Mathematik - Arbeitsblätter

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik - Arbeitsblätter"

Transkript

1 Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - reitslätter M Wieerolung Reelle Zlen 6 Stzgruppe es Ptgors Terme 6 6 leicungen un Ungleicungen Körpererecnungen ructerme un rucgleicungen Kreis un Kreisteile Prozent- un Zinsenrecnungen Zliner 6 7 Kegel Kugel unktionen leicungen mit zwei Vrilen Ortslinien 6 8 Sttistisce Untersucungen 6 Screcnen 6 6 Rätsel S - Multimei Ic knn Mte lernen Seite

2 Nme: leicungen un Ungleicungen ) i jeweils en Recengng n un recne nn - wenn möglic - us. Toms t 6 uf einem Spruc, Mrtin t 6 uf einem Spruc, seine Scwester v t ir ruer Stefn t um ie älfte mer ls sie. es etrges von Toms. 6. = 6. = Mrtin t uf einem Spruc, ire Scwester v t 7 8 es etrges von Mrtin rwin t uf einem Spruc, sein ruer Luks t um 7 8 weniger ls er.. 8 ) ) ) ei einem Wettewer wir ein eletrg von uf ie ersten rei Plätze im Verältnis : : ufgeteilt.. Pltz. Pltz. Pltz zusmmen : er rste ekommt 7, er Zweite ekommt un er ritte ekommt. ine rscft von wir unter rei ren so ufgeteilt, ss um mer ls, un um weniger ls ekommt. re re re zusmmen = 7 = + = : re ekommt 7, re ekommt un re ekommt. = + = : = 7 er Verlust von 6 wir uf ie rei irmenesitzer so ufgeteilt: ezlt l so viel wie, un ezlt es nteils von... = 7. = 6. = 68 = 6 = : 6 =. +. = 6. 6 =. 6. = = : zusmmen 6 6 = 6 : ezlt 68, ezlt 6 un ezlt. ) er ewinn von 7 wir uf ie rei irmenesitzer so ufgeteilt: ekommt von, un ekommt von. zusmmen... = = 8 7. = = 7. 6 = = : = 7 : ekommt 7, ekommt 8 un ekommt. S - Multimei Ic knn Mte lernen Seite 6

3 Nme: Körpererecnungen ) ) ) erecne s Volumen un ie Oerfläce eines Quers mit en Kntenlängen =, m, =,7 m, =, m. erecne s Volumen un ie Msse einer querförmigen Tiscpltte us Mrmor. =, m, =,8 m, =, cm; Mrmor: ρ =,7 kg/m. escrifte ei en Quern mit leistift lle ckpunkte un zeicne jeweils mit untstift ie gegeene igonle ein. = = = = V =. V =.. V =,.,7., V =, V, m = m = 8 m =, m O =. + u. O =. + (. +. ). O =.,.,7 + (., +.,7)., O =.,7 + ( +,)., O =, +,., O =, +,6 = 6,6 O 6,6 m V =. V =.. V =. 8., V = V m m = ρ. V m =,7. m = 6,8 m 6,8 kg,, sin läcenigonlen es Quers, ist eine Rumigonle. ) Quer: = cm, = cm, = cm. Mrkiere jeweils in er Scrägrissskizze en entsprecenen recten Winkel un erecne mit ilfe es Stzes von Ptgors ie Länge er in er Skizze eingezeicneten läcenigonle. = +.. = + = +. = + = + = + = + = = + =,... = + =,... cm cm cm S - Multimei Ic knn Mte lernen Seite 7

4 Nme: unktionen ) Kreuze jeweils n, wenn er rp einer unktion rgestellt ist. ) ine unktion ist urc eine Wertetelle gegeen. Zeicne en rpen in s Koorintensstem. Verine ie Punkte urc einen Streckenzug. ) ) ) ine unktion ist urc eine unktionsgleicung gegeen. erecne ie felenen unktionswerte un zeicne en rpen in s Koorintensstem. ) = ) = c) = ) =,, S - Multimei Ic knn Mte lernen Seite, get nict,

5 Nme: Sttistisce Untersucungen ) Stuiere en Merkstoff " Sttistisce runegriffe" er. Klsse. u musst für iese eispiele ie egriffe solute, reltive, prozentuelle äufigkeit, Sticproe, Streifenigrmm un Kreisigrmm kennen un versteen. n einer Wiener Scule wure untersuct, in welcem usmß ie ltern mit er Scule ires Kines zufrieen zw. unzufrieen sin. n lle ScülerInnen iese Scule wuren rgeogen usgeteilt. Insgesmt 8 wuren von en ltern (nonm) usgefüllt un zurück gescickt. Im rgeogen konnten ie ltern er Scule eine Note geen. ie Scule erielt 76 Ser gut", ut", efrieigen", enügen" un Nict genügen". " " " " " ) erecne ie prozentuelle äufigkeit er einzelnen Noten un zeicne ein Streifenigrmm. ) erecne, wie viel % er ltern en rgeogen usgefüllt / nict usgefüllt en un zeicne ein Kreisigrmm. ) Note solute äufigkeit reltive äufigkeit =,7... =,7... =,8... =,... =,... prozentuelle äufigkeit,8 % 7, % 8, %, %, % 8 =, % ) 8. =,7 78 % %,6 78 %,6. 78 = 8,8 8 usgefüllt nict usgefüllt ) In mereren Klssen n verscieenen Wiener Sculen wure eenso ie Zufrieeneit er ltern mit er Scule ires Kines nonm mit ilfe von Noten ewertet. rgenis: " Ser gut", 6 " ut", " efrieigen", " enügen", " Nict genügen". erecne für ie einzelnen Noten ie prozentuelle äufigkeit un zeicne ein Streifenigrmm. Note solute äufigkeit is 6 prozentuelle äufigkeit, % 7, %, %,8 %,6 % % ei ieser sttistiscen Untersucung wuren ie ltern von vielen (er nict llen) ScülerInnen efrgt. Üerlege, o s rgenis ieser Sticproe repräsenttiv ist für: lle Sculen lle österreiciscen Sculen lle Wiener Sculen nein nein j Welce Kriterien müssen ei er uswl er efrgten erücksictigt weren, mit s rgenis einer Sticproe für lle österreiciscen Sculen repräsenttiv ist? verscieene Scultpen, öffentlice / privte Sculen, Sculen in kleinen Orten, Kleinstäten, roßstäten, in verscieenen uneslänern... S - Multimei Ic knn Mte lernen Seite 8

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - reitslätter M Wiederolung 6 7 8 8 Reelle Zlen 6 Stzgruppe des Ptgors 6 7 8 9 Terme 6 6 leicungen und Ungleicungen 6 7 8 9 7 Körpererecnungen 6 7 8 9

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - Areitslätter 3 M Wiederolung 3 6 7 8 38 Reelle Zlen 3 6 Stzgruppe des Ptgors 3 6 7 8 9 Terme 3 6 6 Gleicungen und Ungleicungen 3 6 7 8 9 7 Körpererecnungen

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic nn... Ic nn Mte... Ic nn Mte lernen Mtemti - Areitslätter 9 M Wiederolung 1 Gleicungen 1 5 6 7 8 0 Teilreit 1 5 6 6 Geometrisce Konstrutionen 1 5 6 7 5 Brucrecnung 1 5 6 7 8 9 10 11 1 1 1 67 Dreiece

Mehr

Übung: Untersuchung einfacher Funktionen

Übung: Untersuchung einfacher Funktionen MK.6. Differentition_Ueb Untersuc.mc Aufgben: Übung: Untersucung einfcer Funktionen Untersucen Sie ie folgenen zusmmengesetzen Funktion uf Differenzierbrkeit un Stetigkeit. () f( ) : für fb( ) : für

Mehr

Stabile Hochzeiten wie und warum?

Stabile Hochzeiten wie und warum? Stile Hohzeiten wie un wrum? Tg er Mthemtik HU erlin 25. pril 2009 Stefn elsner TU erlin, Mthemtik felsner@mth.tu-erlin.e Ws sin stile Hohzeiten? Gegeen: Menge von ruen, M Menge von Männern, = M. Jee Person

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

M3 Übung: Strahlensatz, Teilungsrechnung, Strecken teilen Name: 1)Stelle eine Verhältnisgleichung auf und berechne x!

M3 Übung: Strahlensatz, Teilungsrechnung, Strecken teilen Name: 1)Stelle eine Verhältnisgleichung auf und berechne x! M Üung: Strhlenstz, Teilungsrehnung, Streken teilen Nme: 1)Stelle eine Verhältnisgleihung uf und erehne! 1,5 4,0,0 2)Berehne mit einer Proportion! (Mße in m!) 6,0 6,5 1, )Stelle eine Verhältnisgleihung

Mehr

Download. Mathematik üben Klasse 8 (Un-)regelmäßige Vierecke. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 (Un-)regelmäßige Vierecke. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert ownlo Jens onr, Hry Seifert Mthemtik üen Klsse 8 (Un-)regelmäßige Vierecke ifferenzierte Mterilien für s gnze Schuljhr ownlouszug us em Originltitel: Mthemtik üen Klsse 8 (Un-)regelmäßige Vierecke ifferenzierte

Mehr

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen:

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen: Körpererehnungen Grunwissen Grunwissen Viele mthemtishe Körper lssen sih us en eknnten geometrishen Grunkörpern zusmmensetzen: us geren Prismen, Zylinern, Kegeln, Pyrmien un Kugeln. Hinsihtlih er Oerflähen-

Mehr

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2 Üungen tereometrie fünfseitige yrmide Üungen zu Frge 6: Nr : Von einer regelmäßigen fünfseitigen yrmide sind gegeen: Grundknte = 7,5 cm ntelfläce = 90 cm erecnen ie die Höe der eitenfläce und den Winkel

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter I knn I knn Mte I knn Mte lernen Mtemtik - Areitslätter M Wiederolung 1 2 4 5 8 Gnze und rtionle Zlen 1 2 4 5 6 7 8 9 47 Ds retwinklige Koordintensystem 1 2 49 Potenzen 1 2 4 5 Anwendung der Prozentrenung

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter I knn I knn Mte I knn Mte lernen Mtemtik - Areitslätter M Wiederolung 1 4 5 8 Gnze und rtionle Zlen 1 4 5 6 7 8 9 47 Ds retwinklige Koordintensystem 1 49 Potenzen 1 4 5 Anwendung der Prozentrenung 1 4

Mehr

Durch die Umformung ergibt sich eine Schaltfunktion mit einer minimalen Anzahl von Verknüpfungsoperationen, nämlich 2.

Durch die Umformung ergibt sich eine Schaltfunktion mit einer minimalen Anzahl von Verknüpfungsoperationen, nämlich 2. 2 Die shltlgerishe Umformung von Shltfunktionen in Normlform soll m Beispiel er Umformung einer Mxterm-Normlform in eine Minterm-Normlform gezeigt weren. Beispiel: y = ) ( ) ( ) ( Es ietet sih ie Anwenung

Mehr

Trigonometrie. 5) Ein 9,60 hoher Mast wirft einen 5,10 m langen Schatten. Unter welchem Winkel treffen die Sonnenstrahlen auf den Erdboden?

Trigonometrie. 5) Ein 9,60 hoher Mast wirft einen 5,10 m langen Schatten. Unter welchem Winkel treffen die Sonnenstrahlen auf den Erdboden? Relscule Scüttorf Mtemtik Klsse 10d Dezemer 006 1) Ein Deic t folgende Mße: c = 9 m = 0 m = 18 β = 8 ) Wie reit ist die Deicsole? ) Wie groß ist der trpezförmige Querscnitt des Deices? Runde uf zwei Stellen

Mehr

Shortest Path Algorithmus von Edsger Dijkstra

Shortest Path Algorithmus von Edsger Dijkstra Shortest Pth Algorithmus von Esger Dijkstr Mihel Dienert 16. Dezemer 2010 Inhltsverzeihnis 1 Shortest Pth Algorithmus 1 1.1 Grphen................................. 1 1.2 Knoten..................................

Mehr

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit Teilnehmer/Apotheke/Ort (Zus/1) Frgeogen 1 zur Areitsmppe Durh Zustzempfehlung zu mehr Kunenzufrieenheit Bitte kreuzen Sie jeweils ie rihtige(n) Antwort(en) in en Felern is n! 1. Worin esteht ie Beeutung

Mehr

Hilfsrelais HR 116. Bilfinger Mauell GmbH

Hilfsrelais HR 116. Bilfinger Mauell GmbH Bilfinger Muell GmH Hilfsrelis HR 11 Die Hilfsrelis ienen zur glvnishen Trennung, Kontktvervielfhung un Trennung zwishen Hilfs- un Steuerstromkreisen. Bilfinger Muell GmH Inhltsverzeihnis Inhlt Seite Anwenung

Mehr

Einfache Formeln als Gleichungen sehen und entsprechend umformen.

Einfache Formeln als Gleichungen sehen und entsprechend umformen. orereitung uf die (6.Juni 01) NME: 6. Sculreit: MTHEMTIK KL.: M/I. - S.1 leicungen umformen: Wgemodell und Umkeropertion. Wgemodell: Umformungregeln Durc jede ktion mu d leicgewict erlten leien! - = 8

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Mathematik in eigenen Worten

Mathematik in eigenen Worten Sieglinde Wsmier Mtemtik in eigenen Worten Lernumgeungen für die Sekundrstufe I Klett und Blmer Verlg Mtemtik in eigenen Worten Scülerinnen und Scüler screien ire Lern- und Denkwege uf : Sieglinde Wsmier

Mehr

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1 Busteine er Digitltehnik - Binäre Shlter un Gtter Kpitel 7. Dr.-Ing. Stefn Wilermnn ehrstuhl für rwre-softwre-co-design Entwurfsrum - Astrktionseenen SYSTEM-Eene + MODU-/RT-Eene (Register-Trnsfer) ogik-/gatter-eene

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Formelsammlung Mathematik 4. Klasse

Formelsammlung Mathematik 4. Klasse Formelsmmlung Mthemtik 4. Klsse Inhlt Rehtek... Qurt... llgemeines Dreiek... Rehtwinkeliges Dreiek... Gleihshenkliges Dreiek... 4 Gleihseitiges Dreiek... 4 Trpez... 5 Prllelogrmm... 5 Rute Rhomus... 6

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsmmlung Mthemtik Inhlt Mßumwnlungen... Längenmße... Flähenmße... Rum- un Hohlmße... Zeitmße... Rehtek... Qurt... llgemeines Dreiek... 4 Rehtwinkeliges Dreiek... 4 Gleihshenkliges Dreiek... 5 Gleihseitiges

Mehr

Kleine Algebra-Formelsammlung

Kleine Algebra-Formelsammlung Immnuel-Knt-Gymnsium Heiligenhus Gierhrt Kleine Alger-Formelsmmlung Mittelstufe (is Klsse 0) Drgestellt sin ie wichtigsten Fkten un Gesetze, woei iverse Ausnhmeregeln wie z.b. s Verot er Division urch

Mehr

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen DOWNLOD rigitte Penzenstler 5./6. Klsse: Multipliktion Mthetrining in 3 Kompetenzstufen rigitte Penzenstler ergeorfer Unterrihtsieen Downlouszug us em Originltitel: Mthetrining in 3 Kompetenzstufen n 1:

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prism und Pyrmide 10 C10-01 1 5 1 Körper 1 Scnittbogen 1 Körper Scnittbogen Körper Scnittbogen Körper Scnittbogen 6 Scnittbogen Scnittbogen 5 M c = + ( ) = 10 + 5 = 15 11, c c c c Individuelle Individuelle

Mehr

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart Aussihten A1 Autorin: Snj Mzurni Rektion: Rente Weer Lyout: Clui Stumpfe Stz: Regin Krwtzki, Stuttgrt Ernst Klett Sprhen GmH, Stuttgrt 2010 www.klett.e Alle Rehte vorehlten. Aussihten A1 Aussihten A1 Aufgenltt

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

Fachgebiet Rechnersysteme 2. Übung Logischer Entwurf. Technische Universität Darmstadt. 4. Aufgabe. b) Minterm-Normalform

Fachgebiet Rechnersysteme 2. Übung Logischer Entwurf. Technische Universität Darmstadt. 4. Aufgabe. b) Minterm-Normalform Fhgeiet Rehnersysteme 2. Üung Logisher Entwur Tehnishe Universität Drmstt 2. Üung Logisher Entwur 4. Auge 1 4. Auge 2. Üung Logisher Entwur 4. Auge 3 ) Minterm-Normlorm Geen sei ie ooleshe Funktion + +

Mehr

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Arbeit - nergie - eibung Die ncfolgenden Aufgben und Definitionen sind ein erster instieg in dieses Tem. Hier wird unterscieden zwiscen den Begriffen Arbeit und nergie. Verwendete ormelzeicen sind in der

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS Definition: Ktete Ktete Hypotenuse Jene beiden Seiten, die den recten Winkel bilden (,b) nennt mn Kteten, die dritte

Mehr

Musterfragen HERMES 5.1 Foundation

Musterfragen HERMES 5.1 Foundation Musterfrgen HERMES 5.1 Fountion Inhlt Seite 2 A Seite 3 Einführung Multiple-Choie-Frgen HERMES ist ein offener Stnr er shweizerishen Bunesverwltung. Die Shweizerishe Eigenossenshft, vertreten urh s Informtiksteuerungsorgn

Mehr

Grundwissen 9. Klasse G8

Grundwissen 9. Klasse G8 Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel

Mehr

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: ownlod Otto Myr Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ownloduszug us dem Originltitel: Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ieser ownlod ist ein uszug us dem Originltitel

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Pysik Department, Tecnisce Universität Müncen, PD Dr. W. Scinler Übungen zu Experimentalpysik 2 SS 13 - Lösungen zu Übungsblatt 2 1 Kapazitive Füllstansmessung Zur Messung es Füllstan eines Heizöltanks

Mehr

STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006

STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006 STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006 Die Wirtshfts- un Sozilwissenshftlihe Fkultät er Universität Bern erlässt, gestützt uf Artikel 39 Astz

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten

6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten 66 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN 6 iefenshe in ngerihteten Grphen: Zeifhe Zsmmenhngskomponenten Der Algorithms ist gnz gen ersele ie im gerihteten Fll! Ailng 1 zeigt noh einml en gerihtete Fll n

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

Dichtpflanzung von Hokkaido bringt mehr Ertrag und gleiche Lagereignung

Dichtpflanzung von Hokkaido bringt mehr Ertrag und gleiche Lagereignung Mrtin Herener; Lnwirtshftskmmer NRW; Grtenstr. 11; 50765 Köln; 0221 5340-240, mrtin.herener@lwk.nrw.e Dihtpflnzung von Hokkio ringt mehr Ertrg un gleihe Lgereignung Zusmmenfssung - Empfehlungen In einem

Mehr

Grundwissen Ebene Geometrie

Grundwissen Ebene Geometrie Micael Körner Grundwissen bene Geometrie 5.0. Klasse eredorfer Kopiervorlaen Zu diesem Material: Was ist ein Stufenwinkel? Wie findet man die Höen von reiecken eraus? Wie werden Fläceninalt und Umfan bei

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

Vierecke. 1. Parallelogramm Ein Viereck heißt Parallelogramm, wenn die Gegenseiten jeweils parallel sind.

Vierecke. 1. Parallelogramm Ein Viereck heißt Parallelogramm, wenn die Gegenseiten jeweils parallel sind. Vieeke. Pllelogmm Ein Vieek eißt Pllelogmm, wenn ie egenseiten jeweils pllel sin. D C Stz: Ein Vieek ist genu nn punktsymmetis (zum Digonlensnittpunkt), wenn es ein Pllelogmm ist. Ein Vieek ist genu nn

Mehr

Die Philosophisch-historische Fakultät der Universität Bern. erlässt

Die Philosophisch-historische Fakultät der Universität Bern. erlässt Stuienpln für s Bhelor- un Mster-Stuienprogrmm Estern Europen Stuies / Osteurop-Stuien / Étues e l Europe orientle er Universität Bern in Zusmmenreit mit er Universität Friourg vom 1. August 2009 Die Philosophish-historishe

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

Übungstest 1 RECHNEN ALTENPFLEGEHILFE GEFÖRDERT VOM BASIS 3.

Übungstest 1 RECHNEN ALTENPFLEGEHILFE GEFÖRDERT VOM BASIS 3. Üungstest 1 RECHNEN ALTENPFLEGEHILFE GEFÖRDERT VOM BASIS 3 www.tel.net 2 Inhlt Testformt tel Rehnen Bsis 3 4 Prüfungsluf un -molitäten 5 Prüfungsufgen Testteil I 7 Prüfungsufgen Testteil II 15 Lösungsshlüssel

Mehr

Diagramm 1 Diagramm 2

Diagramm 1 Diagramm 2 Zweijärige zur Prüfung der Facsculreife fürende Berufsfacscule (BFS) Matematik (9) Hauptprüfung 008 Aufgaben Aufgabe 1 A. 1. Bestimmen Sie die Gleicungen der Geraden g und.. Geben Sie die Koordinaten der

Mehr

Uponor ISI Box. schnell und sicher installieren! NEU

Uponor ISI Box. schnell und sicher installieren! NEU Uponor ISI Box scnell und sicer instllieren! NEU Die Uponor ISI Box die einfce und scnelle Instlltionslösung im Trockenu. Vorkonfektioniert und nsclussfertig efinden sic lle Komponenten sicer und geprüft

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Aktion: Der Patient führt eine Pro- bzw. Supination

Aktion: Der Patient führt eine Pro- bzw. Supination .5 Üungen mit un ohne Gerät 389 A..103 Extension es Ellenogen gelenks. Ausgngsstellung. En stellung. Anmerkung: Es ist uf einen stilen Rumpf zu hten. Neen iesen reltiv isolierten Streküungen für en M.

Mehr

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen.

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 1 as Geodreieck als Mess- und Prüfinstrument VORNSI 1. Lies die Sätze. Ordne den ildern die richtige Nummer zu. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 2 Mit der Mittellinie

Mehr

Innenraum-Lasttrennschalter H 22. Ein- oder Dreipolige Ausführung Bemessungs-Spannung 12, 25 und 38,5 kv Bemessungs-Strom 630 und 1250 A

Innenraum-Lasttrennschalter H 22. Ein- oder Dreipolige Ausführung Bemessungs-Spannung 12, 25 und 38,5 kv Bemessungs-Strom 630 und 1250 A Innenrm-Lsrennshler H 22 Ein- oer Dreiolige sührng Bemessngs-Snnng 12, 25 n 8,5 Bemessngs-Srom n 12 Inhl: DRIESCHER - Innenrm-Lsrennshler n Lsshler- Siherngs-Kominion H 22 nh EN 60265-1 n EN 62271-105

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

Zusammenfassung: Vektoren

Zusammenfassung: Vektoren LGÖ Ks M Sculjr 06/07 Zusmmenfssung: Vektoren Inltsverzeicnis Punkte im Koordintensystem Vektoren Linere ängigkeit von Vektoren 4 etrg eines Vektors 5 Sklrprodukt und ortogonle Vektoren 6 Vektorprodukt

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Definition: Eine Funktion mit der Gleichung y = c (,, c R; 0) heißt qudrtische Funktion oder Funktion. Grdes. qudrtisches Glied;...lineres Glied; c...solutes Glied Der Grph einer

Mehr

Geometrie. Inhaltsverzeichnis. 8.1 Der Satz von Ptolemäus und sein klassischer Beweis. Der Satz von Ptolemäus. 8 Der Satz von Ptolemäus

Geometrie. Inhaltsverzeichnis. 8.1 Der Satz von Ptolemäus und sein klassischer Beweis. Der Satz von Ptolemäus. 8 Der Satz von Ptolemäus Der Stz von Ptolemäus 1 Geometrie Der Stz von Ptolemäus Autor: Peter Anree Inhltsverzeihnis 8 Der Stz von Ptolemäus 1 8.1 Der Stz von Ptolemäus un sein lssisher Beweis........... 1 8.2 Verhältnis er Digonlen

Mehr

Eulersche Gerade und Feuerbachscher Kreis

Eulersche Gerade und Feuerbachscher Kreis ulersche Gerde und Feuerbchscher Kreis ns-gert Gräbe, Leipzig 6. Jnur 1999 Tripel von Gerden, wie etw die öhen, Seitenhlbierenden oder die Winkelhlbierenden eines reiecks, fsst mn unter dem Oberbegriff

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Mit Würfeln Quader bauen 14

Mit Würfeln Quader bauen 14 3 1 Quder uen Ein Spiel zu zweit Würfelt wehslungsweise mit einem Spielwürfel und fügt die gewürfelte Anzhl Holzwürfel den vorhndenen Würfeln hinzu. In jeder Spielrunde versuht ihr, us llen vorhndenen

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele:

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele: Mthemtik 7 Bruhrehnen 00 Nme: Vornme: Dtum: Lernziele: Nr. Lernziel A Ih knn ie vier Grunopertionen (Aition, Subtrktion, Multipliktion un Division) uf Aufgben mit Brühen nwenen. B Ih knn ie vier Grunopertionen

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

Kapitel 3: Deckabbildungen von Figuren - Symmetrie. 3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene

Kapitel 3: Deckabbildungen von Figuren - Symmetrie. 3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene Gruppe er Kongruenzilungen 1 Gruppe er Kongruenzilungen 2 Kpitel 3: ekilungen von Figuren - Symmetrie 3.1 ie Gruppe (K,o) ller Kongruenzilungen einer Eene K ist ie Menge ller Kongruenzilungen E E; o ist

Mehr

Demo-Text für Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes

Demo-Text für  Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes Teil 1 it Index am Ende des Textes Stand: 22. Februar 212 Datei Nr. 1111 Friedric Buckel Geometrie Winkel und Dreiecke INTERNETBIBLITHEK FÜR SCHULTHETIK www.mate-cd.de Inalt 1. Dreunen durc Winkel messen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Buchstaben schreiben lernen - Lateinische Ausgangsschrift

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Buchstaben schreiben lernen - Lateinische Ausgangsschrift Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Buchstben schreiben lernen - Lteinische Ausgngsschrift Ds komplette Mteril finden Sie hier: School-Scout.de Kirstin Jebutzke Buchstben

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn

Ausbildungsberuf KonstruktionsmechanikerIn KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Ausbildungsberuf KonstruktionsmecnikerIn Einstzgebiet/e: Metllbu Sciffbu Scweißen Projekt Gerde Pyrmide mit qudrtiscer Grundfläce Anm.: Blecstärke

Mehr

Unterteile den Streckenzug zunächst in die Einzelstrecken a, b, c, d, e.

Unterteile den Streckenzug zunächst in die Einzelstrecken a, b, c, d, e. K. D Alcmo / J. Dy: Lerninhlte selbstständig errbeiten Mthemtik 0 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth Alle Knten des Prisms sind lng. Unterteile den Streckenzug zunächst in die Einzelstrecken,

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

Grundwissen Klasse 10

Grundwissen Klasse 10 Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen

Mehr

Realschule 2012. Mathematik. www.matheverlag.com. Mathematik-Verlag

Realschule 2012. Mathematik. www.matheverlag.com. Mathematik-Verlag Relschule 01 Mthemtik wwwmtheverlgcom Mthemtik-Verlg Vorwort: Sehr geehrte Schülerinnen und Schüler, mit diesem Prüfungsheft können Sie sich gezielt und systemtisch uf die Relschulbschlussprüfung in Mthemtik

Mehr

c) Wie viele einzelne Quadratflächen besitzen alle Seiten des entstandenen Würfels zusammen?

c) Wie viele einzelne Quadratflächen besitzen alle Seiten des entstandenen Würfels zusammen? Würfelufgen Für lle Aufgen gilt: Kntenlänge der Holzwürfel = m 1. Bue einen Würfel us 8 Holzwürfeln. ) Zeihne den entstndenen Würfel: ) Wie gross ist eine Kntenlänge des entstndenen Würfels? ) Wie viele

Mehr

Dichtpflanzung von Hokkaido bringt mehr Ertrag und gleiche Lagereignung in 2011

Dichtpflanzung von Hokkaido bringt mehr Ertrag und gleiche Lagereignung in 2011 Versuhe im eutshen Grtenu 2013 Gemüseu Dihtpflnzung von Hokkio ringt mehr Ertrg un gleihe Lgereignung in 2011 Die Ergenisse kurzgefsst In einem Sortenversuh m GBZ Köln-Auweiler zu Hokkio-Küris sin rei

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2 Lneswettbewerb themtik en-württemberg 001 Rune ufgbe 1 In einem Viereck sin ie Seiten, un gleich lng. ie Seite ht ie gleiche Länge wie ie igonle. iese igonle hlbiert en Winkel. Wie groß können ie Innenwinkel

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

Millenium 3 Kommunikationsschnittstelle M3MOD Benutzerhandbuch der Betriebsunterlagen 04/2006

Millenium 3 Kommunikationsschnittstelle M3MOD Benutzerhandbuch der Betriebsunterlagen 04/2006 Millenium 3 Kommuniktionsshnittstelle M3MOD Benutzerhnuh er Betriesunterlgen 04/2006 160633103 Üerlik Hilfe zur Verwenung er Betriesunterlgen Einleitung Die Betriesunterlgen sin eine von er Progrmmierumgeung

Mehr

KAPITEL 1 EINFÜHRUNG: STABILE MATCHINGS

KAPITEL 1 EINFÜHRUNG: STABILE MATCHINGS KPITEL 1 EINFÜHRUNG: STILE MTHINGS F. VLLENTIN,. GUNERT In iesem Kpitel weren wir ein erstes konkretes Prolem es Opertions Reserh kennenlernen. Es hnelt sih um s Prolem es stilen Mthings, ein wihtiges

Mehr

BS1.at. Brandschutz mit Knauf. Knauf Trockenbau-Systeme und Systemprodukte mit Europäischer Klassifizierung und nationalen Festlegungen

BS1.at. Brandschutz mit Knauf. Knauf Trockenbau-Systeme und Systemprodukte mit Europäischer Klassifizierung und nationalen Festlegungen BS1.t Tecnisce Broscüre 07/2014 Brnscutz mit Knuf Knuf Trockenu-Systeme un Systemproukte mit Europäiscer Klssifizierung un ntionlen Festlegungen ktulisierte Auflge 2014 Vorwort Hinweise zur Neuuflge 2014

Mehr

Methodische Hinweise und Anregungen zur Ergänzung bzw. Erweiterung der Power-Point-Präsentation

Methodische Hinweise und Anregungen zur Ergänzung bzw. Erweiterung der Power-Point-Präsentation Methodische Hinweise und nregungen zur rgänzung bzw. rweiterung der Power-Point-Präsentation ktivationen, die während der Präsentation angeboten werden n den nachfolgend beschriebenen Stellen wird der

Mehr

Maria-Theresia-Gymnasium München Grundwissen Mathematik 5. Klasse. Wendelstein. Osser. Wank. Nebelhorn

Maria-Theresia-Gymnasium München Grundwissen Mathematik 5. Klasse. Wendelstein. Osser. Wank. Nebelhorn Mri-Teresi-Gymnsium Müncen Grundwissen Mtemtik. Klsse 1. Ntürlice Zlen Dezimlsystem Mn nennt die Zlen, die mn zum Zälen verwendet, ntürlice Zlen. Wir recnen im Dezimlsystem. Dei enutzen wir die zen Ziffern

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003 Personl und Finnzen der öffentlich estimmten Fonds, Einrichtungen, Betriee und Unternehmen (FEU) in privter Rechtsform im Jhr 003 Dipl.-Volkswirt Peter Emmerich A Mitte der 980er-Jhre ist eine Zunhme von

Mehr

Aufgabe 1: Die Pyramiden von Gizeh

Aufgabe 1: Die Pyramiden von Gizeh Aufge : Die Pyrmiden von ize Nc der so gennnten Früzeit (850-600 v. Cr.) setzte gleic ls erster kultureller Höepunkt der Bu der großen Pyrmiden, welces rmäler der ltägyptiscen Könige (Pronen) sind, ein.

Mehr