1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest."

Transkript

1 Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden Sie dazu den Datensatz Arbeitsmarktdaten.sav. Bitte bearbeiten Sie Aufgaben 1-5 in Gruppen von bis zu 4 Studierenden (vergessen Sie nicht die Namen!) und reichen Sie die Lösungen VOR der 3. PC Übung ein. 1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. 1seitiger Hypothesentest: 2seitiger Hypothesentest: 2. Was versteht man unter einem Konfidenzinterval? Wie wird es gebildet und was sagt es aus? 3. Überprüfen Sie anhand des 1-Stichproben t-tests, ob der Mittelwert der Variable befristarbeit (1 falls jemand eine befristete Arbeitsstelle über eine italienische Arbeitsagentur erhalten hat und 0 falls nicht) signifikant verschieden von 0.5 ist. Analyze > Compare Means > One Sample T Test > Test Variable(s): befristarbeit > Test Value: 0.5 > OK

2 befristarbei t One-Sample Statistics N Mean Std. Deviation Std. Error Mean befristarbei t One-Sample Test Test Value = % Confidence Interval of the Mean Difference t df Sig. (2-tailed) Difference Lower Upper t Statistik = (X μ) se(x ) = wobei se(x ) = s x N = Die Irrtumswahrscheinlichkeit, mit der wir die Nullhypothese ablehnen, ist sehr klein (0.000). Wir verwerfen die Nullhypothese, dass der Mittelwert gleich 0.5 ist, auf dem 5%- und sogar auf dem 1%- Niveau. 4. Überprüfen Sie anhand des 2-Stichproben t-tests, ob sich das mittlere Gehalt (siehe Variable Gehalt, welche zeitlich später gemessen wurde als befristarbeit ) in den Gruppen mit befristarbeit =1 und befristarbeit =0 signifikant unterscheidet. Kommentieren Sie auch, ob Gehalt eine signifikant unterschiedliche Varianz in beiden Gruppen aufweist und was dies für den 2-Stichproben t-test bedeutet. Analyze > Compare Means > Independent Samples T Test > Test Variable(s): Gehalt > Grouping Variable: befristarbeit (1 0) > OK Group Statistics befristarbeit N Mean Std. Deviation Std. Error Mean Gehalt

3 Die Variable Gehalt weist eine höhere Standardabweichung und Varianz in der Gruppe mit befristarbeit=0 als mit befristarbeit=1 auf. Die Unterschiede in der Varianz sind statistisch signifikant (siehe Levene s Test). Deshalb ist der 2-Stichproben t-test unter der Annahme, dass die Varianzen NICHT identisch sind, für den Mittelwertvergleich zu verwenden. Laut 2-Stichproben t-test sind auch die Mittelwerte von Gehalt signifikant unterschiedlich in beiden Gruppen (sehr kleiner p- Wert von 0.000). Die Schlussfolgerungen aus dem t-test hängen aber nicht davon ab, ob gleiche Varianzen (1. Zeile) oder unterschiedliche Varianzen (2. Zeile) angenommen werden: Die Nullhypothese wird jeweils klar verworfen. 5. Regressieren Sie Gehalt auf befristarbeit und vergleichen Sie die Ergebnisse (insbesondere die t-statistiken und p-werte) mit jenen von Aufgabe 4. Analyze > Regression > Linear > Dependent: Gehalt > Independent(s): befristarbeit > ok Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate a a. Predictors: (Constant), befristarbeit Coefficients a Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig. 1 (Constant) befristarbeit a. Dependent Variable: Gehalt Der β-koeffizient gibt die Differenz zwischen den Gehaltsmittelwerten der Gruppen befristarbeit=0 und befristarbeit=1 in der Stichprobe an. Homoskedastizität ist eine der Regressionsannahmen, deshalb sind die t-statistiken der Regression und des t-tests mit gleicher Varianz identisch. 6. Überprüfen Sie, ob die Varianz der Variablen Bildung signifikant unterschiedlich ist in den Gruppen mit Training =1 und Training =0. Annahmen: zwei Variablen X und Y sind unabhängig und normalverteilt. Wir testen die Nullhypothese H 0 : σ X 2 = σ Y 2 (gleiche Varianzen) gegen die Alternativhypothese H 1 : σ X 2 σ Y 2 (unterschiedliche Varianzen). Die Teststatistik ist der Quotient der beiden Stichprobenvarianzen t = s X 2 s Y 2

4 Unter der Nullhypothese ist die Statistik F-verteilt mit Freiheitsgraden n 1 1 und n 2 1. Wir verwerfen die Nullhypothese, falls der absolute Wert der Statistik ausreichend gross ist oder der p- Wert ausreichend niedrig ist. Analyze > Compare Means > One Way Anova > Dependent List: Bildung > Factor: Training (1 0) > Options: Homogeneity of Variance test > Continue > Ok Bildung Levene Test of Homogeneity of Variances Statistic df1 df2 Sig ANOVA Bildung Sum of Squares df Mean Square F Sig. Between Groups Within Groups Total Die Varianz in den beiden Gruppen ist signifikant unterschiedlich auf dem 1%-Niveau. 7. Zeigen Sie die Verteilung von Gehalt in den Gruppen mit befristarbeit =1 und befristarbeit =0 grafisch. Besteht Ähnlichkeit zur Normalverteilung? Data > Select cases > If condition is satisfied > befristarbeit = 0 > continue > ok Analyze > Descriptive Statistics > Frequencies > Variable(s): Gehalt > Charts: Histograms > show normal curve on histogram > continue > ok Data > Select cases > If condition is satisfied > befristarbeit = 1 > continue > ok Analyze > Descriptive Statistics > Frequencies > Variable(s): Gehalt > Charts: Histograms > show normal curve on histogram > continue > ok befristarbeit=0

5 befristarbeit=1 Wie erwartet gibt es keine negativen Beobachtungen für Gehalt. In beiden Gruppen befinden sich aber viele Beobachtungen mit einem Gehalt von 0. Es besteht keine Ähnlichkeit mit der Normalverteilung. 8. Verwenden Sie einen Q-Q-Plot um die Ähnlichkeit der Verteilung von Gehalt in den Gruppen mit befristarbeit =1 und befristarbeit =0 zur Normalverteilung zu überprüfen. Der Quantile-Quantile Plot vergleicht die beobachteten Quantile einer Variablen in der Stichprobe mit den erwarteten Quantilen in der Referenzverteilung (in unserem Fall die Normalverteilung).

6 Ein Quantil ist ein Lagemass. So ist z.b. das 25%-Quantil jener Wert einer Variablen, bei dem der Anteil der Beobachtungen, die kleiner oder höchstens so gross sind wie dieser Wert sind, gleich 25% ist. Der Median ist z.b. das 50%-Quantil. Im Q-Q Plot wird eine 45-Grad-Gerade zum Vergleich eingezeichnet. Eine gerade Linie gibt das Szenario wieder, in dem die Verteilung der Variablen in der Stichprobe und die Normalverteilung genau übereinstimmen. Systematische Abweichungen von der Geraden weisen hingegen auf Abweichungen von der Normalverteilung hin. Zuerst wählen wir alle Fälle mit befristarbeit =0 oder mit befristarbeit =1 aus. Dann erstellen wir den Q-Q Plot. Data > Select cases > If condition is satisfied > befristarbeit = 0 > continue > ok Analyze > Descriptive Statistics > Q-Q-Plots>Variables: Gehalt > OK Data > Select cases > If condition is satisfied > befristarbeit = 1 > continue > ok Analyze > Descriptive Statistics > Q-Q-Plots>Variables: Gehalt > OK Data > Select cases > All cases > ok befristarbeit=0 befristarbeit=1

7 Sehr wenige Beobachtungen liegen auf der Geraden. Es gibt viele systematische Abweichungen. Die Stichprobenverteilung von Gehalt stimmt in beiden Gruppen nicht mit der Normalverteilung überein. 9. Verwenden Sie den Mann Whitney U-Test um zu überprüfen, ob sich das mittlere Gehalt (siehe Variable Gehalt, welche zeitlich später gemessen wurde als befristarbeit ) in den Gruppen mit befristarbeit =1 und befristarbeit =0 signifikant unterscheidet. Inwiefern unterscheidet sich dieser Test vom t-test? Der Mann Whitney U-Test ist ein nichtparametrischer Test, der keine Normalverteilung unterstellt. Analyze > Nonparametric Tests > Independent Samples > Fields > Test Fields: Gehalt > Groups: befristarbeit > Settings > Customize Tests > Mann Whitney U (2 samples) > run Die Gehaltsmittelwerte in den beiden Gruppen unterscheiden sich signifikant auf dem 1%-Niveau von einander.

8 10. Verwenden Sie den Kolmogorov Smirnov Test um zu überprüfen, ob sich die Verteilungen von (a) Gehalt und (b) Bildung in den Gruppen mit befristarbeit =1 und befristarbeit =0 signifikant voneinander unterscheiden. Der Kolmogorov-Smirnov (KS) Test ist ein nichtparametrischer Test der überprüft, ob die Stichprobenverteilungen einer Variablen in zwei Gruppen signifikant unterschiedlich sind. Zunächst werden die Differenzen zwischen den beiden Stichprobenverteilungen bestimmt. Die Teststatistik entspricht dann dem maximalen absoluten Abstand zwischen den Stichprobenverteilungen. Die Nullhypothese der Gleichverteilung wird für ausreichend große Werte der Teststatistik bzw. für niedrige p-werte abgelehnt. Analyze > Nonparametric Tests > Independent Samples > Fields > Test Fields: Gehalt, Bildung > Groups: befristarbeit > Settings > Customize Tests > Kolmogorov-Smirnov (2 samples) > run Für das Gehalt lehnen wir die Nullhypothese auf dem 1%-Signifikanzniveau ab. Die Verteilung ist in den beiden Gruppen unterschiedlich. Bei der Variablen Bildung können wir die Nullhypothese aber nicht einmal auf dem 10%-Signifikanzniveau verwerfen, weil die Irrtumswahrscheinlichkeit (also 16,3%) beträgt. 11. Verwenden Sie die einfaktorielle Varianzanalyse, um zu überprüfen, (a) ob sich Gehalt für verschiedene Ausprägungen von Bildung signifikant unterscheidet und (b) falls ja, zwischen welchen Ausprägungen von Bildung signifikante Unterschiede bestehen (verwenden Sie für letztere Analyse die Methode Tamhane s T2 für ungleiche Varianzen für verschiedene Ausprägungen von Bildung ). Analyze > Compare Means > One Way Anova > Dependent List: Gehalt > Factor: Bildung > Post Hoc: Tamhane s T2 > continue > ok Gehalt ANOVA Sum of Squares df Mean Square F Sig. Between Groups

9 Within Groups Total Dependent Variable: Gehalt Tamhane Multiple Comparisons Mean Difference 95% Confidence Interval (I) Bildung (J) Bildung (I-J) Std. Error Sig. Lower Bound Upper Bound * * * * * * *. The mean difference is significant at the 0.05 level. Die erste Tabelle zeigt das Ergebnis für den Test, dass sich der Mittelwert von Gehalt über verschiedene Bildungsgruppen unterscheidet. Die Nullhypothese (keine Unterschiede im mittleren Gehalt über verschiedene Bildungsgruppen) wird verworfen. Die zweite Tabelle vergleicht das mittlere Gehalt zwischen den Bildungsgruppen paarweise, d.h. der Mittelwert des Bildungsniveaus in Spalte (I) wird mit jenem des Bildungsniveaus in Spalte (J) verglichen. Für jeden paarweisen Vergleich wird die Nullhypothese (kein Unterschied im Mittelwert von Gehalt zwischen 2 Gruppen) wiederum verworfen. 12. Generieren Sie neue Variablen für unterschiedliche Ausprägungen von Bildung : geringbild (geringe Bildung; soll 1 sein falls Bildung =0 und 0 sein falls Bildung =1 oder 2), mittlerebild (mittlere Bildung; soll 1 sein falls Bildung =1 und 0 sein falls Bildung =0 oder 2), hohebild (hohe Bildung; soll 1 sein falls Bildung =2 und 0 sein falls Bildung =0 oder 1) Transform > Compute variable > Target Variable: geringbild > Numeric expression: Bildung=0 > ok Transform > Compute variable > Target Variable: mittlerebild > Numeric expression: Bildung=1 > ok Transform > Compute variable > Target Variable: hohebild > Numeric expression: Bildung=2 > ok 13. Regressieren Sie Gehalt auf mittlerebild und hohebild um zu testen, ob sich das Gehalt für verschiedene Bildungsniveaus signifikant unterscheidet. Analyze > Regression > Linear > Dependent: Gehalt > Independent(s): mittlerebild, hohebild > ok Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate a

10 a. Predictors: (Constant), hohebild, mittlerebild Coefficients a Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) mittlerebild hohebild a. Dependent Variable: Gehalt Das Gehalt steigt mit der Bildung. Eine Person mit niedriger Bildung (die Referenzgruppe) verdient im Durchschnitt 195 Euro, eine Person mit mittlerer Bildung verdient im Schnitt ca. 117 Euro mehr und eine Person mit höherer Bildung verdient ca. 401 Euro mehr als die Referenzgruppe. Je mehr Zeit man in Bildung investiert, desto höher ist das erwartete Gehalt. 14. Regressieren Sie Gehalt auf geringbild und mittlerebild um zu testen, ob sich das Gehalt für verschiedene Bildungsniveaus signifikant unterscheidet. Inwiefern unterscheiden sich die Ergebnisse von jenen in Aufgabe 11 bzw. stimmen mit jenen überein? Analyze > Regression > Linear > Dependent: Gehalt > Independent(s): geringbild, mittlerebild > ok Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate a a. Predictors: (Constant), mittlerebild, geringbild Coefficients a Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) geringbild mittlerebild a. Dependent Variable: Gehalt Die Individuen mit höherer Bildung sind die Referenzgruppe (Constant). Die β-koeffizienten und die mittlere Differenzen stimmen mit Aufgabe 11 überein. Da sich die Referenzgruppe geändert hat, sind die Bildungskoeffizienten im Gegensatz zu Aufgabe 13 negativ. Dennoch lassen sich sowohl in

11 Aufgabe 14 als auch Aufgabe 13 die Mittelwerte von Gehalt für die einzelnen Gruppen aus den Koeffizienten berechnen: hohebild: 596= ; geringbild: =195; mittlerebild: =312= Warum können Sie Gehalt nicht gleichzeitig (also in der selben Regression) auf geringbild, mittlerebild und hohebild regressieren? Aufgrund von perfekter Multikollinearität können wir nicht alle drei Bildungsvariablen gleichzeitig als Regressoren verwenden, weil jede Bildungsvariable eine lineare Kombination von den anderen beiden Bildungsvariablen ist. Zum Beispiel: falls man über keine höhere oder mittlere Bildung verfügt ( mittlerebild =0 und hohebild =0), so ist das Bildungsniveau zwingenderweise gering ( geringbild =1). 16. Regressieren Sie Gehalt auf geringbild, mittlerebild, Training und befristarbeit und testen Sie anhand des F-tests, ob die Koeffizienten aller Variablen gemeinsam signifikant verschieden von Null sind. Zeigen Sie auch für jeden Koeffizienten das jeweilige 95% Konfidenzintervall. Mit dem F-Test untersuchen wir die gemeinsame Signifikanz der Regressionskoeffizienten der erklärenden Variablen. Der F-Test vergleicht das nichtrestringierte und das restringierte Modell, wobei das nichtrestringierte Modell eine Erweiterung des restringierten Modells ist. Restringiertes Modell: y = β 0 + u Nichtrestringiertes Modell: y = β 0 + β 1 x 1 + β 2 x β k x k + u. Die F-Statistik entspricht dem prozentualen Anstieg des unerklärten Teils, gewichtet mit den Freiheitsgraden. Unter der Nullhypothese erklärt das nichtrestringierte Modell die abhängige Variable nicht besser als das restringierte Modell. Die Nullhypothese wird für ausreichend große Werte der Teststatistik bzw. für niedrige p-werte abgelehnt, d.h. mindestens ein Koeffizient der Regressoren ist (ausreichend) verschieden von Null. Analyze > Regression > Linear > Dependent: Gehalt > Independent(s): geringbild, mittlerebild, Training, befristarbeit > Statistics: Confidence Intervals > continue > ok Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate a a. Predictors: (Constant), befristarbeit, Training, geringbild, mittlerebild ANOVA a Model Sum of Squares df Mean Square F Sig. 1 Regression b

12 Residual Total a. Dependent Variable: Gehalt b. Predictors: (Constant), befristarbeit, Training, geringbild, mittlerebild Coefficients a Unstandardized Coefficients Standardized Coefficients 95.0% Confidence Interval for B Model B Std. Error Beta t Sig. Lower Bound Upper Bound 1 (Constant) geringbild mittlerebild Training befristarbeit a. Dependent Variable: Gehalt Der F-Test verwirft die Nullhypothese dass die Koeffizienten aller Variablen gemeinsam Null sind auf dem 1%-Niveau (siehe Tabelle ANOVA : 0.000). Somit nehmen wir die Alternativhypothese an, dass mindestens ein Koeffizient verschieden von Null ist. Wenn wir die Koeffizienten einzeln testen (Tabelle Coefficients ), sehen wir, dass alle Koeffizienten ausser jener von Training signifikant auf dem 1%-Niveau sind. Der Koeffizient von Training ist hingegen nicht einmal auf dem 10%-Niveau signifikant (Irrtumswahrscheinlichkeit bei Verwerfung der Nullhypothese ist oder 39,3 %).

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Crashkurs Einführung Biostatistik

Crashkurs Einführung Biostatistik Crashkurs Einführung Biostatistik Prof. Burkhardt Seifert Abteilung Biostatistik, ISPM Universität Zürich Deskriptive Statistik Wahrscheinlichkeitsrechnung, ersuchsplanung Statistische Inferenz Prinzip

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

8. Vergleich von zwei Gruppen

8. Vergleich von zwei Gruppen 8. Vergleich von zwei Gruppen Unabhängige und abhängige Gruppen Parametrische/Nichtparametrische Vergl. Für diskrete/qualitative Variablen 10 Binomialtest 10 Chiquadrat-Test 10 Fishers exakter Test Für

Mehr

Einflussfaktoren auf die Macht der Hypothesenprüfung

Einflussfaktoren auf die Macht der Hypothesenprüfung Einflussfaktoren auf die Macht der Hypothesenprüfung Einflussfaktoren auf die Macht Die Jagd nach den Sternen In der Wissenschaft gilt der Blick oft nur den Sternen * p

Mehr

1. Überprüfung der Reliabilität der Sozialen-Erwünschtheitsskala (SES-17 Skala)

1. Überprüfung der Reliabilität der Sozialen-Erwünschtheitsskala (SES-17 Skala) Ausführliche Lösung zur Übung 1. Überprüfung der Reliabilität der Sozialen-Erwünschtheitsskala (SES-17 Skala) Auf Seite 23 des Fragebogens (SES) befinden sich Items einer Sozialen-Erwünschtheitsskala (Variablen

Mehr

Eine Einführung in R: Varianzanalyse

Eine Einführung in R: Varianzanalyse Eine Einführung in R: Varianzanalyse Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2011 Bernd Klaus, Verena Zuber Das

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Nicht-parametrische Statistik Eine kleine Einführung

Nicht-parametrische Statistik Eine kleine Einführung Nicht-parametrische Statistik Eine kleine Einführung Überblick Anwendung nicht-parametrischer Statistik Behandelte Tests Mann-Whitney U Test Kolmogorov-Smirnov Test Wilcoxon Test Binomialtest Chi-squared

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Inferenzstatistik Vergleich mehrerer Stichproben - Varianzanalyse

Inferenzstatistik Vergleich mehrerer Stichproben - Varianzanalyse Vergleich mehrerer Stichproben - Varianzanalyse Zweifache VA mit hierarchischen Faktoren Voraussetzungen zwei unabhängige Variablen (Faktoren), die unabhängige Gruppen definiert zweite Faktor ist innerhalb

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Statistischer Rückschluss und Testen von Hypothesen

Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss Lerne von der Stichprobe über Verhältnisse in der Grundgesamtheit Grundgesamtheit Statistischer Rückschluss lerne aus Analyse

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Testen von Hypothesen:

Testen von Hypothesen: Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

UE Angewandte Statistik Termin 4 Gruppenvergleichstests

UE Angewandte Statistik Termin 4 Gruppenvergleichstests UE Angewandte Statistik Termin 4 Gruppenvergleichstests Martina Koller Institut für Pflegewissenschaft SoSe 2015 INHALT 1 Allgemeiner Überblick... 1 2 Normalverteilung... 2 2.1 Explorative Datenanalyse...

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

ANalysis Of VAriance (ANOVA) 1/2

ANalysis Of VAriance (ANOVA) 1/2 ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?

Mehr

Kapitel 3. Inferenz bei OLS-Schätzung I (small sample, unter GM1,..., GM6)

Kapitel 3. Inferenz bei OLS-Schätzung I (small sample, unter GM1,..., GM6) 8 SMALL SAMPLE INFERENZ DER OLS-SCHÄTZUNG Damit wir die Verteilung von t (und anderen Teststatistiken) exakt angeben können, benötigen wir Verteilungsannahmen über die Störterme; Kapitel 3 Inferenz bei

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Korrelation, Regression und Signifikanz

Korrelation, Regression und Signifikanz Professur Forschungsmethodik und Evaluation in der Psychologie Übung Methodenlehre I, und Daten einlesen in SPSS Datei Textdaten lesen... https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://d15cw65ipcts

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Metrische und kategoriale Merkmale

Metrische und kategoriale Merkmale Kapitel 6 Metrische und kategoriale Merkmale 6.1 Wie kann man metrische und kategoriale Merkmale numerisch beschreiben? Typischerweise will man geeignete Maßzahlen (beispielsweise Lage- oder Streuungsmaße)

Mehr

PROC NPAR1WAY. zum Durchführen des U-Tests für zwei unverbundene Stichproben (für quantitative nicht-normalverteilte Merkmale)

PROC NPAR1WAY. zum Durchführen des U-Tests für zwei unverbundene Stichproben (für quantitative nicht-normalverteilte Merkmale) PROC NPAR1WAY zum Durchführen des U-Tests für zwei unverbundene Stichproben (für quantitative nicht-normalverteilte Merkmale) Allgemeine Form: PROC NPAR1WAY DATA=name Optionen ; VAR variablenliste ; CLASS

Mehr

Versuchsplanung SoSe 2015 R - Lösung zu Übung 1 am 24.04.2015 Autor: Ludwig Bothmann

Versuchsplanung SoSe 2015 R - Lösung zu Übung 1 am 24.04.2015 Autor: Ludwig Bothmann Versuchsplanung SoSe 2015 R - Lösung zu Übung 1 am 24.04.2015 Autor: Ludwig Bothmann Contents Aufgabe 1 1 b) Schätzer................................................. 3 c) Residuenquadratsummen........................................

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2010 1 Tests für Erwartungswerte Teststatistik Gauß-Test Zusammenhang zu Konfidenzintervallen t-test

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Teil VII Hypothesentests für eine Stichprobe

Teil VII Hypothesentests für eine Stichprobe Woche 7: Hypothesentests für eine Stichprobe Teil VII Hypothesentests für eine Stichprobe WBL 15/17, 15.06.2015 Alain Hauser Berner Fachhochschule, Technik und Informatik Berner Fachhochschule

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Multiple Regression Mais-NP Zweidimensionale lineare Regression Data Display Dreidimensionale lineare Regression Multiple Regression

Multiple Regression Mais-NP Zweidimensionale lineare Regression Data Display Dreidimensionale lineare Regression Multiple Regression Multiple Regression! Zweidimensionale lineare Regression Modell Bestimmung der Regressionsebene Multiples Bestimmtheitsmaß Test des Bestimmtheitsmaßes Vertrauensintervalle für die Koeffizienten Test des

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Lineare Modelle in R: Einweg-Varianzanalyse

Lineare Modelle in R: Einweg-Varianzanalyse Lineare Modelle in R: Einweg-Varianzanalyse Achim Zeileis 2009-02-20 1 Datenaufbereitung Wie schon in der Vorlesung wollen wir hier zur Illustration der Einweg-Analyse die logarithmierten Ausgaben der

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 9

Übung zur Vorlesung Statistik I WS Übungsblatt 9 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 9 17. Dezember 2012 Aufgabe 26 (4 Punkte): In einer Studie mit n = 10 Patienten soll die Wirksamkeit eines Medikaments gegen Bluthochdruck geprüft

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Einführung in die Varianzanalyse mit SPSS

Einführung in die Varianzanalyse mit SPSS Einführung in die Varianzanalyse mit SPSS SPSS-Benutzertreffen am URZ Carina Ortseifen 6. Mai 00 Inhalt. Varianzanalyse. Prozedur ONEWAY. Vergleich von k Gruppen 4. Multiple Vergleiche 5. Modellvoraussetzungen

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette Ruhr-Universität Bochum 30. März 2011 1 / 46 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30 10.00

Mehr

Tests einzelner linearer Hypothesen I

Tests einzelner linearer Hypothesen I 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen

Mehr

Mikro-Ökonometrie: Small Sample Inferenz mit OLS

Mikro-Ökonometrie: Small Sample Inferenz mit OLS Mikro-Ökonometrie: Small Sample Inferenz mit OLS 1. November 014 Mikro-Ökonometrie: Small Sample Inferenz mit OLS Folie Zusammenfassung wichtiger Ergebnisse des letzten Kapitels (I) Unter den ersten vier

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Lösung zu Kapitel 11: Beispiel 1

Lösung zu Kapitel 11: Beispiel 1 Lösung zu Kapitel 11: Beispiel 1 Eine Untersuchung bei 253 Personen zur Kundenzufriedenheit mit einer Einzelhandelskette im Südosten der USA enthält Variablen mit sozialstatistischen Daten der befragten

Mehr

8. G*Power. power3/ 8. Stichprobenumfang, Effekt- und Teststärke

8. G*Power.  power3/ 8. Stichprobenumfang, Effekt- und Teststärke 8. G*Power http://www.psycho.uniduesseldorf.de/abteilungen/aap/g power3/ 8. Stichprobenumfang, Effekt- und Teststärke 8. Stichprobenumfangsplanung, Effektstärken und Teststärkenberechnung mit G*Power 3.0

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) 8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer

Mehr

ANalysis Of VAriance (ANOVA) 2/2

ANalysis Of VAriance (ANOVA) 2/2 ANalysis Of VAriance (ANOVA) 2/2 Markus Kalisch 22.10.2014 1 Wdh: ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor X). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik Name, Vorname Matrikelnummer Teilklausur des Moduls 32741 Kurs 42221: Vertiefung der Statistik Datum Termin: 21. März 2014, 14.00-16.00 Uhr Prüfer: Univ.-Prof. Dr. H. Singer Vertiefung der Statistik 21.3.2014

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Probleme bei kleinen Stichprobenumfängen und t-verteilung

Probleme bei kleinen Stichprobenumfängen und t-verteilung Probleme bei kleinen Stichprobenumfängen und t-verteilung Fassen wir zusammen: Wir sind bisher von der Frage ausgegangen, mit welcher Wahrscheinlichkeit der Mittelwert einer empirischen Stichprobe vom

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Ferienkurse Mathematik Sommersemester 2009

Ferienkurse Mathematik Sommersemester 2009 Ferienkurse Mathematik Sommersemester 2009 Statistik: Grundlagen 1.Aufgabenblatt mit praktischen R-Aufgaben Aufgabe 1 Lesen Sie den Datensatz kid.weights aus dem Paket UsingR ein und lassen sie die Hilfeseite

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

4 Testen von Hypothesen

4 Testen von Hypothesen 4 Testen von Hypothesen Oft müssen zweiwertige Entscheidungen ( Ja oder Nein ) gefällt werden. Denken wir an die elektronisch gesicherten Waren, wo am Ausgang eines Geschäftes durch eine Maschine geprüft

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 19. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 40 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 2 Ökonometrie I Michael Hauser 2 / 40 Inhalt ANOVA, analysis of variance korrigiertes R 2, R 2 F-Test F-Test bei linearen Restriktionen Erwartungstreue,

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Beipiele zum Üben und Wiederholen Wirtschaftsstatistik 2 (Kurs 3) Lösungen

Beipiele zum Üben und Wiederholen Wirtschaftsstatistik 2 (Kurs 3) Lösungen Beipiele zum Üben und Wiederholen Wirtschaftsstatistik 2 (Kurs 3) Lösungen 1.1 (Das Beispiel 1.1 entspricht dem Beispiel 7.1 aus dem Buch Brannath/Futschik/Krall) a) Streudiagramm mit Regressionsgerade.

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr