Kleintrafo und LEM-Wandler

Größe: px
Ab Seite anzeigen:

Download "Kleintrafo und LEM-Wandler"

Transkript

1 Kleintrafo und LEM-Wandler Im ersten Teil der Uebung wird das Ersatzschaltbild eines Kleintrafos studiert und es werden die entsprechenden Parameter ermittelt. Der zweite Teil ist dem LEM-Wandlers gewidmet. Mit dem LEM-Wandler können Ströme (DC bis ca. 100 khz) potentialfrei gemessen werden. Ein Hall-Sensors spielt dabei eine wesentliche Rolle. 1 Trafos 1.1 Trafos kleiner Leistung Der etztransformator hat die Aufgabe, die relativ hohe etzwechselspannung in einen Bereich von einigen Volt bis einige zehn Volt zu transformieren, um elektronische Schaltungen zu versorgen. Die Anschlüsse auf der Sekundärseite können wir, wie in der Elektrotechnik üblich, als Ersatzspannungsquelle betrachten: Eine Quelle mit Innenwiderstand genügt, um das Verhalten eines Kleintrafos zu beschreiben. Im Innenwiderstand sind die Trafoverluste, Wicklungswiderstände, etc. zusammengefasst. Die Quellenspannung ergibt sich aus der etzspannung und dem Wicklungsverhältnis. Der Trafolieferant liefert normalerweise diese Angaben nicht in der oben erwähnten Form. eben den mechanischen Angaben, dem Temperaturbereich und der Prüfspannung sind die folgenden Angaben üblich: P : ennleistung auf der Sekundärseite bei ennlast und ennprimärspannung U : Effektivwert der Sekundärspannung bei ennlast und ennprimärspannung U S0 : Leerlaufsekundärspannung f v : Verhältnis zwischen der Leerlaufsekundärspannung zur Sekundärspannung bei ennbelastung und ennspannung auf der Primärseite f V = U so / U Die folgenden Werte wurden einem Katalog entnommen und sollen als Beispiel dienen: Blechschnitt s/h ennleistung P Leerlauf-spannung U SO Wirkungsgrad η 1/f V fv=u S/U EI 30/ VA U + 40% 55% 1.4 EI 38/ VA U + 5% 60% 1.5 EI 48/ VA U + 15% 70% 1.15 EI 54/ VA U + 15% 70% 1.15 EI 60/1 16 VA U + 1% 74% 1.1 P Ri max Laborübung Seite 1

2 Aus den obigen Tabellenwerten können wir die Elemente der Ersatzspannungsquelle bestimmen. Wie schon erwähnt, denkt man sich im Innenwiderstand alle Verluste zusammengefasst. In ihm wird also folglich auch die Verlustleistung P Ri max 1 vernichtet. Die Verlustleistung ist für die Erwärmung des Trafos verantwortlich (genauer für die Temperaturerhöhung gegenüber der Umgebungstemperatur). Entscheidend ist aber nicht die Temperaturerhöhung sondern die maximale Wicklungstemperatur, weil die Lackisolation der Wicklungsdrähte oberhalb dieser Temperatur zerstört wird. Für die üblichen Kunstharzlakisolationen liegt die Grenztemperatur bei ca. 10 C. Übung: Ergänzen Sie in der obigen Tabelle die Werte bei P Ri max. P Ri max P (f v -1) 1. Transformatoren grösserer Leistung (S > 0 VA) Damit die Berechnungen einfacher werden, werden die Elemente der Primärseite mit dem Üebersetzungsverhältnis ü = 1 / U P / U So auf die Sekundärseite umgerechnet. Dies führt zu folgendem Ersatzschaltbild: Einfaches Trafosymbol Ersatzschaltbild mit R' Cu1 = R Cu1 /ü σ 1 L' 1 = σ 1 L 1 /ü k = (1-σ 1 )(1-σ ) (1 -σ) σ 1 L 1 und σ L werden als Streuinduktivitäten bezeichnet. 1 Bei nicht sinusförmiger Belastung (z.b. bei etzgleichrichtern) darf IEFF. R i den Wert P Ri max nicht überschreiten. Laborübung Seite

3 1.3 Bestimmen der Trafoparameter Die Grössen U 1, U und P (resp. S ) sind normalerweise gegeben oder sind einfach zu ermitteln. Beachten Sie, dass mit der ennleistung P resp. S die abgegebene Leistung gemeint ist. 1. Die Kupferwiderstände R Cu1 und R Cu werden am einfachsten mit einem Ohmmeter resp. aus einer DC-Messung bestimmt.. Die Primär- und Sekundärinduktivitäten L 1 und L können mit einem Induktivitätsmessgerät bestimmt werden. Es gibt Messgeräte, die auch den Seriewiderstand zur Induktivität messen können. Der gemessene Seriewiderstand müsste mit den unter Punkt 1 bestimmten Werten übereinstimmen. L 1 und L setzen sich wie folgt zusammen: L 1 = σ 1 L 1 + (1-σ 1 )L 1 dito für L Der Kopplungsfaktor k = (1 - σ) mit σ σ 1 σ ist nicht immer einfach zu bestimmen. Mit dem sogenannten Kurzschlussversuch kann die Summe der beiden Streuinduktivitäten gemessen werden. Dabei ist wie folgt vorzugehen: Mit einem Variac wird bei sekundärseitigem Kurzschluss die Eingangsspannung von null aus vorsichtig so lange erhöht, bis in der Sekundärwicklung der ennstrom fliesst. Die so ermittelte Eingangsspannung heisst Kurzschlussspannung. Aus der Kurzschluss-Spannung, den bekannten Werten R' 1Cu und R Cu lässt sich aus der Phasenverschiebung zwischen Strom und Spannung die Summe der Streuinduktivitäten bestimmen. Laborübung Seite 3

4 Zum Kurzschlussversuch: Die Primärspannung U K wird so eingestellt, dass im sekundärseitigen Kurzschluss der ennstrom I fliesst. Die Eingangsimpedanz Z e entspricht in diesem Fall Z e = {R' Cu1 + jω(s 1 L 1 ' + σ L ) + R Cu } ü weil R Fe und M' vernachlässigt werden können.. mit Z e = U K / I K = U K ü / I ergibt sich {(R' Cu1 + R Cu ) + ω (σ 1 L 1 ' + s L ) } ü = (U K / I ) und damit (σ 1 L 1 ' + σ L ) (U / I ) / ü - (R' = ω mit σ 1 = σ = σ wird σ (U K / I ) / ü - (R' Cu1 + R = ω (L ' + L ) 1 K C + R u1 Cu ) Cu ) daraus ergibt sich k = 1 - σ 3. Die Eisenverluste R Fe Die im Leerlauf aufgenommene Wirkleistung P Po entspricht etwa den Eisenverlusten P Fe. Daraus ergibt sich R Fe U / P Po 4. Der Wirkungsgrad η.. Die Kurzschlusswirkleistung U K I K cos(f), wenn im sekundärseitigen Kurzschluss I fliesst, entspricht etwa den Kupferverlusten P Cu (die Eisenverluste sind im Kurzschlussfall vernachlässigbar). η P P + P Fe + P Cu Laborübung Seite 4

5 LEM-Wandler Ein einfacher Stromwandler kann bereits mit einem Trafo realisiert werden. Dabei wird ausgenützt, dass zwischen dem Primär- und dem Sekundärstrom die folgende Beziehung gilt: I P = ü. I S Ein solcher Wandler hat zwei wesentliche Vorteile: - Ströme - die sehr gross oder sehr klein sein können - werden in gut messbare Ströme gewandelt werden. - die Messung erfolgt potentialfrei Der achteil besteht darin, dass dies nur für Wechselströme möglich ist. Der LEM-Wandler hat die gleichen Vorteile und erlaubt darüber hinaus auch die Messung von Gleichströmen..1 Hall-Effekt Schickt man durch einen Leiter einen Strom, dann dürfte eigentlich an zwei einander genau gegenüberliegenden Stellen quer zur Stromrichtung keine Spannung feststellbar sein. Sobald aber ein Magnetfeld auf die Ladungsträger einwirkt, entsteht eine Spannung - die sogenannte Hall-Spannung. Ohne Magnetfeld Mit Magnetfeld Auf die Ladungsträger, die den Strom transportieren, wirkt die Lorentzkraft r r r = q (v x B) F mag die im Kristallgitter fest verankerten Atomkerne verhindern allerdings ein abwandern der Ladungsträger durch ein elektrisches Feld r r = q E F el welche zur Hallspannung führt r r 1 U H = Eds = I B d ρ L Laborübung Seite 5

6 wobei ρ L die Ladungsdichte und d die Dicke des Plättchens ist. Die Hallspannung U H wird gross bei Materialien mit geringer Ladungsdichte. Deshalb werden Hall-Sensoren aus schwach dotiertem Halbleitermaterial mit ρ L ( ) As/cm 3 hergestellt. Bei Metallen ist der Effekt kaum feststellbar, weil ρ L in der Grössenordnung ρ L 10 1 As/cm 3 liegt. Die Hall- Spannung ist deshalb bei Metallen und gleichen Abmessungen um etwa 6 Zehnerpotenzen geringer.. Prinzip des LEM-Wandlers Im Luftspalt eines Eisenkernes befindet sich ein Hall-Sensor. Über einen Regler wird soviel Strom durch die Wicklung geschickt, bis die Induktion im Luftspalt null wird. Es gilt: I =. I LEM : Anzahl Windungen I LEM R = 50 Ohm U R = I LEM R = I R und daraus ergibt sich U I = R R Laborübung Seite 6

7 Aufgaben: 1. otieren Sie die Trafodaten: ennleistung P = Sekundärspannung bei ennlast U = Blechschnitt s = Blechpaketdicke h = Hinweis: Bei zwei Sekundärwicklungen sind beide in Serie zu schalten, so dass beide Wicklungen gleich belastet werden. Messen Sie mit einem Ohmmeter den DC-Wicklungswiderstand der Primärund Sekundärwicklung: R Cu1 = R Cu =. Bestimmen Sie das Uebersetzungsverhältnis ü bei U P = 0V ü = 1 / U P / U So 3. Bestimmen Sie das Spannungsverhältnis Leerlaufspannung zu ennlastspannung (U wird normalerweise vom Hersteller angegeben) f V = U so / U und errechnen Sie daraus den Innenwiderstand der Ersatzspannungsquelle bezüglich den Sekundäranschlüssen! U Ri = ( fv P 1) Laborübung Seite 7

8 4. Transformieren Sie den Wicklungswiderstand der Primärseite auf die Sekundärseite und zählen den Widerstand der Sekundärseite dazu, dann müsste sich etwa der Widerstand ergeben, den Sie unter Punkt 3 bestimmt haben: R i R Cu1 /ü + R Cu = 5. Messen Sie die Kurzschlusspannung U K, indem Sie vorsichtig mit dem VARIAC die Primärspannung von null aus solange erhöhen, bis auf der Sekundärseite der ennstrom fliesst! U K = Falls U K ü.. I R i gilt, sind die Streuinduktivitäten vernachlässigbar. 6. Messen Sie die Induktivität der Primär- und Sekundärwicklung L 1 und L aus je einer Strom- und Spannungsmessung der Primär- und Sekundärwicklungen! Aus Z ergibt sich Z = U/I = [R Cu + (ωl) ] ½ > L L 1 = L = 7. Bestimmen Sie aus den Ergebnissen der Aufgabe 5 und 6 den Kopplungsfaktor k. 8. Messen Sie nach ca. 15 Minuten ennbelastung erneut den Widerstand der Primärwicklung. Aus dem weiter oben gemessenen Widerstand im kalten Zustand kann in guter äherung die Temperaturerhöhung gemäss der Beziehung R T = R T1 [1 + α(t -T 1 )] = R T1 (1 + α DT) Der Temperaturkoeffizient von Kupfer beträgt α Cu K Messen Sie die Wirkleistung P Fe, die der Trafo im Leerlauf aufnimmt. Bestimmen Sie bei ennbelastung den Wirkungsgrad η. Laborübung Seite 8

9 10. Messen Sie die Kopplungskapazität zwischen Primär- und Sekundärwicklung, indem Sie mit einem Kapazitätsmessgerät die Kapazität zwischen den beiden Wicklungen bestimmen! 11. Suchen Sie aus dem Datenblatt des LEM-Wandlers folgende technische Daten: Messbereich Messgenauigkeit Bandbreite (-1 db) Verhältnis Primärstrom/Strom am Sensorausgang 1. Überprüfen Sie mit einem rechteckförmigen Strom ob die Beziehung 0.35 t r = B erfüllt ist. Beachten Sie, dass mit B die Bandbreite bei 3 db gemeint ist. Gehen Sie davon aus, dass sich das System wie ein Tiefpass 1. Ordnung verhält und bestimmen Sie damit die 3dB Bandbreite des Hall-Sensors. Laborübung Seite 9

Praktikum Transformatoren und Übertrager

Praktikum Transformatoren und Übertrager Praktikum 4.1 - Transformatoren und Übertrager In diesem zweiten Teil des Praktikums soll die Übertragung von Leistung oder Signalen über eine galvanisch getrennte Verbindung mittels des Magnetfelds von

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

Übungsaufgaben Elektrotechnik

Übungsaufgaben Elektrotechnik Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand

Mehr

Praktikum II TR: Transformator

Praktikum II TR: Transformator Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 30. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

Uebungsserie 4.2 Der Transformator

Uebungsserie 4.2 Der Transformator 15 September 017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 4 Der Transformator Aufgabe 1 Netzwerktransformation Ein idealer Übertrager mit dem Spannungsübersetzungsverhältnis = U 1 U ist sekundärseitig

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat

Mehr

i 2 (t) = 400 V 100 V = 4 f = 50 Hz A Fe 1. Wie groß müssen unter der Voraussetzung sinusförmiger Spannungen die ober- und unterspannungsseitigen

i 2 (t) = 400 V 100 V = 4 f = 50 Hz A Fe 1. Wie groß müssen unter der Voraussetzung sinusförmiger Spannungen die ober- und unterspannungsseitigen Aufgabe Ü1 Aus einem vorhandenen Blechkern mit dem wirksamen Eisenquerschnitt A Fe 80 cm soll ein Wechselstromtransformator mit einer Nennleistung von S N 5 kva und dem Übersetzungsverhältnis ü U 1 /U

Mehr

Praktikum 5, Transformator

Praktikum 5, Transformator 23. November 206 Elektrizitätslehre 3 Martin Weisenhorn Praktikum 5, Transformator Lernziele In diesem Versuch sollen die Parameter des symmetrischen T-Ersatzmodells eines Einphasentransformators (single-phase

Mehr

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator

Mehr

Elektrotechnik Formelsammlung. Ersatzschaltbilder und Zeigerdiagramme des einphasigen Transformators. jx h. R Fe

Elektrotechnik Formelsammlung. Ersatzschaltbilder und Zeigerdiagramme des einphasigen Transformators. jx h. R Fe 1) Vollständiges T-Ersatzschaltbild, Grundformeln jx σ R jx σ1 jx h Primärspannung Wicklungswiderstand primär Sekundärspannung R Wicklungswiderstand sekundär Quellenspannung X h Hauptinduktivität Eisenverlustwiderstand

Mehr

Versuch 3 Einphasentransformator

Versuch 3 Einphasentransformator Versuch 3 Einphasentransformator Martin Schlup 3. Oktober 2013 1 Lernziele In diesem Versuch sollen die Parameter des symmetrischen T-Ersatzmodells eines Einphasentransformators (single-phase transformer)

Mehr

Fachpraktikum Elektrische Maschinen. Versuch 4: Transformatoren

Fachpraktikum Elektrische Maschinen. Versuch 4: Transformatoren Fachpraktikum Elektrische Maschinen Versuch 4: Transformatoren Versuchsanleitung Basierend auf den Unterlagen von LD Didactic Entwickelt von Thomas Reichert am Institut von Prof. J. W. Kolar November 2013

Mehr

Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler - Saar Dr. rer. nat. Schau DL3LH

Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler - Saar Dr. rer. nat. Schau DL3LH Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler - Saar Dr. rer. nat. Schau DL3LH DL3LH, Messungen an Hochvolttransformtoren Einleitung: Bei Röhrenendstufen ist für erlaubte Leistungen eine hohe

Mehr

TR - Transformator Blockpraktikum - Herbst 2005

TR - Transformator Blockpraktikum - Herbst 2005 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort

Mehr

Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte

Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte 30 38 Transformator Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte Die elektrotechnischen Grundlagen des Transformators (Selbstinduktion, Gegeninduktion) sind in Kapitel 8 dargestellt. Die Wirkungsweise

Mehr

Magnetischer Kreis eines Rechteckkernes

Magnetischer Kreis eines Rechteckkernes Magnetischer Kreis eines Rechteckkernes Seite 1 von 21 Führer, Heidemann, Nerreter, Grundgebiete der Elektrotechnik, Band 1 R 1 und R 2 sind die ohmschen Widerstände der Wicklungen, Kupfer- oder Aluminium-Leiter

Mehr

Grundlagen der Elektrotechnik 1&2

Grundlagen der Elektrotechnik 1&2 Organisation der E-Technik Klausuren WS 15/16 Musterlösung Grundlagen der Elektrotechnik 1&2 BS Stand: 2016-02-04 Technische Universität Clausthal Klausur im Wintersemester 2015/2016 Grundlagen der Elektrotechnik

Mehr

Der Transformator - Gliederung. Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen

Der Transformator - Gliederung. Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen Der Transformator Der Transformator - Gliederung Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen Der Transformator - Aufgaben Transformieren

Mehr

Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan

Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan TECHOLOGISCHE GRUDLAGE LÖSUGSSATZ IDUKTIO, EIPHASE-WECHSELSTROM REPETITIOE IDUKTIO DER RUHE RE. Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 30 Windungen. Ihr magnetischer Fluss

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 07.07.2000 Aufg. P max 0 2 1 9 2 12 3 10 4 9 5 18 6 5 Σ 65 N P Zugelassene

Mehr

Drehstromtransformator

Drehstromtransformator FAKULTÄT ELEKTROTECHNIK 08.03.2013 Praktikum Elektrische Maschinen Drehstromtransformator 1 Versuchsziel Vertiefung des Kenntnisstandes des Aufbaus, der Wirkungsweise und des Betriebsverhaltens von Transformatoren

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

V2.5 Eigenschaften eines Transformators

V2.5 Eigenschaften eines Transformators V2.5 Eigenschaften eines Transformators 1 Theorie Transformatoren gehören zu den häufigsten Bauelementen der Elektrotechnik. Sie dienen zur Übertragung elektrischer Energie über ein elektromagnetisches

Mehr

Klausur "Elektrotechnik" 6103/ am

Klausur Elektrotechnik 6103/ am Musterlösung Name, Vorname: Matr.Nr.: Klausur "Elektrotechnik" 6103/61107 am 10.07.2007 Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Aufg. P max 0 2 1 9 2 9 3 10 4 9 5 20 6 7 Σ

Mehr

Verzeichnis der möglichen Arbeiten Elektrische Messtechnik

Verzeichnis der möglichen Arbeiten Elektrische Messtechnik TD TECHISCHE DOKUMETATIO Verzeichnis der möglichen Arbeiten 11.22 Elektrische Messtechnik Aufgabe Seitenzahl 1 Schaltung von Volt- und Amperemeter 2 Schaltung von Volt- und Amperemeter und Wattmeter 3

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Wintersemester 2013/2014 Grundlagen der Elektrotechnik I Datum: 20. Februar 2014 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik und Energiesysteme

Mehr

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Der Transformator Aufbau Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Wirkungsweise Zwei Spulen teilen sich den magnetischen Fluss Primärspule : Es liegt eine

Mehr

Verzeichnis der möglichen Arbeiten Elektrische Messtechnik

Verzeichnis der möglichen Arbeiten Elektrische Messtechnik TD TECHISCHE DOKUMETATIO Verzeichnis der möglichen Arbeiten 11.22 Elektrische Messtechnik Aufgabe Seitenzahl 1 Schaltung von Volt- und Amperemeter 2 Schaltung von Volt- und Amperemeter und Wattmeter 3

Mehr

2. Drehstromtransformator

2. Drehstromtransformator Drehstromtransformator Seite 1/7 Name: Gruppe: Testat : 1. Aufgabenstellung 2. Drehstromtransformator Ein Drehstromtransformator ist messtechnisch zu untersuchen für die Betriebsfälle Leerlauf, Kurzschluss

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS 2002/03

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS 2002/03 Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS 2002/03 Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik SS 2008

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik SS 2008 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik SS 2008 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3

Mehr

Labor für elektrische Messtechnik Versuch 3 Eigenschaften eines Transformators

Labor für elektrische Messtechnik Versuch 3 Eigenschaften eines Transformators Ostfalia Hochschule für angewandte Wissenschaften Fachbereich Elektrotechnik Prof. Dr. -Ing. M. Könemund Dipl.-Ing. K. Rohrmann Dipl.-Ing. S. Liu 1 Theorie Labor für elektrische Messtechnik Versuch 3 Eigenschaften

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Kapitel 19.1 Einphasen- Transformatoren. Repetitionen

Kapitel 19.1 Einphasen- Transformatoren. Repetitionen Kapitel 19.1 Einphasen- Transformatoren Repetitionen Verfasser: Hans-Rudolf iederberger Elektroingenieur FH/HTL Vordergut 1, 877 idfurn 055-654 1 87 Ausgabe: Oktober 011 Die erste nach dem dynamo-elektrischen

Mehr

Diplomvorprüfung WS 2009/10 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung WS 2009/10 Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2009/10

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2012 Grundlagen der Elektrotechnik I Datum: 17. September 2012 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

Ersatzschaltbild und Zeigerdiagramm

Ersatzschaltbild und Zeigerdiagramm 8. Betriebsverhalten des Einphasentransformators Seite Ersatzschaltbild und Zeigerdiagramm Jeder Transformator besteht grundsätzlich aus zwei magnetisch gekoppelten Stromkreisen. Bild 8.-: Aufbau und Flusslinien

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Klausur "Elektrotechnik" 6141 am 25.09.1997 Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Aufg. P max 0 2 1 11 2 9 3 10 4 11 5 17 6 6 Σ 66 N P Zugelassene

Mehr

und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Die Lorentzkraft Versuch:

und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Die Lorentzkraft Versuch: Die Lorentzkraft Versuch: und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Wie kann man die Bewegungsrichtung der Leiterschaukel bei bekannter technischer

Mehr

Baureihe WKO-2C Doppelkern-Kompensations-Stromwandler

Baureihe WKO-2C Doppelkern-Kompensations-Stromwandler Beschreibung REO hat eine neue Generation des Closed Loop (C/L) Stromwandlers entwickelt. Die patentierte Doppelkerntechnologie und die neuesten Hall-Elemente ermöglichen einen erweiterten Frequenzgang

Mehr

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV AUSWERTUNG: ELEKTRISCHE MESSMETHODEN TOBIAS FREY, FREYA GNAM, GRUPPE 6, DONNERSTAG 1. MESSUNGEN BEI GLEICHSTROM Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 7, 15V. 1.1. Innenwiderstand

Mehr

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG Schülerlabor Science meets School Werkstoffe & Technologien in Freiberg Versuch: (Sekundarstufe I) Moduli: Physikalische Eigenschaften 1 Versuchsziel Die Messung

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen Zur meßtechnischen Untersuchung elektrischer Maschinen sind neben den elektrischen Größen, wie z. B. Strom, Spannung, Leistung, Widerstand, auch mechanische Größen, wie z. B. Drehmoment

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Klausur "Elektrotechnik" 6141 am 16.03.1998 Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Aufg. P max 0 2 1 10 2 10 3 10 4 9 5 20 6 9 Σ 70 N P Zugelassene

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2013 Grundlagen der Elektrotechnik II Datum: 09. September 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

Transformator und Gleichrichtung

Transformator und Gleichrichtung Studiengang Elektrotechnik/Informationstechnik Labor Elektrotechnik Labor 3 13. November 001 Revision 1 Transformator und Gleichrichtung Martin Strasser, 88 741 Patrick Kulle, 88 545 Inhalt 1 Vorbereitung,

Mehr

Aufg. P max 1 12 Klausur "Elektrotechnik" am

Aufg. P max 1 12 Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 12 Klausur "Elektrotechnik" 2 12 3 12 6141 4 10 am 07.02.1997 5 16 6 13 Σ 75 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Grundlagen der Elektrotechnik 2 Seminaraufgaben

Grundlagen der Elektrotechnik 2 Seminaraufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

PrÄfung Sommersemester 2017 Grundlagen der Elektrotechnik Dauer: 60 Minuten

PrÄfung Sommersemester 2017 Grundlagen der Elektrotechnik Dauer: 60 Minuten PrÄfung GET Seite 1 von 6 Hochschule MÄnchen FK 03 Zugelassene Hilfsmittel: keine PrÄfung Sommersemester 2017 Grundlagen der Elektrotechnik Dauer: 60 Minuten Matr.-Nr.: HÅrsaal: Name, Vorname: Unterschrift:

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Magnetisches Feld Lernziel:

Mehr

Aufgaben B Wie gross ist der Widerstand eines CU-Drahtes zwischen seinen Enden, wenn die Länge 50 m und der Durchmesser 2mm beträgt?

Aufgaben B Wie gross ist der Widerstand eines CU-Drahtes zwischen seinen Enden, wenn die Länge 50 m und der Durchmesser 2mm beträgt? 1. Wie gross ist der Widerstand eines CU-Drahtes zwischen seinen Enden, wenn die Länge 50 m und der Durchmesser 2mm beträgt? 2. R2 = 7 kw und R3= 7 kw liegen parallel zueinander in Serie dazu liegt R4.=

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 24.09.1998 Aufg. P max 0 2 1 9 2 10 3 12 4 9 5 19 6 6 Σ 67 N P Zugelassene

Mehr

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik HTW Dresden Fakultät Elektrotechnik Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik Gudrun Flach February 3, 2019 Grundlegende Begriffe Grundlegende Begriffe Aufgabe 1 Bestimmen Sie die Beziehungen

Mehr

6. Analoges Messen elektrischer Größen

6. Analoges Messen elektrischer Größen 6. Analoges Messen elektrischer Größen Grundfunktionen eines Meßgerätes Abb. 6.1. Kraft auf einen stromdurchflossenen Leiter im Magnetfeld Abb. 6.2. Drehspulmeßwerk Abb. 6.3. Auf den Endausschlag bezogene

Mehr

Physikalisches Grundpraktikum E6 - T ransformator. E6 - Transformator

Physikalisches Grundpraktikum E6 - T ransformator. E6 - Transformator E6 - Transformator Aufgabenstellung: Ermitteln Sie das Strom- und Spannungsübertragungsverhältnis eines Transformators für zwei verschiedene Sekundärwindungszahlen mittels Leerlauf- und Kurzschlussschaltung.

Mehr

Transformator einschalten ohne Einschaltstromstoß. Ganz ohne Elektronik, aber mit einer Hilfswicklung!

Transformator einschalten ohne Einschaltstromstoß. Ganz ohne Elektronik, aber mit einer Hilfswicklung! Thema Transformator einschalten ohne Einschaltstromstoß. Ganz ohne Elektronik, aber mit einer Hilfswicklung! Im August 2014 zum Patent angemeldet. Autor: Michael Konstanzer, Erfinder der Trafoschaltrelais

Mehr

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik Prof. Dr.-Ing. Joachim Böcker. Klausur Grundlagen der Elektrotechnik B 2.

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik Prof. Dr.-Ing. Joachim Böcker. Klausur Grundlagen der Elektrotechnik B 2. Prof. Dr.-Ing. Joachim Böcker Klausur Grundlagen der Elektrotechnik B 2. März 2007 Name: Matrikel-Nr.: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: 1 2 3 4 5 Σ Note (10 Pkt.) (23 Pkt.) (24 Pkt.)

Mehr

Diplomvorprüfung SS 2009 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2009 Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 7 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2009 Grundlagen

Mehr

Praktikum I PE Peltier-Effekt

Praktikum I PE Peltier-Effekt Praktikum I PE Peltier-Effekt Florian Jessen, Hanno Rein, Benjamin Mück Betreuerin: Federica Moschini 27. November 2003 1 Ziel der Versuchsreihe Der Peltier Effekt und seine Umkehrung (Seebeck Effekt)

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 12.02.1999 Aufg. P max 0 2 1 7 2 12 3 10 4 9 5 18 6 11 Σ 69 N P Zugelassene

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 06.0.206 06.0.206 Musterlösung Grundlagen der Elektrotechnik B Seite von 3 Aufgabe : Gleichstrommaschine (20 Punkte) In dieser

Mehr

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen Repetition Elektrotechnik für Elektroniker im 4. Lehrjahr von Aleander Wenk 05, Aleander Wenk, 5079 Zeihen Inhaltsverzeichnis Temperaturabhängigkeit von Widerständen 1 Berechnung der Widerstandsänderung

Mehr

V11 - Messungen am Transformator

V11 - Messungen am Transformator V11 - Messungen am Transformator Michael Baron, Frank Scholz 21.12.2005 Inhaltsverzeichnis 1 Aufgabenstellung 1 2 Physikalischer Hintergrund 1 3 Versuchsaufbau 3 4 Versuchsdurchführung 3 4.1 Leerlauf-Spannungs-Übersetzung................

Mehr

245/2 245/ Transformator

245/2 245/ Transformator 245/1 245/2 245 Transformator Verständnisfragen: Wie lautet das Induktionsgesetz? Leiten Sie die Gleichung für die Spannungstransformation eines Transformators her. Wie lautet die Formel für das Magnetfeld

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlagen der Elektrotechnik Klausur Grundlagen der Elektrotechnik 1) Die Klausur besteht aus 7 Tetaufgaben. 2) Zulässige Hilfsmittel: Lineal, Winkelmesser, nicht kommunikationsfähiger Taschenrechner,

Mehr

Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom

Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom Physikalische Grundlagen Grundbegriffe Spule im Wechselstromkreis magnetische Induktion Induktionsfluss Induktionsgesetz Zeigerdiagramm Blindstrom Wirkstrom 1. Aufbau des s Der dient zur verlustarmen Änderung

Mehr

REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9

REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9 REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9 AG BL, BS, BE 1-4, SO Pos.4 An einer Steckdose 1 x 230 V wird ein Kurzschluss verursacht. Der Wider - stand des gesamten Stromkreises wurde mit 150 ms2 ermittelt.

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS 2003

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS 2003 Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik SS 2003 Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 01.04.2015 01.04.2015 Musterlösung Grundlagen der Elektrotechnik B Seite 1 von 14 Aufgabe 1: Gleichstrommaschine (20 Punkte) LÖSUNG

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik SS Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite von 8 FH München, FB 0 Grundlagen der Elektrotechnik SS 004 Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 4 Σ N Aufgabensteller: Buch, Göhl,

Mehr

Laborübung, Diode. U Ri U F

Laborübung, Diode. U Ri U F 8. März 2017 Elektronik 1 Martin Weisenhorn Laborübung, Diode 1 Diodenkennlinie dynamisch messen Die Kennlinie der Diode kann auch direkt am Oszilloskop dargestellt werden. Das Oszilloskop bietet nämlich

Mehr

1 Elektrische Stromkreise und lineare Netzwerke /20

1 Elektrische Stromkreise und lineare Netzwerke /20 Elektrische Stromkreise und lineare Netzwerke /20 Zwei Batterien G und G2 mit unterschiedlichen elektrischen Eigenschaften wurden polrichtig parallel geschaltet und an den Anschlussklemmen A, B mit einem

Mehr

Probeklausur im Sommersemester 2007

Probeklausur im Sommersemester 2007 Technische Universität Berlin 1 Elektrische Energiesysteme Probeklausur im Sommersemester 2007 Technische Universität Berlin 2 Aufgabe 1 In einem Drehstromnetz werden der in Dreieck geschaltete Generator

Mehr

1. Drehstrom. 1.1 Effektivwertmessung

1. Drehstrom. 1.1 Effektivwertmessung 1. Drehstrom 1.1 Effektivwertmessung 1.1.1 Aufgabenstellung Messen Sie die Amplitude U^ und den Effektivwert U einer Sinusspannung und einer symmetrischen Rechteckspannung bei ca. 50 Hz. Verwenden Sie

Mehr

Aufg. P max P 1 12 Klausur "Elektrotechnik/Elektronik" 2 3

Aufg. P max P 1 12 Klausur Elektrotechnik/Elektronik 2 3 Ergebnisse Name, Vorname: Matr.Nr.: Aufg. P max P 1 12 Klausur "Elektrotechnik/Elektronik" 2 3 16 30 4 16 am 22.03.1996 5 13 6 18 7 14 Hinweise zur Klausur: 8 9 15 16 Die zur Verfügung stehende Zeit beträgt

Mehr

Fachhochschule Gießen Friedberg Blatt 2 Übungsaufgaben Elektrotechnik Maschinenbau, Mikrotechnik, Optronik

Fachhochschule Gießen Friedberg Blatt 2 Übungsaufgaben Elektrotechnik Maschinenbau, Mikrotechnik, Optronik Fachhochschule Gießen Friedberg Blatt 2 Übungsaufgaben Elektrotechnik Aufgabe 2.1 Im skizzierten Stromkreis fließt der Strom I = 40 A. Am Verbraucher liegt die Spannung U V = 220 V an. Die Widerstände

Mehr

Magnetisch gekoppelte Kreise Teil 1

Magnetisch gekoppelte Kreise Teil 1 Magnetisch gekoppelte Kreise Teil 1 Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler - Saar Dr. Schau DL3LH Transformatoren bei Hochfrequenz Teil 1 Vorwort Wicklungs-Transformatoren bei Hochfrequenz

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Wintersemester 2012/2013 Grundlagen der Elektrotechnik I Datum: 18. März 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Vorlage für Expertinnen und Experten

Vorlage für Expertinnen und Experten 2013 Qualifikationsverfahren Multimediaelektroniker / Multimediaelektronikerin Berufskenntnisse schriftlich Vorlage für Expertinnen und Experten Zeit 120 Minuten für alle 3 Positionen (Für die Position

Mehr

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld

Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld Kapitel Pearson Folie: Kapitel 5 Das stationäre Folie: 2 Lernziele Kapitel Pearson Folie: 3 5. Magnete Kapitel Pearson Folie: 4 5. Magnete Kapitel Pearson S N Folie: 5 5.2 Kraft auf stromdurchflossene

Mehr

Vorlage für Expertinnen und Experten

Vorlage für Expertinnen und Experten 04 Qualifikationsverfahren Multimediaelektroniker / Multimediaelektronikerin Berufskenntnisse schriftlich Basiswissen: Elektrotechnik Vorlage für Expertinnen und Experten Zeit 0 Minuten für alle 3 Positionen

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

3. Übungen zum Kapitel Der Wechselstromkreis

3. Übungen zum Kapitel Der Wechselstromkreis n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln University of Applied Sciences ologne ampus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrote

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlagen der Elektrotechnik Seite 1 von 20 Klausur Grundlagen der Elektrotechnik 1) Die Klausur besteht aus 7 Textaufgaben. 2) Zulässige Hilfsmittel: Lineal, Winkelmesser, nicht kommunikationsfähiger

Mehr

Spule mit und ohne ferromagnetischen Kern

Spule mit und ohne ferromagnetischen Kern Spule mit und ohne ferromagnetischen Kern Auf Basis der in der Vorlesung gelernten theoretischen Grundlagen sollen nun die Eigenschaften einer Luftspule und einer Spule mit ferromagnetischem Kern untersucht

Mehr

Semesterendprüfung EL1

Semesterendprüfung EL1 Semesterendprüfung EL1 Zeit: 90 Minuten Datum: 22 Januar 2016 Maximale Punktzahl: 44 Name und Vorname: Klasse: ET15t Note: Erreichte Punktzahl: Wichtig: Die Lösungswege müssen ersichtlich sein Die Lösungen

Mehr

Grundlagen der Elektrotechnik 2 Übungsaufgaben

Grundlagen der Elektrotechnik 2 Übungsaufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2006.07 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien

Mehr