Technische Informatik (RO)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Technische Informatik (RO)"

Transkript

1 Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6) Sequentielle Schaltungen (7) Ablaufsteuerung (8) Fortsetzung Teil Rechnerarchitektur, Prof. Fengler 8. Dezember 2015

2 Bonusklausur Spielregeln: Bis zu10% Bonus zum Ergebnis der Prüfung addiert z.b. 40 Punkte Prüfung =100% => 10% Bonus = 4 Prüfungspunkte nicht da > kein Nachholen > kein Bonus > kein Problem, da > keine Prüfungsvoraussetzung Wiederholer starten neu, d.h. ohne Boni, nur Prüfung Inhalt: Kombinatorische Funktionen (Wertetabelle <> Ausdruck <> Schaltung) Boolesche Algebra (Kürzen, Erweitern) Kombinatorische Strukturen

3 Karnaugh-Veith-Diagramme benachbarte Belegungen grafisch so anordnen, dass Nachbarn nebeneinander liegen, Matrix, Nachbarschaft je Spalte und je Zeile Funktionswerte

4 Karnaugh-Veith-Diagramme Andere Reihenfolge der Belegungen pro Spalte bzw. Spalte und Zeile

5 Kürzen Erweitern Kürzen x3*x0+x3*x1+x2*x1

6 Karnaugh-Veith-Diagramme Beispiel : I={10,11,15,13,9,7,6,14} 1 1 Funktionswerte

7 Karnaugh-Veith-Diagramme z.b. k 13 k 9

8 Karnaugh-Veith-Diagramme Gleiches Beispiel - andere Kürzung x3*x2*x1*/x0+x3*x2*x1*x0=x3*x2*x1 k 11 k 10 x3*/x2*x1*x0+x3*/x2*x1*/x0=x3*/x2*x1 x3*x2*x1+x3*/x2*x1*x0= x3*x1 => 4er Block

9 Karnaugh-Veith-Diagramme benachbarte Belegungen können gekürzt werden. Kürzung: 1 Variable => 2er Block 2 Variable => 4er Block 3 Variable => 8er Block 4 Variable =>16er Block... x 3 /x 2 /x 1 Applet H.-D. Wuttke 14

10 Karnaugh-Veith-Diagramme Bei 6 Variablen: Applet zum Üben

11 Karnaugh-Veith-Diagramme Weitere Darstellungen, (nur für DNF) x 0 x 1 x 2 x 3

12 Technische Informatik 4. Vorlesung 3. Struktur digitaler Schaltungen: Strukturdefinition, elementare Strukturen, Struktursynthese, Strukturanalyse

13 Strukturelement: Modul

14 Strukturdefinition eindeutig

15 Technische Informatik 4. Vorlesung 3. Struktur digitaler Schaltungen: Strukturdefinition, elementare Strukturen, Struktursynthese, Strukturanalyse

16 Modul Beispiele (Arbbl. Seite 9)

17 Elementare Strukturen: Basissysteme AND OR NOT (DNF; KNF) NOR (NONF) NAND (NANF)

18 Technische Informatik I 4. Vorlesung 3. Struktur digitaler Schaltungen: Strukturdefinition, elementare Strukturen, Struktursynthese, Strukturanalyse

19 Struktursynthese strukturgleiche Schaltung strukturgleicher Ausdruck

20 Technische Informatik (RO) 4. Vorlesung 3. Struktur digitaler Schaltungen: Strukturdefinition, elementare Strukturen, Struktursynthese, Strukturanalyse

21 Strukturanalyse strukturgleiche Schaltung strukturgleicher Ausdruck H.-D. Wuttke 14

22 Technische Informatik 5. Vorlesung 3. Struktur digitaler Schaltungen: kombinatorische Strukturen, programmierbare Strukturen,

23 kombinatorische Strukturen Torschaltung i: Information (0 bzw. 1) s: Steuerbit 0: Tor geschlossen 1: Tor offen, a=i a: Ausgangsinformation, gültig für s=1 Anmerkung: normales AND-Gatter, spezielle Interpretation der Funktion

24 Dekoder 1 Tor für je eine Elementarkonjunktion => für jede Eingangsbelegung öffnet sich genau ein Tor, Kode X 1 =[0,...,0,0,1] am Eingang wird dekodiert => Dekoder Kode=Eingangsbelegung X 10 =[0,...,0,0,1] =[0,...,0,0,0]

25 Multiplexer Demultiplexer Ursprüngliche Verwendung: Vermittlungstechnik mehrere Teilnehmer nutzen eine Leitung Teilnehmer 0 [0,0] mit Teilnehmer 2 [1,0] verbunden

26 Multiplexer Demultiplexer Teilnehmer 0 [0,0] mit Teilnehmer 1 [0,1] verbunden 0 1 [0,...,0] [0,...,1]

27 Demultiplexer Dekoder + Programmiereingang p Schaltzeichen A DX

28 Technische Informatik 5. Vorlesung 3. Struktur digitaler Schaltungen:... kombinatorische Strukturen, programmierbare Strukturen,

29 Programmierbare Strukturen Programmierbarer Datenspeicher Read Only Memory ROM Adresse 5: [101] <5>: Inhalt von Adresse 5: [1010]

30 ROM Dekoder + programmierbare Matrix Programmierung

31 ROM Dekoder + programmierbare Matrix X 01 =[0,...,0,0] =[0,...,0,1] (X 01 )=Y [ ] 1]

32 ROM Dekoder + programmierbare Matrix Problem bei praktischer Realisierung der Matrix: Alle auf 1 programmierten Ausgänge sind verbunden!! Als Struktur verboten!! je Ausgang y und je Adresse 1 separate Leitung Verknüpft über ein ODER-Gatter ODER-Matrix 3

33 kombinatorische Strukturen Dekoder + ODER = Multiplexer

34 kombinatorische Strukturen Dekoder + progr. ODER-Matrix = ROM

35 ROM

36 ROM Vereinfachte Darstellung

37 PLA Vereinfachte Darstellung Programable Logic Array

38 PAL/GAL Vereinfachte Darstellung Programable Array Logic, Gate AL

39 PAL/GAL x1 Fuses AND x2 OR y AND

40 Zusammenfassung ROM PLA GAL Applet:

41 Kombinatorische Struktur

42 Das war s für heute Viel Spaß beim Wiederholen! Kap , 3.6.5, 4.1, 4.2

43 Bonusklausur Spielregeln: Bis zu10% Bonus zum Ergebnis der Prüfung addiert z.b. 40 Punkte Prüfung =100% => 10% Bonus = 4 Prüfungspunkte nicht da > kein Nachholen > kein Bonus > kein Problem, da > keine Prüfungsvoraussetzung Wiederholer starten neu, d.h. ohne Boni, nur Prüfung Inhalt: Kombinatorische Funktionen (Wertetabelle <> Ausdruck <> Schaltung) Boolesche Algebra (Kürzen, Erweitern) Kombinatorische Strukturen

Technische Informatik (RO)

Technische Informatik (RO) Technische Informatik (RO) Informationskodierung (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6) Sequentielle Schaltungen (7) Ablaufsteuerung (8) Fortsetzung Teil

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines

Mehr

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08 Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6 Inhaltsverzeichnis 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1 2 Operationssystem der Schaltalgebra 4 3 Boolesche Funktionen 6 4 Boolesche Funktionen kombinatorischer Schaltungen 8 4.1 Begriffsbestimmung

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines

Mehr

Synthese und Analyse Digitaler Schaltungen

Synthese und Analyse Digitaler Schaltungen Synthese und Analyse Digitaler Schaltungen von Prof. Dr.-Ing. habil. Gerd Scarbata Technische Universität Ilmenau 2., überarbeitete Auflage Oldenbourg Verlag München Wien V Inhaltsverzeichnis Seite Boolesche

Mehr

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 9 Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK AUFGABE CMOS Beschreibung: Sei die Schaltfunktion f x 3, x 2, x, x 0 = x 0 x x

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

Grundlagen der Digitaltechnik

Grundlagen der Digitaltechnik Grundlagen der Digitaltechnik Eine systematische Einführung von Prof. Dipl.-Ing. Erich Leonhardt 3., bearbeitete Auflage Mit 326 Bildern, 128 Tabellen, zahlreichen Beispielen und Übungsaufgaben mit Lösungen

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Rechnerorganisation. IHS 2015/2016 H.-D. Wuttke, K. Henke

Rechnerorganisation. IHS 2015/2016 H.-D. Wuttke, K. Henke Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer.

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer. 13. Vorlesung Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen Diode Transistor Multiplexer Demultiplexer Addierer 1 Campus-Version Logix 1.1 Vollversion Software und Lizenz Laboringenieur

Mehr

Programmierbare Logik CPLDs. Studienprojekt B Tammo van Lessen

Programmierbare Logik CPLDs. Studienprojekt B Tammo van Lessen Programmierbare Logik CPLDs Studienprojekt B Tammo van Lessen Gliederung Programmierbare Logik Verschiedene Typen Speichertechnologie Komplexe Programmierbare Logik System On a Chip Motivation Warum Programmierbare

Mehr

5 Zusammengesetzte und reguläre Schaltungsstrukturen

5 Zusammengesetzte und reguläre Schaltungsstrukturen 5 Zusammengesetzte und reguläre Schaltungsstrukturen regelmäßig aufgebaute (reguläre) Schaltungsstrukturen implementieren jeweils eine größere Zahl an Gatterfunktionen wichtigste Vertreter: Speicher, programmierbare

Mehr

13 Programmierbare Speicher- und Logikbausteine

13 Programmierbare Speicher- und Logikbausteine 13 Programmierbare Speicher- und Logikbausteine Speicherung einer Tabelle (Programm) Read Only Memory (ROM) Festwertspeicher Nichtflüchtig Nichtlöschbar: ROM PROM bzw. OTP-ROM Anwender programmierbares

Mehr

Synthese digitaler Schaltungen Aufgabensammlung

Synthese digitaler Schaltungen Aufgabensammlung Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Fachgebiet Elektronische Schaltungen und Systeme Dr. Ing. Steffen Arlt Synthese digitaler Schaltungen Aufgabensammlung.

Mehr

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese Einleitung Zur Aktivitätsanzeige der 3 Gehäuselüfter (Signale a - c) eines PC-Systems soll eine Logikschaltung entwickelt werden, die über drei Signalleuchten (LEDs) anzeigt, ob ein beliebiger (LED1 x),

Mehr

Systemorientierte Informatik 1

Systemorientierte Informatik 1 Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,

Mehr

Technische Universität Ilmenau

Technische Universität Ilmenau Technische Universität Ilmenau Hier finden Sie uns: Informatikgebäude, 2. Etage, Sekretariat Zi. 215 Lehre und Forschung im Fachgebiet Integrierte Hard- und Softwaresysteme Prof. Dr.-Ing. habil. Andreas

Mehr

5. Vorlesung: Normalformen

5. Vorlesung: Normalformen 5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1

Mehr

Anwenderprogrammierbare

Anwenderprogrammierbare 4. Einteilung der Programmiertechnologien Programmable logic device (PLD) Field programmable gate array (FPGA) Zusammenfassende Bewertung S. A. Huss / Folie 4-1 Einteilung der Programmiertechnologien Programmierung

Mehr

1 Analogtechnik und Digitaltechnik. C Schaltalgebra und kombinatorische Logik. 2 Digitale elektrische Schaltungen

1 Analogtechnik und Digitaltechnik. C Schaltalgebra und kombinatorische Logik. 2 Digitale elektrische Schaltungen Analogtechnik und Digitaltechnik C Schaltalgebra und kombinatorische Logik bei analoger Technik kontinuierliche Signale. Analog- und Digitaltechnik 2. Digitale elektrische Schaltungen 3. Logische Schaltungen

Mehr

9 Multiplexer und Code-Umsetzer

9 Multiplexer und Code-Umsetzer 9 9 Multiplexer und Code-Umsetzer In diesem Kapitel werden zwei Standard-Bauelemente, nämlich Multiplexer und Code- Umsetzer, vorgestellt. Diese Bausteine sind für eine Reihe von Anwendungen, wie zum Beispiel

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter Computersysteme 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter 1 Die Einsen im KV-Diagramm werden zu Blöcken maximaler Größe zusammengefasst. Dabei

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

GAL 16V8. 4. Laboreinheit - Hardwarepraktikum SS 2002 VCC / +5V. Eingang / Clock. 8 konfigurierbare Ausgangszellen. 8 Eingänge GND / 0V.

GAL 16V8. 4. Laboreinheit - Hardwarepraktikum SS 2002 VCC / +5V. Eingang / Clock. 8 konfigurierbare Ausgangszellen. 8 Eingänge GND / 0V. 1. Versuch Programmierbare Logik 4. Laboreinheit - Hardwarepraktikum SS 2002 Am Beispiel des GAL16V8 und eines GAL Development Systems werden die Möglichkeiten und Einsatzgebiete von programmierbare Logikbausteine

Mehr

Schaltalgebra und kombinatorische Logik

Schaltalgebra und kombinatorische Logik Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze *Die

Mehr

Anhang zum Lehrbuch Digitaltechnik, Gehrke, Winzker, Urbanski, Woitowitz, Springer-Verlag, 2016.

Anhang zum Lehrbuch Digitaltechnik, Gehrke, Winzker, Urbanski, Woitowitz, Springer-Verlag, 2016. Schaltsymbole in der Digitaltechnik Anhang zum Lehrbuch Digitaltechnik, Gehrke, Winzker, Urbanski, Woitowitz, Springer-Verlag, 2016. In diesem Anhang erfolgt eine Zusammenfassung der wichtigsten Begriffe

Mehr

Praktikumsanleitung. IGP Technische Informatik 1 Versuch 1: Digitale Grundschaltungen (Studiengänge BT,EIT,FZT,II,LA,MB,MT,MTR,OTR,WSW)

Praktikumsanleitung. IGP Technische Informatik 1 Versuch 1: Digitale Grundschaltungen (Studiengänge BT,EIT,FZT,II,LA,MB,MT,MTR,OTR,WSW) Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut für Theoretische und Technische Informatik Fachgebiet Integrierte Hard- und Softwaresysteme Praktikumsanleitung IGP Technische

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik klassische Aussagenlogik: Syntax, Semantik Äquivalenz zwischen Formeln ϕ ψ gdw. Mod(ϕ) = Mod(ψ) wichtige Äquivalenzen, z.b. Doppelnegation-Eliminierung, DeMorgan-Gesetze,

Mehr

Technische Informatik I

Technische Informatik I Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise

Mehr

Digitalelektronik - Inhalt

Digitalelektronik - Inhalt Digitalelektronik - Inhalt Grundlagen Signale und Werte Rechenregeln, Verknüpfungsregeln Boolesche Algebra, Funktionsdarstellungen Codes Schaltungsentwurf Kombinatorik Sequentielle Schaltungen Entwurfswerkzeuge

Mehr

Wir benutzen im nachfolgenden Versuch ein PLA zur Implementierung zweier boolscher Funktionen. Dazu einige Vorüberlegungen.

Wir benutzen im nachfolgenden Versuch ein PLA zur Implementierung zweier boolscher Funktionen. Dazu einige Vorüberlegungen. Kapitel 3 Programmable Logic Array (PLA) Die Idee eines PLA ist, dass bei der Chipherstellung ein homogenes Feld von Transistoren erzeugt wird. Die eigentliche Funktionalität wird dann durch Konfiguration

Mehr

Vorlesung Diskrete Strukturen Rechnen mit 0 und 1

Vorlesung Diskrete Strukturen Rechnen mit 0 und 1 Vorlesung Diskrete Strukturen Rechnen mit 0 und 1 Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3 Logischer Entwurf Digitaler Systeme Seite: 1 Übungsblatt zur Wiederholung und Auffrischung Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + 1.2 f ( ) ( ) ( ) 2 = c

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 11 Digitalschaltungen Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 25.06.1997 Protokoll

Mehr

DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE

DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE Seite 1 von 23 DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE Inhalt Seite 2 von 23 1 SCHALTUNGS- SYNTHESE UND ANALYSE... 3 1.1 NORMALFORM... 5 1.2 UND NORMALFORM... 5 1.3 ODER NORMALFORM... 7 1.4

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 9. Vorlesung Klaus Kasper Inhalt Realisierung digitaler Systeme Nutzung isplever Automaten Moore-Automat Mealy-Automat Beispiel Übung Massenspeicher Digitaltechnik 2 2 Realisierung

Mehr

Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter)

Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter) Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter) Folgende Darstellung der Funktionen als Zusammenschaltung von AND-, OR- und Invertergattern ist möglich: a) F = X ( Y Z) b) F = EN ( X Y) ( Y

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Kombinatorische

Mehr

Technische Grundlagen der Informatik Kapitel 5. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 5. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 5 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 5: Themen Speicherarchitekturen RAM-, ROM-Speicher Flash-Speicher Logikimplementierung

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik hristopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf

Mehr

Outline Automaten FSM Synthesis FSM in VHDL FSM auf FPGA. State Machines. Marc Reichenbach und Michael Schmidt

Outline Automaten FSM Synthesis FSM in VHDL FSM auf FPGA. State Machines. Marc Reichenbach und Michael Schmidt State Machines Marc Reichenbach und Michael Schmidt Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 05/11 1 / 34 Gliederung Endliche Automaten Automaten Synthese FSM Beschreibung in VHDL

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1 4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-

Mehr

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Kombinatorische Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Überblick Analog- und Digitaltechnik Boolesche Algebra Schaltfunktionen Gatter Normalformen

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen

Mehr

3.2 Verknüpfung von Variablen... 50 3.3 Sheffer- und Pierce-Funktion... 52 3.4 Übungen... 54

3.2 Verknüpfung von Variablen... 50 3.3 Sheffer- und Pierce-Funktion... 52 3.4 Übungen... 54 Inhaltsverzeichnis 1 Einführung 1 1.1 Analog - Digital Unterscheidung... 1 1.1.1 Analoge Darstellung...2 1.1.2 Digitale Darstellung...3 1.1.3 Prinzip der Analog-Digital-Wandlung...4 1.2 Begriffsdefinitionen...5

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008 Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 3. November 008 1 / 47 / 47 jede Boolesche Funktion lässt mit,, realisieren wir wollen wir uns jetzt in Richtung Elektrotechnik und

Mehr

Digitaltechnik I WS 2006/2007. Klaus Kasper

Digitaltechnik I WS 2006/2007. Klaus Kasper Digitaltechnik I WS 2006/2007 Klaus Kasper Studium 6 Semester 5. Semester: Praxissemester im Anschluss: Bachelorarbeit 6. Semester: WPs Evaluation der Lehre Mentorensystem 2 Organisation des Studiums Selbständigkeit

Mehr

Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen

Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen Bisher Klassische Aussagenlogik (Syntax, Semantik) semantische Äquivalenz von Formeln äquivalentes Umformen von Formeln (syntaktisch) Normalformen: NNF, DNF, CNF, kanonische DNF und CNF Ablesen kanonischer

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

9. Elektronische Logiksysteme ohne Rückführung, kombinatorische Schaltungen

9. Elektronische Logiksysteme ohne Rückführung, kombinatorische Schaltungen Fortgeschrittenenpraktikum I Universität Rostock - Physikalisches Institut 9. Elektronische Logiksysteme ohne Rückführung, kombinatorische Schaltungen Name: Daniel Schick Betreuer: Dipl. Ing. D. Bojarski

Mehr

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

Informatik A (Autor: Max Willert)

Informatik A (Autor: Max Willert) 2. Aufgabenblatt Wintersemester 2012/2013 - Musterlösung Informatik A (Autor: Max Willert) 1. Logik im Alltag (a) Restaurant A wirbt mit dem Slogan Gutes Essen ist nicht billig!, das danebenliegende Restaurant

Mehr

Fachbereich Medienproduktion

Fachbereich Medienproduktion Fachbereich Medienproduktion Herzlich willkommen zur Vorlesung im Studienfach: Grundlagen der Informatik Themenübersicht Rechnertechnik und IT Sicherheit Grundlagen der Rechnertechnik Prozessorarchitekturen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Normalformen von Schaltfunktionen

Normalformen von Schaltfunktionen Disjunktive Normalform (DNF) Vorgehen: 2. Aussuchen der Zeilen, in denen die Ausgangsvariable den Zustand 1 hat 3. Die Eingangsvariablen einer Zeile werden UND-verknüpft a. Variablen mit Zustand 1 werden

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

4 DIGITALE SCHALTUNGSTECHNIK

4 DIGITALE SCHALTUNGSTECHNIK Digitale Schaltungstechnik 59 4 DIGITALE SCHALTUNGSTECHNIK Um Daten zu verarbeiten, verwenden Computer als grundlegende Größen logische Variablen, die genau zwei Zustände annehmen können, nämlich den Wert

Mehr

Aufgabe 1 Bipolare Transistoren

Aufgabe 1 Bipolare Transistoren 2 Aufgabe 1 Bipolare Transistoren (22 Punkte) Gegeben sei die folgende Transistor-Schaltung bestehend aus einem pnp- und einem npn-transistor. i b2 i c2 i b1 T2 i c1 T1 i 2 R 2 i a =0 u e u a U 0 i 1 R

Mehr

8. Realisierung von Schaltnetzen mit Gattern

8. Realisierung von Schaltnetzen mit Gattern 8. Realisierung von Schaltnetzen mit Gattern Im Folgenden soll ein kurzer qualitativer Einblick in die physikalische Arbeitsweise von Gattern gegeben werden. Dabei wird dann auch der Sinn des Begriffes

Mehr

Mathematik für Informatiker I

Mathematik für Informatiker I Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft

Mehr

Praktikum Grundlagen der Elektronik

Praktikum Grundlagen der Elektronik Praktikum Grundlagen der Elektronik Versuch EP 7 Digitale Grundschaltungen Institut für Festkörperelektronik Kirchhoff - Bau K1084 Die Versuchsanleitung umfasst 7 Seiten Stand 2006 Versuchsziele: Festigung

Mehr

3.2 Verknüpfung von Variablen... 48 3.3 Sheffer- und Pierce-Funktion... 50 3.4 Übungen... 52

3.2 Verknüpfung von Variablen... 48 3.3 Sheffer- und Pierce-Funktion... 50 3.4 Übungen... 52 Inhaltsverzeichnis 1 Einführung 1 1.1 Analog - Digital Unterscheidung...1 1.1.1 Analoge Darstellung...2 1.1.2 Digitale Darstellung...3 1.1.3 Prinzip der Analog-Digital-Wandlung...4 1.2 Begriffsdefinitionen...5

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil III Boolesche Algebra, Signalarten, Elektronische Bauteile Seite 1 Boolesche Algebra George Boole => englischer Mathematiker Mitte 19. Jahrhundert Formale Sicht digitaler

Mehr

Kapitel 2. Kombinatorische Schaltungen. Codierer und Decodierer

Kapitel 2. Kombinatorische Schaltungen. Codierer und Decodierer Kapitel 2 Kombinatorische Schaltungen Definition nach DIN 44300/93 Ein Schaltnetz oder kombinatorischer Funktionsblock ist eine Funktionseinheit zum Verarbeiten von Schaltvariablen, deren Wert am Ausgang

Mehr

4.Vorlesung Rechnerorganisation

4.Vorlesung Rechnerorganisation Mario.Trams@informatik.tu-chemnitz.de, 22. April 2004 1 Inhalt: 4.Vorlesung Rechnerorganisation technischer Hintergrund der von uns verwendeten Experimentierhardware kurze Einführung in das Altera Entwicklungssystem

Mehr

Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit

Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit Übung 1 Achtung: ld(x) = Logarithmus dualis: ld(x) = log(x)/log(2) = ln(x)/ln(2)! Aufgabe 1 Frage: Wie gross ist der Informationsgehalt einer zufällig aus einem Stapel von 52 Bridgekarten gezogenen Spielkarte?

Mehr

Digitale Systeme und Schaltungen

Digitale Systeme und Schaltungen Zusammenfassung meines Vortrages vom 26. Jänner 2017 Digitale Systeme und Schaltungen Andreas Grimmer Pro Scientia Linz Johannes Kepler Universität Linz, Austria andreas.grimmer@jku.at In dieser Zusammenfassung

Mehr

HANSER. von Prof. Dipl.-Ing. Johannes Borgmeyer. 2., verbesserte Auflage

HANSER. von Prof. Dipl.-Ing. Johannes Borgmeyer. 2., verbesserte Auflage 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. von Prof. Dipl.-Ing. Johannes Borgmeyer 2., verbesserte Auflage Mit

Mehr

Rechneraufbau und Rechnerstrukturen

Rechneraufbau und Rechnerstrukturen Rechneraufbau und Rechnerstrukturen von Walter Oberschelp RWTH Aachen und Gottfried Vossen Universität Münster 10. Auflage c 2006 R. Oldenbourg Verlag GmbH, München Inhaltsverzeichnis Auszug... x... aus

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs: Technologische Grundlagen programmierbare logische Bausteine 1 Halbleiterdiode Bauelement, durch

Mehr

Computational Engineering I

Computational Engineering I DEPARTMENT INFORMATIK Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg Martensstraße 3, 91058 Erlangen 25.01.2016 Probeklausur zu Computational Engineering

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs: Technologische Grundlagen programmierbare logische Bausteine 1 Halbleiterdiode Bauelement, durch

Mehr

Das große All-in-All CPLD/FPGA Tutorial

Das große All-in-All CPLD/FPGA Tutorial Das große All-in-All CPLD/FPGA Tutorial Mit diesem Tutorial sollen die ersten Schritte in die Welt der programmierbaren Logik vereinfacht werden. Es werden sowohl die Grundlagen der Logik, die benötigte

Mehr

VHDL Synthese. Dr.-Ing. Matthias Sand. Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2009/2010

VHDL Synthese. Dr.-Ing. Matthias Sand. Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2009/2010 VHDL Synthese Dr.-Ing. Matthias Sand Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2009/2010 VHDL Synthese 1/36 2009-11-02 Inhalt Begriff Arten Kombinatorische

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2013/14 22. Januar 2014 Kurzwiederholung / Klausurvorbereitung II Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Kombinatorische Schaltwerke

Kombinatorische Schaltwerke Informationstechnisches Gymnasium Leutkirch Kombinatorische Schaltwerke Informationstechnik (IT) Gemäß Bildungsplan für das berufliche Gymnasium der dreijährigen Aufbauform an der Geschwister-Scholl-Schule

Mehr

6. Basissysteme -NAND -NOR -ANF

6. Basissysteme -NAND -NOR -ANF Digitale Digitale Systeme Systeme / / Automaten Automaten. Definition und Klassifikation digitaler Systeme -Einordnung digitaler Systeme -Einordnung digitaler Signale -Automatenmodell -Vereinbarungen (

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Architektur, ALU, Flip-Flop

Rechnerarchitektur und Betriebssysteme (CS201): Architektur, ALU, Flip-Flop Rechnerarchitektur und Betriebssysteme (CS201): Architektur, ALU, Flip-Flop 17. September 2013 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität Basel Uebersicht Ausgewählte

Mehr

Informatik für Ingenieure

Informatik für Ingenieure Informatik für Ingenieure Eine Einführung Von Prof. Dr. rer. nat. Wolfgang Merzenich Universität-Gesamthochschule Siegen und Prof. Dr.-Ing. Hans Christoph Zeidler Universität der Bundeswehr Hamburg B.

Mehr

Basics. Marc Reichenbach und Michael Schmidt 05/11. Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg

Basics. Marc Reichenbach und Michael Schmidt 05/11. Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg Basics Marc Reichenbach und Michael Schmidt Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 05/11 1 / 45 Gliederung Kombinatorische Logik Speicher (Latch, DFF, Register) Synthese Signale/Variablen

Mehr

Aufgabe 1 Bipolare Transistoren

Aufgabe 1 Bipolare Transistoren 2 22 Aufgabe Bipolare Transistoren (22 Punkte) Gegeben sei die folgende Transistor-Schaltung bestehend aus einem pnp- und einem npn-transistor. i b2 i c2 i b T2 i c T i 2 R 2 i a =0 u e u a U 0 i R Bild

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 2 Sequentielle Logik. Aufgabe 1:

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 2 Sequentielle Logik. Aufgabe 1: Übungen zur Vorlesung echnische Informatik I, SS 2 Strey / Guenkova-Luy / Prager Übungsblatt 2 Sequentielle Logik Aufgabe : Analysieren Sie das gezeigte Flip-Flop. Geben Sie eine Wahrheitstabelle an, wie

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Versuch V09: Logische Gatter

Versuch V09: Logische Gatter Versuch V09: Logische Gatter Henri Menke und Jan Trautwein Gruppe Platz k (Betreuer: Boris Bonev) (Datum: 6. Dezember 203) In diesem Versuch sollen Spannungspegel, Eingangsströme und andere elementare

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Anwendungen der Prozessdatenverarbeitung (Liste V) Leitung: Prof. Dr. Linn. Microcontroller Programmierung

Anwendungen der Prozessdatenverarbeitung (Liste V) Leitung: Prof. Dr. Linn. Microcontroller Programmierung Anwendungen der Prozessdatenverarbeitung (Liste V) Microcontroller Programmierung Technisches Handbuch Christoph Schulz Patrik Simon Dirk Stein Sommersemester 2005 INHALTSVERZEICHNIS Einführung - 2 - Pinbelegung

Mehr