ÙÖ ËØÖ ÑÙÒ ¹ Ð ÙÒ Û Ø Ô Ð ÔÐ ØÞÐ ÖÛ Ø ÖÙÒ u 1 p 1 d 1 p 1 p 2 d 2 u 2 p 1 ¾¹¾¼ ÖÙ Ú ÖÐÙ Ø Û ÖØ ÙÖ Ù Û ÖØÙÒ ÁÑÔÙÐ ØÞ ËØÖ ¹ ÑÙÒ Ñ Ò Á ζ = (m 1) 2 m = A 2 A 1 = d2

Mehr

±0, 1m 2 m 3..m 53 2 e 10e 9..e

±0, 1m 2 m 3..m 53 2 e 10e 9..e Ê Ò Ò Ï ÖÙÑ Ð Ö Ö Ò Ò Ø Ó ÓÑÔÙØ Ö Ì ÐÒ Ñ Ö Ö Ø Ò Ö Ö ÒÒ Å Ò È ØÖ Å ÙØ Ò Ö ÊÓÞ È ØÖ ÃÐ ØÞ Ö ØÓÔ Ö Ë Ñ Ø ÊÓ ÖØ Ë ÐÑ ÒÒ Ò Ö ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ ÁÑÑ Ò٠йà ÒØ¹Ç Ö ÙÐ À Ö Ö¹Ç Ö ÙÐ Ò Ö ¹Ç Ö ÙÐ ÁÑÑ ÒÙ

Mehr

e := {X E n x c = 0}

e := {X E n x c = 0} Ã Ô Ø Ð ½ Ò ÐÝØ ÓÑ ØÖ ½º½ Ð ÙÒ Ò ÚÓÒ Ö Ò ÙÒ Ò Ò ½º½º½ È Ö Ñ Ø Ö Ð ÙÒ Ò Ö Ö Ò Ò Ö g Ø ÙÖ Ò Ò ÈÙÒ Ø A ÙÒ Ö Ê ØÙÒ Ø Ð Øº Ë ØÞ ½ Á Ø A E Ò Ð Ñ ÒØ Ò ÙÙÒ Ö ÙÑ µ Ñ Ø Ñ ÇÖØ Ú ØÓÖ a ÙÒ u R 3 \{ 0} ÒÒ Ø ÈÙÒ ØÑ Ò

Mehr

ÁÒ Ø ØÙØ Ö ÈÖÓ Ö ÑÑ ØÖÙ ØÙÖ Ò ÙÒ Ø ÒÓÖ Ò Ø ÓÒ ÁÈ µ ÁÒ Ø ØÙØ Ö Ì Ð Ñ Ø ÁÌŵ ÁÒ Ø ØÙØ Ö Ï ÖØ Ø ÔÓÐ Ø ÙÒ Ï ÖØ Ø ÓÖ ÙÒ ÁÏϵ ÁÒ Ø ØÙØ Ö Ï ÖØ Ø Ø ÓÖ ÙÒ ÇÔ Ö Ø ÓÒ Ê Ö ÏÁÇʵ ÒØÖÙÑ Ö Ò Û Ò Ø Ê Ø Û Ò Ø Ò Êµ ÁÒØ

Mehr

Ø ÑÑÙÒ Ö ÃÓÒØÖ Ø ÑÔ Ò Ð Ø Ñ Å ÑÑÓ Ö ÑÑ ÙÒ Ö ÙØÙÒ Ö Ð ÖÑ ÖØ ÙÒ ÙÒ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ó ØÓÖ Ò Ò ÙÖ Ò Öº¹ÁÒ ºµ Ò ÒÓÑÑ Ò ÙÖ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÇØØÓ¹

Ø ÑÑÙÒ Ö ÃÓÒØÖ Ø ÑÔ Ò Ð Ø Ñ Å ÑÑÓ Ö ÑÑ ÙÒ Ö ÙØÙÒ Ö Ð ÖÑ ÖØ ÙÒ ÙÒ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ó ØÓÖ Ò Ò ÙÖ Ò Öº¹ÁÒ ºµ Ò ÒÓÑÑ Ò ÙÖ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÇØØÓ¹ Ø ÑÑÙÒ Ö ÃÓÒØÖ Ø ÑÔ Ò Ð Ø Ñ Å ÑÑÓ Ö ÑÑ ÙÒ Ö ÙØÙÒ Ö Ð ÖÑ ÖØ ÙÒ ÙÒ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ó ØÓÖ Ò Ò ÙÖ Ò Öº¹ÁÒ ºµ Ò ÒÓÑÑ Ò ÙÖ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÇØØÓ¹ÚÓÒ¹ Ù Ö ¹ÍÒ Ú Ö ØØ Å ÙÖ ÚÓÒ ÙØ Ø Ö Ôк¹ÁÒ º ÖØ Ô ÐØ

Mehr

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø ËÓ Ø ÁÈ ÈÖÓÞ ÓÖ Ò ÙÒ Ò ØØ ËÝ Ø Ñ Ò ÖÙÒ ÈÖ Ø ÙÑ È Ö ÐÐ Ð Ê Ò Ö Ö Ø ØÙÖ Ò Ñ Û Ø ÐÐÙÐ Ö ÙØÓÑ Ø Å Ö Ê Ò Ä Ö ØÙ Ð Ö ÁÒ ÓÖÑ Ø Ê Ò Ö Ö Ø ØÙÖµ Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÏË ¾¼½¼»½½ ÅÓØ Ú Ø ÓÒ ÅÓØ Ú

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º Ö ÒÙÒ ÖÞ Ø Ö È ÙÒØ Ö ØÙÒ ÚÓÒ Ú Ö ÓØ Ò Ã Ö ÐÐ Å ÐÐ Ö ËØÙ Ò Ö Ø Ñ ÁÒ Ø ØÙØ Ö Ì ÓÖ Ø ÁÒ ÓÖÑ Ø Ä Ö ØÙ Ð ÈÖÓ º Öº ÓÖÓØ Ï Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÙÐØØ Ö ÁÒ ÓÖÑ Ø ¾ º Ç ØÓ Ö ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú

Mehr

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë ÈÓ Ø ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Á È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º Ô Ð ÔÔÛ Öº ½ º ÔÖ Ð ¾¼½ ½» Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ

Mehr

CURANDO ÔÐÓÑ Ö Ø ÚÓÒ À ÒÒ Î ÒÞÐ Ö Ø Ö ÖÙÒ ÑÔ Ø Ö ÕÙ ÒØ ÒÑ Ò Ö ËÝ Ø Ñ Ö Ú Ö ÐÐ Ñ Ò ÖØ Å ÙÒ Ò UNIVERSITÄT ULM SCIENDO DOCENDO À ÙÔØ Ö Ø Ö Ôк ÈÖÓ º Öº Å

CURANDO ÔÐÓÑ Ö Ø ÚÓÒ À ÒÒ Î ÒÞÐ Ö Ø Ö ÖÙÒ ÑÔ Ø Ö ÕÙ ÒØ ÒÑ Ò Ö ËÝ Ø Ñ Ö Ú Ö ÐÐ Ñ Ò ÖØ Å ÙÒ Ò UNIVERSITÄT ULM SCIENDO DOCENDO À ÙÔØ Ö Ø Ö Ôк ÈÖÓ º Öº Å CURANDO ÔÐÓÑ Ö Ø ÚÓÒ À ÒÒ Î ÒÞÐ Ö Ø Ö ÖÙÒ ÑÔ Ø Ö ÕÙ ÒØ ÒÑ Ò Ö ËÝ Ø Ñ Ö Ú Ö ÐÐ Ñ Ò ÖØ Å ÙÒ Ò UNIVERSITÄT ULM SCIENDO DOCENDO À ÙÔØ Ö Ø Ö Ôк ÈÖÓ º Öº ź Ö Ý Ö Ö Ö Ø Ö ÈÖÓ º Öº Ⱥ Ê Ò Ö ÍÒ Ú Ö ØØ ÍÐÑ Ø ÐÙÒ

Mehr

Ñ Ð ØÖº Ø ÒÚ Ö Ö Ñ À ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½½ ½º½ Ö Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½½ ½º¾ Ó

Ñ Ð ØÖº Ø ÒÚ Ö Ö Ñ À ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½½ ½º½ Ö Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½½ ½º¾ Ó ¹ÌÖÙ Ø ÐÐ Ø Ö Ë Ö Ø Ý Ø Ñ Ñ Ð ØÖÓÒ Ò Ø ÒÚ Ö Ö Ñ À Ä Ò ØÖ Ö À ÙÔØ ØÖ ¹½¼ ¼ Ï Ò Ì Ð ½µ ½ ¾½ ½ ¹ ¼ Ü ½µ ½ ¾½ ½ ¹ ¼ ØØÔ»»ÛÛÛº ¹ØÖ٠غ Ø ºØÖÙ Ø ÖØ Þ ÖÙÒ Ö ØÐ Ò ÖØ Ø ÈÖ Ø ËØ Ø Ñ Òص Ö ÕÙ Ð Þ ÖØ ÖØ Ø º Ò ÔÖ Ñ

Mehr

= 27

= 27 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ ÁÒ ÂÙÐ Ë Ù Ö Ò Ø Ò Ö È Ö Ë Ù º Ë Ò ÑÑØ Ñ ÙÒ ÐÒ Ú Ö ÒÞ ÐÒ Ë Ù Ö Ù º Á Ø Ò ÞÙ ÑÑ Ò Ö Ò È Ö Ù ¹½¾ Û ÚÓÒ Ò Ð Ö Ò Ò Ú ÐÐ Ð º Ï Ð Ò ¾ À Ï Ò ÐÚÓ ÛÛÛº Ð

Mehr

T = 0.3 s b = 4 m/s 2 s0 = 1 m. T = 2 s v0 = 90 km/h b = 1 m/s 2 s0 = 3 m. s = 0. s = 0. v0=220 km/h 2 a = 4 m/s. a = 1 m/s

T = 0.3 s b = 4 m/s 2 s0 = 1 m. T = 2 s v0 = 90 km/h b = 1 m/s 2 s0 = 3 m. s = 0. s = 0. v0=220 km/h 2 a = 4 m/s. a = 1 m/s Ö ÓÒ Ñ ËØÖ ÒÚ Ö Ö Û Ñ Ò Ð ÖÚ Ö ÐØ Ò ËØ Ù ÒØ Ø ÙÒ Ò Ù Ø Å ÖØ Ò ÌÖ Ö ½ Ö ÓÒ Ù Ö Ë Ø Î Ö Ö ÑÓ ÐÐ Ö Ö Ö Ú ØØ ÙÒ Ò Ö Ò Ø ÐÐÙÒ Ò ÚÓÒ ÙØÓ Ö ÖÒ Û Ö Ò Ù ÖÚ Ö ÐØ Ò ÙÒ Ñ ØØ Ð Ö Ù Ò Î Ö Ö Ù Ù Ò ¹ ÓÒ Ö Ù Þ ÒÞ Î Ö Ö

Mehr

Ë Ð Ö Ö Ø ÚÓÒ ÐÙ Ø Ö¹ Ø Ý Ø Ñ Ò ÙÖ Î ÖØ ÐÙÒ Ö Å Ø Ø Ò ÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö ÁÒ Ò ÙÖÛ Ò Ø Ò Ö ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ Ì Ò ÀÓ ÙÐ µ Ò Ñ

Ë Ð Ö Ö Ø ÚÓÒ ÐÙ Ø Ö¹ Ø Ý Ø Ñ Ò ÙÖ Î ÖØ ÐÙÒ Ö Å Ø Ø Ò ÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö ÁÒ Ò ÙÖÛ Ò Ø Ò Ö ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ Ì Ò ÀÓ ÙÐ µ Ò Ñ Ë Ð Ö Ö Ø ÚÓÒ ÐÙ Ø Ö¹ Ø Ý Ø Ñ Ò ÙÖ Î ÖØ ÐÙÒ Ö Å Ø Ø Ò ÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö ÁÒ Ò ÙÖÛ Ò Ø Ò Ö ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ Ì Ò ÀÓ ÙÐ µ Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ù Ó Å ÐÔÓ Ð Ù ËÓÐ Ò Ò Ì Ö Ñ Ò Ð Ò ÈÖ

Mehr

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1 T U M Á Æ Ë Ì Á Ì Í Ì Ê Á Æ Ç Ê Å Ì Á à ¼º ÏÓÖ ÓÔ Ö ÃÓÑÔÐ Ü ØØ Ø ÓÖ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Þ ÒØ Ð ÓÖ Ø Ñ Ò ÖÒ Ø Ïº Å ÝÖ ËÚ Ò ÃÓ Ù ÀÖ ºµ ÀÁ ÃÄÅÆÇ ÌÍŹÁ¼ ¼ ÅÖÞ ¾¼¼ Ì À Æ Á Ë À Í Æ Á Î Ê Ë Á Ì Ì Å Æ À Æ ÌÍŹÁÆ

Mehr

1 4 (s 2 +4) 2. s 4 = 10 7

1 4 (s 2 +4) 2. s 4 = 10 7 ¼ Å ÒÙØ Ò ÒÐ Þ Ø Ë Ø ½ Ö ÙÖ Ø Ö ÃÐ Ù ÙÖ Û Ö Ò ÒÐ Þ Ø ÚÓÒ ½¼ Å ÒÙØ Ò Û Öغ Ï Ö Ò ¹ Ö Ø Ù Ö Ø Á Ò Ò Ò Ø Ø ØØ Ø Ñ Ø Ö Ö ØÙÒ Ö Ù Ò ÞÙ ÒÒ Òº ÙØ Ø ÓÒ Ö Ø Û Ö Ò Ö ÑØ Ò Ù Ö Ö ÒÐ Þ Ø Ò ÖÐ Ë Ö ÖØ ËØ Ø ÐÐ Ö Øºµ Ù

Mehr

a IR (x 1,...,x n ) IR n : L(x 1 +a,...,x n +a) = L(x 1,...,x n ) µ x := 1 n

a IR (x 1,...,x n ) IR n : L(x 1 +a,...,x n +a) = L(x 1,...,x n ) µ x := 1 n Ã Ô Ø Ð Ò ÖÙÒ Ò ËØ Ø Ø ÙÒ Ö Ò Ö Ò ØÖ ØÙÒ Ò Ò Ö Ï Ö ÒÐ Ø Ø ÓÖ Ò Û Ö Ù ÐÐ ÜÔ ¹ Ö Ñ ÒØ ÙÖ Ï Ö ÒÐ Ø ÖÙÑ ÑÓ ÐÐ Öغ Ö ÒØÛ ÐÙÒ Ö Ñ Ø Ñ Ø Ò Ì ÓÖ Ò Û Ö ÒÒ ÚÓÒ Ù Ò Ò Ö ÞÙ ÖÙÒ Ð Ò Ï Ö ÒÐ Ø Ö ÙÑ ÙÒ Ñ Ø Î ÖØ ÐÙÒ Ö

Mehr

v = ṡ, a = v, a = s adt v = a t+v 0 s = 1 2 a t2 +v 0 t+s 0

v = ṡ, a = v, a = s adt v = a t+v 0 s = 1 2 a t2 +v 0 t+s 0 Ú½º ¹ Ö ØÙ Ð ÙÖ ÖØ ÚÓÒ Ò Ñ ½ º¼ º¾¼½ Î Ö ÓÒ ÚÓÑ ½ º¼ º¾¼½ ÓÒØ ÒØ ÙÖ ÖÙÒ Ð ÙÒ ÙÒ Ú Ö ÐØ Ò Ò Ö ØÙ Ð Ì Ð ½ Ò ÐÓ Å Ø Ó Ð ÖÖ ÒÙÒ ÞÙÑ Ò ØØ ÃÓÒ ØÖÙ Ø ÓÒ a t¹ v t¹ ÙÒ s t¹ Ö ÑÑ Ò Å ÌÄ Ì Ð ¾ Ð ÙÒ ÙÒ Ñ ÙÒ Ñ Ø Ñ

Mehr

ØÞÙÒ Ö Ï ÖØ Ö ÚÓÒ Þ Ø Ö Ø Ò ÝÒ Ñ Ò ËÝ Ø Ñ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ Öº¹ÁÒ º ÍÐÖ Ñ ÒÒ Ù Ë Û À ÐÐ Å ØÖ Ð¹ÆÖº ½½½¾ ØÖ Ù Ö ÈÖÓ º Öº Ϻ ÀÓ ØØØÐ Ö Ä Ö ØÙ Ð Ö Ö

ØÞÙÒ Ö Ï ÖØ Ö ÚÓÒ Þ Ø Ö Ø Ò ÝÒ Ñ Ò ËÝ Ø Ñ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ Öº¹ÁÒ º ÍÐÖ Ñ ÒÒ Ù Ë Û À ÐÐ Å ØÖ Ð¹ÆÖº ½½½¾ ØÖ Ù Ö ÈÖÓ º Öº Ϻ ÀÓ ØØØÐ Ö Ä Ö ØÙ Ð Ö Ö ØÞÙÒ Ö Ï ÖØ Ö ÚÓÒ Þ Ø Ö Ø Ò ÝÒ Ñ Ò ËÝ Ø Ñ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ Öº¹ÁÒ º ÍÐÖ Ñ ÒÒ Ù Ë Û À ÐÐ Å ØÖ Ð¹ÆÖº ½½½¾ ØÖ Ù Ö ÈÖÓ º Öº Ϻ ÀÓ ØØØÐ Ö Ä Ö ØÙ Ð Ö Ö Ø Å Ø Ñ Ø Ö ÖÒÍÒ Ú Ö ØØ Ò À Ò ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ

Mehr

ÎÓÖÛÓÖØ ÚÓÖÐ Ò Ë Ö ÔØÙÑ Ø Ò Ò Ö ÚÓÒ Ñ Ö Ñ Ï ÒØ Ö Ñ Ø Ö ¾¼¼»¾¼¼ ÐØ Ò Ò ÎÓÖÐ ÙÒ ÆÙÑ Ö Å Ø Ñ Ø Á ÒØ Ø Ò Òº ÎÓÖÐ ÙÒ Ó¹ Û Ö ÓÖØ ØÞÙÒ ÆÙÑ Ö Å Ø Ñ Ø ÁÁ ÖØ Ò

ÎÓÖÛÓÖØ ÚÓÖÐ Ò Ë Ö ÔØÙÑ Ø Ò Ò Ö ÚÓÒ Ñ Ö Ñ Ï ÒØ Ö Ñ Ø Ö ¾¼¼»¾¼¼ ÐØ Ò Ò ÎÓÖÐ ÙÒ ÆÙÑ Ö Å Ø Ñ Ø Á ÒØ Ø Ò Òº ÎÓÖÐ ÙÒ Ó¹ Û Ö ÓÖØ ØÞÙÒ ÆÙÑ Ö Å Ø Ñ Ø ÁÁ ÖØ Ò ÆÙÑ Ö Á Ï ÒØ Ö Ñ Ø Ö ¾¼¼»¼ Ò Ø Ë Ð ½¾º ÆÓÚ Ñ Ö ¾¼¼ ÎÓÖÛÓÖØ ÚÓÖÐ Ò Ë Ö ÔØÙÑ Ø Ò Ò Ö ÚÓÒ Ñ Ö Ñ Ï ÒØ Ö Ñ Ø Ö ¾¼¼»¾¼¼ ÐØ Ò Ò ÎÓÖÐ ÙÒ ÆÙÑ Ö Å Ø Ñ Ø Á ÒØ Ø Ò Òº ÎÓÖÐ ÙÒ Ó¹ Û Ö ÓÖØ ØÞÙÒ ÆÙÑ Ö Å Ø Ñ Ø ÁÁ ÖØ Ò

Mehr

Ò ÖÙÒ ÃÓ Ñ ËØÖ ÐÙÒ Ö Ø ÜÔ Ö Ñ ÒØ ÁÒ Ö Ø ÜÔ Ö Ñ ÒØ Þ Ø ÃÓ Ñ ËØÖ ÐÙÒ Ö ÓÖ Ó ÊÓÔ Ö ÖÛÓÓ ½ º¼ º¾¼¼

Ò ÖÙÒ ÃÓ Ñ ËØÖ ÐÙÒ Ö Ø ÜÔ Ö Ñ ÒØ ÁÒ Ö Ø ÜÔ Ö Ñ ÒØ Þ Ø ÃÓ Ñ ËØÖ ÐÙÒ Ö ÓÖ Ó ÊÓÔ Ö ÖÛÓÓ ½ º¼ º¾¼¼ ÃÓ Ñ ËØÖ ÐÙÒ Ö ÓÖ Ó ÊÓÔ Ö ÖÛÓÓ ½ º¼ º¾¼¼ ½ Ò ÖÙÒ Ï Ø Ó Ñ ËØÖ ÐÙÒ ÒØ ÙÒ Ö Ó Ñ Ò ËØÖ ÐÙÒ ¾ ÃÓ Ñ ËØÖ ÐÙÒ ÉÙ ÐÐ Ò ÙÒ ÈÖÓÔ Ø ÓÒ Ó Ñ Ö ËØÖ ÐÙÒ Ð ÙÒ ÙÒ Ñ Ò Ñ Ò Ö Ò Ò ÜÔ Ö Ñ ÒØ Ö Ø ÜÔ Ö Ñ ÒØ Ö Ø ÜÔ Ö Ñ ÒØ ÐÐÓÒ

Mehr

(x, y) + (0, 0) = (x, y)

(x, y) + (0, 0) = (x, y) ÃÓÑÔÐ Ü Ð Ò ÙÒ ÓÑ ØÖ Ì ÐÒ Ñ Ö Æ Ð ÊÙ Ø Â Ò ÈÙØÞ ÊÓÒ Ï ÒÞ Ð Ð Ü Ý ÄÓÙØ Ó ÂÓ À ÒÒ Ö ØÙÒ Â ÖÒ ÖÓ Ø Ò À Ö Ö¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ Ò Ö ¹Ç Ö ÙÐ ÖÙÔÔ

Mehr

ÅÙÐØ Ò ÓÖ ÁÒØ Ö Ø ÓÒ ÚÓÒ Ö ÙÒ ÒØ Ò Ê Þ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øºµ Ñ Ö È Ý ÓÐÓ Ö È Ð ÔÔ ¹ÍÒ Ú Ö Ø Ø Å Ö ÙÖ ÚÓÖ Ð Ø ÚÓÒ Å ØØ ÓÒ Ò Ù Ö ÙÖ Å Ö ÙÖ»Ä Ò ¾¼¼ ÅÙÐØ Ò ÓÖ ÁÒØ Ö Ø

Mehr

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ Ò Ò Ø Ó ÍÒØ Ö Ù ÙÒ Ö Ð ØÖÓÒ Ò ÄÓ Ð ÖÙÒ Ò Ò Ö Ñ Ò ÓÒ Ð Ò À Ð Ð Ø Ö ØÖÙ ØÙÖ Ò Ñ Ø Ï ÐÛ Ö ÙÒ ÙÒ ÍÒÓÖ ÒÙÒ Ò Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö ÚÓÖ Ð Ø ÚÓÒ Å Ö

Mehr

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim Ì Ð ÁÁ Ä Ò Ö Ð ÙÒ Ý Ø Ñ ¹ Ö Ø Å Ø Ó Ò Ä Ò Ù¹ËÝÑ ÓÐ Ä Ò Ù¹ËÝÑ ÓÐ Ð Ò Î Ö ÐØ Ò ÚÓÒ ÙÒ Ø ÓÒ Ò Ò Ò Ö ÍÑ ¹ ÙÒ ÚÓÒ Ø ÑÑØ Ò Ï ÖØ Ò ÞÙ Ð Þ Ö Òº Ò Ø ÓÒ º½º Ò f,g : D R R ÙÒ Ø ÓÒ Ò ÙÒ a D Ò ÀÙ ÙÒ ÔÙÒ Øº ÐØ f(x)

Mehr

Σ = {a 1,...,a n } K : Σ {0,1} +. L K := n. i=1 P(a i ) K(a i ).

Σ = {a 1,...,a n } K : Σ {0,1} +. L K := n. i=1 P(a i ) K(a i ). Ñ Ð ÖÒ ÙÙÒ ¹ØÖ Öº Àº ÖÒ Ù Ø Ò ÓÑÔÖ ÓÒ Ó ÙÒ Ó ÖÙÒ Ò Àº ÖÒ Ù ¾¼½½ ËÓË ÌÖ Ö ÍÒ Ú Ö ØØ ½ Ó ÖÙÒ Σ = {a 1,...,a n } Ö ÐÔ Ø Ò Ó Ò Ò Ø Ú ÙÒ Ø ÓÒ Ø K : Σ {0,1} +. ÙØ Ó ÖÙÒ Ö ÓÐ Ð a i1 a i2 a i3 a i4 a i5... K(a

Mehr

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼ ÍÐØÖ ÐØ Ø ÖÓÒÙ Ð Ö ¹ÅÓÐ Ð ÎÓÒ Ö ÙÐØØ Ö Å Ø Ñ Ø ÙÒ È Ý Ö ÓØØ Ö Ï Ð ÐÑ Ä Ò Þ ÍÒ Ú Ö ØØ À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ¹ Öº Ö Öº Ò Øº ¹ Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º Ì ÓÖ Ø Ò À ÒÒ Ò Ö ÓÖ Ò Ñ ¾

Mehr

UNIVERSITÄT LEIPZIG. Institut für Informatik

UNIVERSITÄT LEIPZIG. Institut für Informatik UNIVERSITÄT LEIPZIG Institut für Informatik ÎÓÖÐ ÙÒ Ó¹ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Öº Ø Ö ËÓ Ò ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ À ÒÛ ÒÑ Ö ÙÒ Ò ÙÒ Î Ö ÖÙÒ ÚÓÖ Ð ØØ Ò Öº Ø Ö ËÓ Ò Ø Ö Ò ÓÖÑ Ø ºÙÒ ¹Ð ÔÞ º ØØÔ»»ÛÛÛº Ò ÓÖÑ Ø ºÙÒ ¹Ð ÔÞ

Mehr

ÑÔ Ö ÍÒØ Ö Ù ÙÒ ÞÙÑ Î Ö Ð ÚÓÒ À Ð Ý Ø Ñ Ò Ö ÖÑ Ò Ø ÓÐÙØ ÙÒ Å ÖÓ Ó Ø Ò ÃÖ Ø Ö Ò Ö ÒÙØÞ Ö Ö ÙÒ Ð Ø ¹ Ñ Ô Ð ÚÓÒ Ü Ð Å Ø Ö Ö Ø Ò Ö Ì Ò Ò ÍÒ Ú Ö ØØ ÖÐ Ò ÙÐ

ÑÔ Ö ÍÒØ Ö Ù ÙÒ ÞÙÑ Î Ö Ð ÚÓÒ À Ð Ý Ø Ñ Ò Ö ÖÑ Ò Ø ÓÐÙØ ÙÒ Å ÖÓ Ó Ø Ò ÃÖ Ø Ö Ò Ö ÒÙØÞ Ö Ö ÙÒ Ð Ø ¹ Ñ Ô Ð ÚÓÒ Ü Ð Å Ø Ö Ö Ø Ò Ö Ì Ò Ò ÍÒ Ú Ö ØØ ÖÐ Ò ÙÐ ÑÔ Ö ÍÒØ Ö Ù ÙÒ ÞÙÑ Î Ö Ð ÚÓÒ À Ð Ý Ø Ñ Ò Ö ÖÑ Ò Ø ÓÐÙØ ÙÒ Å ÖÓ Ó Ø Ò ÃÖ Ø Ö Ò Ö ÒÙØÞ Ö Ö ÙÒ Ð Ø ¹ Ñ Ô Ð ÚÓÒ Ü Ð Å Ø Ö Ö Ø Ò Ö Ì Ò Ò ÍÒ Ú Ö ØØ ÖÐ Ò ÙÐØØ ½ Ø Û Ò Ø Ò ÁÒ Ø ØÙØ Ö ËÔÖ ÙÒ ÃÓÑÑÙÒ Ø ÓÒ Ø Ù Ó

Mehr

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û Ù Ñ ÁÒ Ø ØÙØ Ö ËÓÞ Ð È ØÖ ÙÒ ÂÙ Ò Ñ Þ Ò Ö ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÎÓÖ Ø Ò ÃÓÑÑ Ö Ö Ä Ø Öµ ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ Ê Ó ØÓÖ Ò Ö Ò Ð ÔÓ Ø ÍÒØ Ö Ð Ø ÒÓÖÑ Ð¹ ÙÒ Ö Û Ø Ò Ã Ò ÖÒ ÖØ Ø ÓÒ ÞÙÑ ÖÛ Ö Ó ØÓÖ Ö

Mehr

S i. s i. p i. s i S i

S i. s i. p i. s i S i Å Ò Ñ Ò Ö ØÓÔ À ÖÑ ÒÒ ¾¾º Å ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ Ò Å Ò Ñ Ò ¾ ¾ Ò Ø ÓÒ Ò ¾ ¾º½ ËÔ ÐØ ÓÖ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º È Ö ÓÜÓÒ Ò Ò Ò Ð ÑÑ º º º º º º º º º º

Mehr

¾

¾ Ï Ò ØÐ À Ù Ö Ø Ö Ø ËØ Ø ÔÖ ÙÒ Ö Ä Ö ÑØ Ò Ê Ð ÙÐ Ò Ò ÊÈÇ Á ÚÓÑ ½ º Þ Ñ Ö ½ ËØÖ Ò Ò Ö ÙÖ Ð ÙÒ ÞÙÑ Ä Ò ÑÓØ Ú Ö Ò ÓÑÔÙØ Ö ÙÒ ÁÒØ ÖÒ Ø Ñ ÈÖÓ Ø È Ø Ó ½ ÚÓÖ Ð Ø ÚÓÒ ÓÖÒ Ð ÃÓÖ Ò Ö Ø Ö È Ó Ò ÀÓ ÙÐ À Ð Ö Ê Ö ÒØ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º ÎÓÖ Ö ØÙÒ Ö Î ÖØ ÙÒ ÔÖ ÙÒ Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ Ï Ò Ö ÔÖ ÒØ Ø ÓÒ ÙÒ Ø Ò Ò Ò Ò Ö ÏÓÖØÑ ÒÒ Ò Ö ºÛÓÖØÑ ÒÒÖÛØ ¹ Òº µ Ö Ò Ù Ò ÎÓÖ Ö ØÙÒ Ò ÚÓÒ ÓÑ Ò ÕÙ ÐÑ Ý Ö ÓÑ Ò ÕÙ ºÞ ÐÑ Ý ÖÖÛØ ¹ Òº µ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½

Mehr

Ê Ö ÒØ ÈÖÓ º Öº º È Ð ººººººººººººººººººººººººººººººººººººººººººººººººººººººººººº ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº º Å ÐÞ Öººººººººººººººººººººººººººººººººººººººººº

Ê Ö ÒØ ÈÖÓ º Öº º È Ð ººººººººººººººººººººººººººººººººººººººººººººººººººººººººººº ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº º Å ÐÞ Öººººººººººººººººººººººººººººººººººººººººº ËØÖÙ ØÙÖ Ò ÐÝ Ø Ù Ö ÈÐ Ñ Ò Ñ ØØ Ð Ø Ð Ö ÀÓÐÓ Ö Ô ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Å Ø Ñ Ø ¹Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ö Ö Ø Ò¹ Ð Ö Ø ¹ÍÒ Ú Ö ØØ ÞÙ Ã Ð ÚÓÖ Ð Ø ÚÓÒ Å ØØ ÃÖÓÐÐ Ã Ð ÔÖ Ð ¾¼½¼ Ê Ö ÒØ ÈÖÓ º Öº º È Ð ººººººººººººººººººººººººººººººººººººººººººººººººººººººººººº

Mehr

ÒØÛ ÐÙÒ ÚÓÒ Å ØÖ Ò Ö ÅĹ Ó ÙÑ ÒØ ÓÐÐ Ø ÓÒ Ò ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ ÊÓ ØÓ Ö ÁÒ ÓÖÑ Ø ÚÓÖ Ð Ø ÚÓÒ ÓÖ Ò Ñ Ä Ö Ë Ò Ö ¾½º ÔÖ Ð ½ Ò ÊÓ ØÓ ØÖ Ù Ö ÈÖÓ º Öº Ò Ö À Ù Ö ÈÖÓ º Öº Ð Ñ Ò Ô Öº¹ÁÒ º Å ÃÐ ØØ ØÙÑ ¾ º Þ Ñ Ö

Mehr

¾¼¼

¾¼¼ Ù Ù ÙÖ Å Ø Ñ Ø Å Ø Ó Ò ÙÒ Ô Ð ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÂÓ Ä Ý ÓÐ Ô ÖØÑ ÒØ Ö ËØ Ø Ø ÙÒ Å Ø Ñ Ø Ö Ï ÖØ Ø ÙÒ Ú Ö ØØ Ï Ò ½ º ÂÙÒ ¾¼¼ ¾¼¼ Josef.Leydold@wu-wien.ac.at ÙÒ Ø ÓÒ Ò Ò Ñ Ö Ö Ò Î Ö Ð Ò ½º Ò Ø ÆÙØÞ Ò ÙÒ Ø ÓÒ

Mehr

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ Ë Ñ Ò Ö ÞÙÖ Ì ÓÖ Ö ØÓÑ Ã ÖÒ ÙÒ ÓÒ Ò ÖØ Ò Å Ø Ö Æ ØÞÐ Ì ÓÖ Ñ ÙÒ Ö ÒÛ Ò ÙÒ Ò Ö ÅÓÐ ÐÔ Ý Ä Ä Ò ¾ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ÙÐ Ö¹Ì ÓÖ Ñ ¾º½ ÀÓÑÓ Ò ØØ Ò Ö ÙÒ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º

Mehr

ÍÒ Ú Ö ØØ Ë ÖÐ Ò Ö ØÙÒ º ÐÐ Ñ Ò Ä Ò Ù Ø ËØÙ Ò Ò ÓÑÔÙØ ÖÐ Ò Ù Ø ÔÐÓÑ Ö Ø ÇÔØ Ñ Ð Ò Ó ËÔ Ø ÓÖ ÍÒ Ø Ë Ð Ø ÓÒ ËÝÒØ ÒÒ ÀÙÒ Ë Ö Ö Ò Ò ½ º Ë ÔØ Ñ Ö ¾¼¼ ÙÖ ÖØ

ÍÒ Ú Ö ØØ Ë ÖÐ Ò Ö ØÙÒ º ÐÐ Ñ Ò Ä Ò Ù Ø ËØÙ Ò Ò ÓÑÔÙØ ÖÐ Ò Ù Ø ÔÐÓÑ Ö Ø ÇÔØ Ñ Ð Ò Ó ËÔ Ø ÓÖ ÍÒ Ø Ë Ð Ø ÓÒ ËÝÒØ ÒÒ ÀÙÒ Ë Ö Ö Ò Ò ½ º Ë ÔØ Ñ Ö ¾¼¼ ÙÖ ÖØ ÍÒ Ú Ö ØØ Ë ÖÐ Ò Ö ØÙÒ º ÐÐ Ñ Ò Ä Ò Ù Ø ËØÙ Ò Ò ÓÑÔÙØ ÖÐ Ò Ù Ø ÔÐÓÑ Ö Ø ÇÔØ Ñ Ð Ò Ó ËÔ Ø ÓÖ ÍÒ Ø Ë Ð Ø ÓÒ ËÝÒØ ÒÒ ÀÙÒ Ë Ö Ö Ò Ò ½ º Ë ÔØ Ñ Ö ¾¼¼ ÙÖ ÖØ Ñ ÙØ Ò ÓÖ ÙÒ Þ ÒØÖÙÑ Ö Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ ÃÁµ Ñ À Ë

Mehr

¾

¾ ÁÈÄÇÅ Ê ÁÌ Ì Ø Ð Ö ÔÐÓÑ Ö Ø Û ÒÒØ Ñ Ò Ò Ó Ö ÙØÓ Ò ØÓ Ø Ù Ò Ò Ö ØÞÙÒ Ö Ò Ù Ö Ø ÚÓÒ Ð Ô Ð Ò Î Ö Ö Ò Ë Ò Ë ÓØØÐ ØÒ Ö Ò ØÖ Ø Ö Ñ Ö Ö Å ØÖ Ö Æ ØÙÖÛ Ò Ø Ò Å º Ö Öº Ò Øºµ Ï Ò Å ¾¼½½ ËØÙ Ò ÒÒÞ Ð Ð ÙØ ËØÙ Ò Ð ØØ

Mehr

¾ ʺ à ÀÄ Ò Ò Ù À Ð ÖØ Ù ÒØÛ ÐÙÒ Ö ÖÙÒ Ð Ò ÓÖ ÙÒ Ð Ò Ù ÖÐ Ñ Ò Ø Ò ÈÙÒ Ø Ö ÒÒ Ò ½µ Ë Ò Ù ÖÙÒ Ð Ò Ö ÓÑ ØÖ À Ð Ò ÓÒ Ö Ñ À Ò¹ Ð Ù Ü ÓÑ Ø Å Ø Ó Û Û Ò Û Öº

¾ ʺ à ÀÄ Ò Ò Ù À Ð ÖØ Ù ÒØÛ ÐÙÒ Ö ÖÙÒ Ð Ò ÓÖ ÙÒ Ð Ò Ù ÖÐ Ñ Ò Ø Ò ÈÙÒ Ø Ö ÒÒ Ò ½µ Ë Ò Ù ÖÙÒ Ð Ò Ö ÓÑ ØÖ À Ð Ò ÓÒ Ö Ñ À Ò¹ Ð Ù Ü ÓÑ Ø Å Ø Ó Û Û Ò Û Öº ÈÖ ¹ÈÙ Ð Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÍÒ Ú Ö Ó Ñ Ö ÈÖ ÔÖ ÒØ ÆÙÑ Ö ¼ ½ ÎÁ ÀÁÄ ÊÌ Ê È Ê Ç Á Æ Ê ÁÆÀ Ê Ã ÀÄ Ù ÑÑ Ò ÙÒ ÁÒ Ö Ö Ø Ø ÐÐ Ò Û Ö À Ð ÖØ Ù ÓÒ Ö Ñ Ò Ò¹ Ø ÓÖ Ø Òµ È Ö ÓÜ Ò Ò Ò Ò ÖÙÒ Ð ÒØ ÓÖ Ø Ò ÎÓÖÐ ÙÒ Ò ÚÓÖº

Mehr

Peter Gienow Nr.11 Einfach heilen!

Peter Gienow Nr.11 Einfach heilen! Peter Gienow Nr.11 Einfach heilen! Reading excerpt Nr.11 Einfach heilen! of Peter Gienow Publisher: Irl Verlag http://www.narayana-verlag.com/b4091 In the Narayana webshop you can find all english books

Mehr

Ò ÐÝØ Ä ÙÒ ÓÔÔ ÐØ Ò ÏÖÑ ¹ ÙÒ ËØÓ ØÖ Ò ÔÓÖØÔÖÓ Ð Ñ Ö ÓÖÔØ ÓÒ Ñ Ð Ñ Ò Ö Ò Ê Ð ÐÑ ÚÓÖ Ð Ø ÚÓÒ Ôк¹ÁÒ º Ì ÓÑ Å Ý Ö º Ò Ö Ð Ò ÚÓÒ Ö ÙÐØØ ÁÁÁ ¹ ÈÖÓÞ Û Ò Ø Ò Ö Ì Ò Ò ÍÒ Ú Ö ØØ ÖÐ Ò ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ó ØÓÖ Ö ÁÒ

Mehr

loooooooooooooomoooooooooooooon

loooooooooooooomoooooooooooooon ÁÒØ ÖÔÓÐ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Mehr

ÁÈÄÇÅ Ê ÁÌ Â ¹Ï Ðع ÒÒ Ñ Ò Ö ÄÓ ÔÖÓ Ö ÑÑ ÖÙÒ Ð È Ö Ñ ÞÙÖ Ï Ò Ú Ö Ö ØÙÒ Ö Ë Ñ ÒØ Ï ÚÓÒ ÌÓ Å ØÞÒ Ö Ò Ö Ø Ñ ½º Ë ÔØ Ñ Ö ¾¼¼ Ñ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÙÒ ÓÖÑ Ð Ö ÙÒ Ú Ö Ö Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ö

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ α¹ëøö ÐÙÒ ½º½ ÖÙÒ Ð Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ α¹ëô ØÖÙÑ º º º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ α¹ëøö ÐÙÒ ½º½ ÖÙÒ Ð Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ α¹ëô ØÖÙÑ º º º º º º º º º ÈÖÓØÓ ÓÐÐ Ã ÖÒÔ Ý ÔÖ Ø ÙÑ Ö Ø Ö ÖÙÒ Ö ËØÖ ÐÙÒ ÖØ Ò ÚÓÑ ½ º¼¾º¾¼¼ ¾½º¼¾º¾¼¼ ÏË ¾¼¼»¼ ÙÖ ÖØ ÙÒ Ù Û ÖØ Ø ÚÓÒ Ä Ö ÀÓÐÐÒ Ö Ê Ð Â Ö Å ÖÓ Ë Ö Ö ÂÙÐ Ò ÊÓÜÐ Ù ËØ Ú Ð Ö Ø Ë Ø Ò Ê ½ ÁÒ ÐØ Ú ÖÞ Ò ½ α¹ëøö ÐÙÒ ½º½ ÖÙÒ

Mehr

Lehrstuhl und Institut für Strömungslehre

Lehrstuhl und Institut für Strömungslehre ÙÒ Ò ÞÙÑ È Ø ËØÖ ÑÙÒ Ð Ö Ö Ñ Ò Ò ÙÖÛ Ò ÙÒ Î Ö Ö Ò Ø Ò ½º Ù Ò Ð ØØ ËØÖ ÑÙÒ Ö ÀÝ ÖÓ Ø Ø Ù ½º½ ÙÒ Ù ËØÖ ÑÙÒ Ñ Ò Ù ¾º½º½µ º ½º½ ÃÖ Ø ÖÞ Ù ÙÑ ØÖ ÑÙÒ Ò ÃÖ Ø ÖÞ Ù Û Ö ÚÓÒ Ò Ö Ö ÙÒ Ö Ò È Ö ÐÐ Ð ØÖ ÑÙÒ Ö Û Ò Ø

Mehr

Institut für Mechanik

Institut für Mechanik Institut für Mechanik Berichte des Instituts für Mechanik (Bericht 1/2012) Idirisou Danladi Lokalisierungsanalyse des Rissbeginns anhand eines orthotropen Schädigungsmodells kassel university press Berichte

Mehr

È Ý ¹Ë Ö ÔØ Ö Ö Ø Â Ö È Ý ÙÒØ ÖÖ Ø Ò Ñ ÖØÖ ØØ ÚÓÒ Ö Ë º Ò Ã ÒØÓÒ ÙÐ Öº ŠРú ÖÖÝ ½¾º Ç ØÓ Ö ¾¼½

È Ý ¹Ë Ö ÔØ Ö Ö Ø Â Ö È Ý ÙÒØ ÖÖ Ø Ò Ñ ÖØÖ ØØ ÚÓÒ Ö Ë º Ò Ã ÒØÓÒ ÙÐ Öº ŠРú ÖÖÝ ½¾º Ç ØÓ Ö ¾¼½ È Ý ¹Ë Ö ÔØ Ö Ö Ø Â Ö È Ý ÙÒØ ÖÖ Ø Ò Ñ ÖØÖ ØØ ÚÓÒ Ö Ë º Ò Ã ÒØÓÒ ÙÐ Öº ŠРú ÖÖÝ ½¾º Ç ØÓ Ö ¾¼½ ÁÒ ÐØ Ú ÖÞ Ò Á ÒÐ ØÙÒ ÙÒ ÖÙÒ Ð Ò ½ ³Ï ÖÙÑ Ë Ö ÔØ Ø À Ö Ù ÓÖ ÖÙÒ Ò ÙÒ Û Ë Ñ Ø ÖÒº³ ½º½ ³ Ö ÖÙÒ Ò ÙÒ ÈÖÓ Ð

Mehr

Ö Ú Øݹ ÄÓ Ð ÐÓ ËÝÒ ÖÓÒ Þ Ø ÓÒ Ò Ï Ö Ð Ë Ò ÓÖ Æ ØÛÓÖ Å Ö Ù ÏÐ Ð Ê ØÓ ÙÖ Ù Ò Ì ÓÑ ËØ Ù Ò ÌÓÖ Ø Ò Ö ÙÒ ÁÒ Ø ØÙØ Ó ÓÑÔÙØ Ö Ë Ò Ò ÔÔÐ Å Ø Ñ Ø ÍÒ Ú Ö ØÝ Ó

Ö Ú Øݹ ÄÓ Ð ÐÓ ËÝÒ ÖÓÒ Þ Ø ÓÒ Ò Ï Ö Ð Ë Ò ÓÖ Æ ØÛÓÖ Å Ö Ù ÏÐ Ð Ê ØÓ ÙÖ Ù Ò Ì ÓÑ ËØ Ù Ò ÌÓÖ Ø Ò Ö ÙÒ ÁÒ Ø ØÙØ Ó ÓÑÔÙØ Ö Ë Ò Ò ÔÔÐ Å Ø Ñ Ø ÍÒ Ú Ö ØÝ Ó Ö Ú Øݹ ÄÓ Ð ÐÓ ËÝÒ ÖÓÒ Þ Ø ÓÒ Ò Ï Ö Ð Ë Ò ÓÖ Æ ØÛÓÖ Å Ö Ù ÏÐ Ð Ê ØÓ ÙÖ Ù Ò Ì ÓÑ ËØ Ù Ò ÌÓÖ Ø Ò Ö ÙÒ ÁÒ Ø ØÙØ Ó ÓÑÔÙØ Ö Ë Ò Ò ÔÔÐ Å Ø Ñ Ø ÍÒ Ú Ö ØÝ Ó ÖÒ Æ Ù Ö ØÖ ½¾ ¼½¾ ÖÒ ¹ ËÛ ØÞ ÖÐ Ò ßÛ Ð Ð ÞÙÖ Ù Ø Ù

Mehr

R n. u(x)e ix y dx, y R n (2π) n 2. f L 1 (Rµ. f(x) cos(yx) dx = 0. f(x) sin(yx) dx = lim. lim. lim. f(x)e ixy dx = 0, Ð Ó ˆf(y) 0 Ö y

R n. u(x)e ix y dx, y R n (2π) n 2. f L 1 (Rµ. f(x) cos(yx) dx = 0. f(x) sin(yx) dx = lim. lim. lim. f(x)e ixy dx = 0, Ð Ó ˆf(y) 0 Ö y ½¾º½ ÓÙÖ ÖØÖ Ò ÓÖÑ Ø ÓÒ ÓÙÖ ÖØÖ Ò ÓÖÑ Ø ÓÒ Ù L µ u L ( n ) Úº ÓÑÔÐ ÜÛ ÖØ µ ÓÙÖ ÖØÖ Ò ÓÖÑ ÖØ û(y) := u(x)e ix y dx, y n (π) n n ÒÚ Ö ÓÙÖ ÖØÖ Ò ÓÖÑ ÖØ ǔ(y) := u(x)e ix y dx, y n (π) n n Ñ ½µ ÁÒØ Ö Ð ÓÒÚ

Mehr

ÃÙÖÞ ÙÒ ËÇ È ÈÖÓØÓ ÓÐÐ ÛÙÖ Ð Ò ÔÐ ØØ ÓÖÑÙÒ Ò Æ Ö Ø Ò ÓÖ¹ Ñ Ø Ò Öغ Ö ÐÐ Ò Ñ Ø Ö Ò Ø ÓÒ Ø ÍÒ Ò Ø Ò Ø ÖÖ Øº Ø ÑÑ Ö ÒÓ Ê Ñ Ò Ò ÙÒ Ò Ò ÖÒ ÙÒ¹ Ò Ö Ò Ø Ò ÐØ

ÃÙÖÞ ÙÒ ËÇ È ÈÖÓØÓ ÓÐÐ ÛÙÖ Ð Ò ÔÐ ØØ ÓÖÑÙÒ Ò Æ Ö Ø Ò ÓÖ¹ Ñ Ø Ò Öغ Ö ÐÐ Ò Ñ Ø Ö Ò Ø ÓÒ Ø ÍÒ Ò Ø Ò Ø ÖÖ Øº Ø ÑÑ Ö ÒÓ Ê Ñ Ò Ò ÙÒ Ò Ò ÖÒ ÙÒ¹ Ò Ö Ò Ø Ò ÐØ ÁÈÄÇÅ Ê ÁÌ Î Ö Ð ÚÓÒ ËÇ È ÃÓÑÑÙÒ Ø ÓÒ ÔÐ ØØ ÓÖÑ Ò Ù ÖØ Ñ ÁÒ Ø ØÙØ Ö ÈÖÓ Ö ÑÑ Ö ÔÖ Ò Ö Ì Ò Ò ÍÒ Ú Ö ØØ Ï Ò ÙÒØ Ö Ö ÒÐ ØÙÒ ÚÓÒ ÓºÍÒ ÚºÈÖÓ º Ôк¹ÁÒ º Öº Ö ÒÞ ÈÙÒØ Ñ ÙÖ Å Ò Ö Â ÖØ Ò ½ ¾ ÙØ ¹ ÖÓ Ö ÓÖ Ï Ò ½

Mehr

Grundlagen der Informatik (GDI)

Grundlagen der Informatik (GDI) Ä ÙÒ ÞÞ Ò ÞÙÖ Ï Ö ÓÐÙÒ Ð Ù ÙÖ ÖÙÒ Ð Ò Ö ÁÒ ÓÖÑ Ø Áµ º Å ¾¼½¾ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò

Mehr

x (k+1) = Φ(x (k) ), k = 0,1,... lim k x(k) = x = A 1 b,

x (k+1) = Φ(x (k) ), k = 0,1,... lim k x(k) = x = A 1 b, Ì Ð ÎÁÁÁ ÁØ Ö Ø Ú Ä ÙÒ Ð Ò Ö Ö Ð ÙÒ Ý Ø Ñ ÅÓØ Ú Ø ÓÒ Ö Ø Å Ø Ó Ò Û Ù Ð Ñ Ò Ø ÓÒ Ú Ö ¹ Ö Ò Ò Ö ÖÓ Ñ Ò ÓÒ Ò n Ö Ù ÛÒ (O(n 3 )) Ô Þ ÐÐ Ö ÒÒ ØÞØ Å ØÖ Þ Òº Ù Û ÁØ Ö Ø Ú Î Ö Ö Ò Ò ÓÖÑ Ñ Ø x (k+1) = Φ(x (k)

Mehr

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼ Ù Ö Æ ÙÖÓ ÖÙÖ Ò ÃÐ Ò ÃÒ ÔÔ Ø Ö Ò Ò Ù Ó ÙÑ¹Ä Ò Ò Ö Ö ¹ ÍÒ Ú Ö ØØ Ð Ò ¹ Ö ÊÙ Ö¹ÍÒ Ú Ö ØØ Ó ÙÑ Ö ØÓÖ ÈÖÓ º Öº Ñ º º À Ö Ö Ê ØÖ ÖÙÒ ÚÓÒ ¹ÍÐØÖ Ðй ÙÒ Ì¹ Ø Ò Ö Ä Ò ÒÛ Ö Ð ÙÐ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ Ò Ú ÖØ Ö È Ð Ö Ù

Mehr

Ù Ö Ö Æ ÙÖÓÐÓ Ò ÃÐ Ò Ö Ð ÖعÄÙ Û ¹ÍÒ Ú Ö ØØ Ö ÙÖ Ñ Öº Ò Î ÖÐ Ù Ò ÐÝ Ö ÌÖ ÑÓÖ Ö ÕÙ ÒÞ Ò Ñ ÅÓÖ Ù È Ö Ò ÓÒ ÙÒ Ñ ÒØ ÐÐ Ò ÌÖ ÑÓÖ ÁÆ Í ÍÊ Ä ¹ ÁËË ÊÌ ÌÁÇÆ ÞÙ

Ù Ö Ö Æ ÙÖÓÐÓ Ò ÃÐ Ò Ö Ð ÖعÄÙ Û ¹ÍÒ Ú Ö ØØ Ö ÙÖ Ñ Öº Ò Î ÖÐ Ù Ò ÐÝ Ö ÌÖ ÑÓÖ Ö ÕÙ ÒÞ Ò Ñ ÅÓÖ Ù È Ö Ò ÓÒ ÙÒ Ñ ÒØ ÐÐ Ò ÌÖ ÑÓÖ ÁÆ Í ÍÊ Ä ¹ ÁËË ÊÌ ÌÁÇÆ ÞÙ Ù Ö Ö Æ ÙÖÓÐÓ Ò ÃÐ Ò Ö Ð ÖعÄÙ Û ¹ÍÒ Ú Ö ØØ Ö ÙÖ Ñ Öº Ò Î ÖÐ Ù Ò ÐÝ Ö ÌÖ ÑÓÖ Ö ÕÙ ÒÞ Ò Ñ ÅÓÖ Ù È Ö Ò ÓÒ ÙÒ Ñ ÒØ ÐÐ Ò ÌÖ ÑÓÖ ÁÆ Í ÍÊ Ä ¹ ÁËË ÊÌ ÌÁÇÆ ÞÙÖ ÖÐ Ò ÙÒ Å Þ Ò Ò Ó ØÓÖ Ö Ö Å Þ Ò Ò ÙÐØØ Ö Ð ÖعÄÙ

Mehr

Ê Ê ÙÒ ÒØ ÖÖ Ý Ó ÁÒ Ô Ò ÒØ ÙØÓÖ ÖÒ Ö Ë Ñ Ø Å Øº ÆÖº ¾ à ÒÒÞº ½ ½ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ ÅÓØ Ú Ø ÓÒ ¾ Ì Ð Ò Ê ËÝ Ø Ñ ÖÖ Ý Å Ò Ñ ÒØ ËÓ ØÛ Ö Ê Ä Ú Ð º½ Ö «Ò Ø ÓÒ Ò ººººººººººººººººººººººººººººººº

Mehr

δ x := x x ε x := x x

δ x := x x ε x := x x Ì Ð Á Ð ÖØ ÓÖ ½ Ð Ö ÖØ Ò Ò Ø ÓÒ ½º½º Ò Ð ÓÖ Ø ÑÙ Ø Ò Ö Ò Ñ Ð Ò ÐÐ Ò¹ ÙØ Ø Ð Ø ÓÐ ÚÓÒ Ð Ñ ÒØ Ö Ò Ê ÒÓÔ Ö Ø ÓÒ Ò ÙÒØ Ö Ò Þ ÙÒ Ñ Ø Ñ Ø Ö ÙÒ Ø ÓÒ Ò ÙÒ Ò ÙÒ Òº Ð Ñ ÒØ Ö Ê ÒÓÔ Ö Ø ÓÒ Ò Ò ÖÙÒ Ö Ò ÖØ Ò ÐÓ ÇÔ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ËØ Ú Ê Ø Ø ÈÖ ÒÞ Ô Ò ¾º½ Ï Ö ÓÐÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÐÐÑ Ð Ø º º º º º º º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ËØ Ú Ê Ø Ø ÈÖ ÒÞ Ô Ò ¾º½ Ï Ö ÓÐÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÐÐÑ Ð Ø º º º º º º º º º º º º º ËØ Ú Ê ÅÙ ÓÖ ÅÙ Ò Â ÖÒ Æ ØØ Ò Ñ Ö ËÓÒ Å Ò º Å ¾¼¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ËØ Ú Ê Ø Ø ÈÖ ÒÞ Ô Ò ¾º½ Ï Ö ÓÐÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÐÐÑ Ð Ø º º º º º º º º º º º º º

Mehr

Þ ÒÞÙÒØ Ö Ù ÙÒ Ò Ò Ö ÎÓÖ Ð Ò ÙÒ Î ÖØ Ù Ò ¹Å Ø Ó Ö ÙÓÖ ÒÙÒ ÔÖÓ Ð Ñ ÔÐÓÑ Ö Ø Ñ ÁÒ ÓÖÑ Ø Ò º Ò ÓÖѺ Ê Ò Ö À ÖÖÐ Ö ØÖ Ù Ö ÈÖÓ º Öº Ö Ò ÈÙÔÔ Ôк ÁÒ ÓÖѺ Ù Ä Ö ØÙ Ð Ö Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ ÙÒ Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÍÒ

Mehr

Systemsoftware (SYS)

Systemsoftware (SYS) Ä ÙÒ ÞÞ Ò ÞÙÖ ÐÙ Ð Ù ÙÖ ËÝ Ø Ñ Ó ØÛ Ö Ë Ëµ ØÖ Ý Ø Ñ ¹ÓÖ ÒØ ÖØ Ö Ì Ð ¾º ÂÙÐ ¾¼¼ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ

Mehr

Ö ÁÒ ÓÖÑ Ø Ö ÒÒ Ò ÚÓÒ ÓÑ ÒÓ Ø Ò Ò Ñ Ø À Ð ÚÓÒ Û Ò ÖØ Ò Ð Ò ÐÝ ¹Î Ö Ö Ò ÔÐÓÑ Ö Ø ÞÙÖ ÖÐ Ò ÙÒ Ö ÔÐÓѹÁÒ ÓÖÑ Ø Ö Ñ ËØÙ Ò Ò ÓÑÔÙØ ÖÚ Ù Ð Ø ÚÓÖ Ð Ø ÚÓÒ Å Ö Ð À Ð ØÖ Ù Ö Ôк¹Å Ø º Àµ ËØ Ò Ï ÖØÞ ÁÒ Ø ØÙØ Ö ÓÑÔÙØ

Mehr

Ê Ùѹ ÙÒ Ø ÓÑÔÐ Ü ØØ

Ê Ùѹ ÙÒ Ø ÓÑÔÐ Ü ØØ ÃÓÑÔÐ Ü ØØ ÚÓÒ Ð ÓÖ Ø Ñ Ò ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÈÖÓ º Öº À Ö ÖØ ÎÓÐÐÑ Ö ÁÒ Ø ØÙØ Ö Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ¼½º¼ º¾¼¼ Ê Ùѹ ÙÒ Ø ÓÑÔÐ Ü ØØ Ø Ö ÙÒ ÈÐ ØÞ Ö Ë Å Ò ÌÙÖ Ò Ñ Ò Ìŵº Ë : N Nº Å Ö Ø Ø Ò Ø ÐÐ Ö ÐÐ Ò ÙÒ Ö ÐÐ Ï

Mehr

Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº¹ÁÒ º ËØ Ò Ñ ÒÒ ÈÖÓ º Öº¹ÁÒ º Å ÖÓ Ä ÓÒ Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÓÒÒ Ö Ø ½ º Þ Ñ Ö ¾¼¼

Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº¹ÁÒ º ËØ Ò Ñ ÒÒ ÈÖÓ º Öº¹ÁÒ º Å ÖÓ Ä ÓÒ Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÓÒÒ Ö Ø ½ º Þ Ñ Ö ¾¼¼ Ò ÐÝ ÙÒ ÇÔØ Ñ ÖÙÒ ËÔ ÒÒÙÒ Ú Ö ÓÖ ÙÒ Ý Ø Ñ Ñ ÖÐ Ö Ä Ø ÖÔÐ ØØ Ò ÎÓÑ Ö Ð ØÖÓØ Ò Ö À ÐÑÙØ¹Ë Ñ Ø¹ÍÒ Ú Ö ØØ» ÍÒ Ú Ö ØØ Ö ÙÒ Û Ö À Ñ ÙÖ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ¹ÁÒ Ò ÙÖ Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÖ Ð Ø ÚÓÒ Ôк¹ÁÒ º Å ØØ

Mehr

ÙÐØØ Ö È Ý ÙÒ ØÖÓÒÓÑ ÊÙÔÖ Ø¹Ã ÖÐ ¹ÍÒ Ú Ö ØØ À Ð Ö ÐÓÖ Ö Ø Ñ ËØÙ Ò Ò È Ý ÚÓÖ Ð Ø ÚÓÒ Å ÖÚ Ò Ð ÖØ Ù À Ð Ö Ù Ù Ø ¾¼½¼

ÙÐØØ Ö È Ý ÙÒ ØÖÓÒÓÑ ÊÙÔÖ Ø¹Ã ÖÐ ¹ÍÒ Ú Ö ØØ À Ð Ö ÐÓÖ Ö Ø Ñ ËØÙ Ò Ò È Ý ÚÓÖ Ð Ø ÚÓÒ Å ÖÚ Ò Ð ÖØ Ù À Ð Ö Ù Ù Ø ¾¼½¼ ÙÐØØ Ö È Ý ÙÒ ØÖÓÒÓÑ ÊÙÔÖ Ø¹Ã ÖÐ ¹ÍÒ Ú Ö ØØ À Ð Ö ÐÓÖ Ö Ø Ñ ËØÙ Ò Ò È Ý ÚÓÖ Ð Ø ÚÓÒ Å ÖÚ Ò Ð ÖØ Ù À Ð Ö Ù Ù Ø ¾¼½¼ Ä ÕÙ ÓÑÔÙØ Ò Ñ Ø Æ ÙÖÓÑÓÖÔ Ö À Ö Û Ö ÐÓÖ Ö Ø ÛÙÖ ÚÓÒ Å ÖÚ Ò Ð ÖØ Ù ÖØ Ñ Ã Ö Ó ¹ÁÒ Ø ØÙØ

Mehr

Å ÙÒ Ð Ñ Ö Ð Ú ÒØ Ö ÓÔØ Ö Ò Ø Ò ÚÓÒ Å Ò Ö Ð Ø Ù Ñ Ä ÓÖ ÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò ÇÃÌÇÊË Ê Æ ÌÍÊÏÁËË ÆË À Ì Æ ÚÓÒ Ö ÙÐØØ Ö È Ý Ã ÖÐ ÖÙ Ö ÁÒ Ø ØÙØ Ö Ì ÒÓÐÓ ÃÁ̵ Ò Ñ Ø ÁËË ÊÌ ÌÁÇÆ ÚÓÒ Ôк Šغ Å ÖÐ Ò ÎÖ Ð Ù Ä Ù

Mehr

Ð ÙÒ ½ ËÙ Ø Ú ÙÖØ ÐÙÒ ÚÓÒ Ì ÑÔ Ö ØÙÖ Ò ÙÖ Ø Ø Ò ÓÖ Ò Òº ÏÖÑ ÑÔ Ò Ò Ø Ó ÙÒ Ò Ù ÙÒ Ð Ö Ü Ø Å ÙÒ ÚÓÒ ÏÖ¹ Ñ ÞÙ ØÒ Ò ÙÒ Ò Øº Ö Å Ò Ò ÑÑØ ÏÖÑ ÙÖ Ô Þ ÐÐ Æ ÖÚ

Ð ÙÒ ½ ËÙ Ø Ú ÙÖØ ÐÙÒ ÚÓÒ Ì ÑÔ Ö ØÙÖ Ò ÙÖ Ø Ø Ò ÓÖ Ò Òº ÏÖÑ ÑÔ Ò Ò Ø Ó ÙÒ Ò Ù ÙÒ Ð Ö Ü Ø Å ÙÒ ÚÓÒ ÏÖ¹ Ñ ÞÙ ØÒ Ò ÙÒ Ò Øº Ö Å Ò Ò ÑÑØ ÏÖÑ ÙÖ Ô Þ ÐÐ Æ ÖÚ Ë Ñ Ò ÖÚÓÖØÖ ÞÙÑ Ì Ñ Ì ÑÔ Ö ØÙÖ ÙÒ ÏÖÑ Ò Ã ØØ Ð Ö ½ º½½º¾¼¼ Ö Ú Ð Å Ò Ò ÙØ Ò Ö Ì ÑÔ Ö ØÙÖ ÙÒ ÏÖÑ Ñ Ö Ó Ö Û Ò Ö Ð º ½ ÖÐÙØ ÖÒ Ë Û Ë Ù Ë Ð Ö Ö Ï Ø ÒØÐ Ö ÍÒØ Ö ÞÛ Ò Ì ÑÔ Ö ØÙÖ ÙÒ ÏÖÑ Ò Ò Û Ö Ò Ï Ö Ò Ì ÑÔ

Mehr

Bachelorarbeit. Ausgeführt am Institut für Festkörperphysik der Technischen Universität Wien

Bachelorarbeit. Ausgeführt am Institut für Festkörperphysik der Technischen Universität Wien Bachelorarbeit Hohe Gütefaktoren in Split-Ring-Resonatoren Ausgeführt am Institut für Festkörperphysik der Technischen Universität Wien unter Anleitung von Univ.Prof. Dr.rer.nat. Andrei Pimenov und Dipl.-Phys.

Mehr

µ A = uv T u, v R n µ Q = I 2ww T w T w = 1 w R n P = a i,i = 2, i = 1,..., n, a i+1,i = a i,i+1 = 1, i = 1,..., n 1. 2n + 2

µ A = uv T u, v R n µ Q = I 2ww T w T w = 1 w R n P = a i,i = 2, i = 1,..., n, a i+1,i = a i,i+1 = 1, i = 1,..., n 1. 2n + 2 ÈÖÓ º Öº Àº Å ÙÖ Ö Ôк Å Ø º Å Ë ÙÐØ ÙÒ Ò ÞÙÖ ÎÓÖÐ ÙÒ À Ö ÆÙÑ Ö Å Ø Ñ Ø ËË ¼ ÙÒ Ð ØØ ½ ½ º¼ º¾¼¼ º¼¼ Í Ö Ù ½ ÈÙÒ Ø µ Ø ÑÑ Ò Ë Ö Å ØÖ Þ Ò µ A = uv T u, v R n µ Q = I 2ww T w T w = 1 w R n µ P = 0 0 0 1

Mehr

arxiv:math/ v1 [math.ho] 29 Sep 2004 ǫ = 180 (α+β +γ) = C F.

arxiv:math/ v1 [math.ho] 29 Sep 2004 ǫ = 180 (α+β +γ) = C F. º º Ù³ ÈÖÞ ÓÒ Ñ ÙÒ Ò Ø ÖÖ ØÖ Ö Ö ÙÒ Ò ÖÐ ÙÒ Ò ÞÙÖ ÑÔ Ö Ò ÙÒ ÖÙÒ Ö ÓÑ ØÖ Ò Ò ½ ¾¼ Ö Â Ö Ò Ö Ö Ë ÓÐÞ ÏÙÔÔ ÖØ Ð ½ arxiv:math/0409578v1 [math.ho] 29 Sep 2004 Ù ÑÑ Ò ÙÒ ÁÒ Ø ØÓÖ Ð Ð Ø Ö ØÙÖ Ø Ö Ò Ò ÜØ Ò Ù ÓÒ

Mehr

Ì Ò Å Ò Á Å Ø Ñ Ø Ö Ò Ò ÈÖÓ º Öº¹ÁÒ º º Ì Ñ º Ç ØÓ Ö ¾¼½ ÍÒÔÙ Ð ÏÓÖ ¾¼½½ Ö Ð ÑÔÓ Ì Ñ ÌÍ ÖÑ Ø Ø

Ì Ò Å Ò Á Å Ø Ñ Ø Ö Ò Ò ÈÖÓ º Öº¹ÁÒ º º Ì Ñ º Ç ØÓ Ö ¾¼½ ÍÒÔÙ Ð ÏÓÖ ¾¼½½ Ö Ð ÑÔÓ Ì Ñ ÌÍ ÖÑ Ø Ø Ì Ò Å Ò Á Å Ø Ñ Ø Ö Ò Ò ÈÖÓ º Öº¹ÁÒ º º Ì Ñ º Ç ØÓ Ö ¾¼½ ÍÒÔÙ Ð ÏÓÖ ¾¼½½ Ö Ð ÑÔÓ Ì Ñ ÌÍ ÖÑ Ø Ø ¾ ½ ÁÒ ÐØ º½ Ù Ö Ð Ñ ÒØ Ö Ò ÓÑ ØÖ º º º º º º º º º º º º º º º º º º º º º º º º º º º º½º½ Ö Ï Ò Ð º º

Mehr

Ö Ø Ö ÖÙÒ Ä Ú Ö ÐØ Ò ÓÜ Ö Æ ÒÓÔ ÖØ Ð Ì Ç ¾ ÖÇ ¾ Ë Ç ¾ µ Ò Û Ö Ò ËÝ Ø Ñ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö ÓØÓÖ Ö ÖÙÑ Ò ØÙÖ Ð ÙÑ Öº Ö Öº Ò Øºµ ÚÓÖ Ð Ø Ñ Ê Ø Ö

Ö Ø Ö ÖÙÒ Ä Ú Ö ÐØ Ò ÓÜ Ö Æ ÒÓÔ ÖØ Ð Ì Ç ¾ ÖÇ ¾ Ë Ç ¾ µ Ò Û Ö Ò ËÝ Ø Ñ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö ÓØÓÖ Ö ÖÙÑ Ò ØÙÖ Ð ÙÑ Öº Ö Öº Ò Øºµ ÚÓÖ Ð Ø Ñ Ê Ø Ö Ö Ø Ö ÖÙÒ Ä Ú Ö ÐØ Ò ÓÜ Ö Æ ÒÓÔ ÖØ Ð Ì Ç ¾ ÖÇ ¾ Ë Ç ¾ µ Ò Û Ö Ò ËÝ Ø Ñ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö ÓØÓÖ Ö ÖÙÑ Ò ØÙÖ Ð ÙÑ Öº Ö Öº Ò Øºµ ÚÓÖ Ð Ø Ñ Ê Ø Ö Ñ ¹ ÓÛ Ò ØÐ Ò ÙÐØØ Ö Ö Ö ¹Ë ÐÐ Ö¹ÍÒ Ú Ö ØØ Â Ò ÚÓÒ

Mehr