Rentenrechnung und Annuitätentilgung

Größe: px
Ab Seite anzeigen:

Download "Rentenrechnung und Annuitätentilgung"

Transkript

1 Rentenrechnung und Annuitätentilgung Wiederholung: Zinseszinsen Es soll ein Kaital K0) von 0 e zu einem jährlichen Zinssatz a ) von 3,5 % angelegt werden Nach einem Jahr kommen zu den 0 e also Zinsen von 0 3,5 e = 0 0,035 e = 35 e hinzu Da diese zu dem angelegten Kaital hinzukommen, hat man also nach dem ersten Jahr K1) = 0 e + 0 0,035 e = 0 0,035) e Nach dem zweiten Jahr kommen hierzu wieder 3,5 % hinzu: K2) = K1) 0,035) e = 0 0,035) 2 e Ganz analog berechnet sich das Kaital nach n Jahren zu Kn) = Kn ) 0,035) e = 0 0,035) n e Verallgemeinerung: Zinseszinsformel Wird ein Anfangskaital K0) zu einem jährlichen Zinssatz von % angelegt, dann lässt sich das Kaital nach n Jahren durch folgende Formel berechnen Kn) = K0) ) n 1) 1 Weise die Richtigkeit der folgenden, umgestellten Formeln nach und erläutere ihre Anwendung Kn) K0) = ) n ) = n Kn) K0) n = ) Kn) log 1+ K0) n = logkn)/k0))/ log /) TI83-Eingabe 2 Ein Betrag in Höhe von 6000 e wurde am zu 4,5 % angelegt Welche Summe steht dem Anleger am zur Verfügung? 3 Ein Vater möchte, dass seinem Sohn am ein Betrag von e ausgezahlt wird Welche Summe muss er am anlegen, wenn er mit einer Verzinsung von 5,5 % rechnet? 4 In wie vielen Jahren verdoelt bzw verdreifacht sich ein Kaital bei einem Zinssatz von 4%? 5 Zu welchem Zinssatz müssen 3325,29 e für 7 Jahre angelegt werden, damit am Ende des 7 Jahres 5000 e zur Verfügung stehen? 6 Ein Betrag in Höhe von 6000 e wurde am zu 4,5 % angelegt Welche Summe steht dem Anleger am zur Verfügung? 7 Ein Guthaben von 3500 e soll in 8 Jahren auf einen Betrag von 5000 e anwachsen Welcher Prozentsatz ist hierzu nötig? 1

2 8 Eine junge Frau hat die Wahl zwischen folgenden Kaitalien: e, Auszahlung sofort, oder e, Auszahlung in 10 Jahren, oder e, Auszahlung in 20 Jahren Welches Kaital ist bezogen auf einen gemeinsamen Stichtag am höchsten, wenn man von einer 6 %igen Verzinsung ausgeht? 9 Der Käufer eines Hauses macht dem Verkäufer 3 alternative Angebote: e sofort oder 000 e sofort und e in 5 Jahren oder 3 Raten in Höhe von je e, und zwar die erste Rate sofort, die zweite Rate nach 3 Jahren und die dritte Rate nach 6 Jahren Welches Angebot ist unter Berücksichtigung einer 6 %igen Verzinsung das günstigste? 10 Ein Sarer legt e für 4 Jahre zu 4,8 % ro Jahr an, wobei die Zinsen halbjährlich zugeschlagen werden a) Welchen Betrag hat der Sarer nach 4 Jahren auf seinem Konto? b) Mit welchem Zinssatz Effektivzinssatz ) hätte der Sarbetrag verzinst werden müssen, um bei jährlichem Zinszuschlag den gleichen Endbetrag zu erreichen? Rentenrechnung 1 In der Finanzmathematik werden jährlich gleich hohe Ein- oder Auszahlungen als Rente bezeichnet Diese Jahresrente unterliegt im Zeitablauf der Verzinsung Was hier Rente genannt wird, ist keine Altersrente oder Rente aus einer Lebensversicherung; bei solchen Renten im versicherungsmathematischen Sinne muss die durchschnittliche Lebenserwartung des Rentennehmers berücksichtigt werden Jemand zahlt jeweils am Ende eines jeden Jahres 0 e auf ein Sarkonto ein Das Guthaben wird mit 4% verzinst Dann ist am Ende des ersten Jahres das Guthaben R1) = 0 e, denn der Betrag wurde erst am Ende des Jahres eingezahlt, so dass keine Zinsen anfallen Am Ende des zweiten Jahres kommen die ersten Zinsen hinzu siehe Formel 1), aber außerdem werden erneut 0 e auf das Konto eingezahlt, und so geht das in den folgenden Jahren weiter: R2) = R1) 0,04) + 0 e = 0 0,04) + 0 e R3) = R2) 0,04) + 0 e = 0 0,04) ,04) + 0 e R4) = R3) 0,04) + 0 e = 0 0,04) ,04) ,04) + 0 e Rn) = Rn ) 0,04) + 0 e Taschenrechnereingabe = 0 0,04) n 0 0,04) n ,04) n ,04) ,04) + 0 e 2) Es gibt zwei Möglichkeiten, die Renten mit dem TI83 zu berechnen Für die einfachere gibt man im normalen Rechen-Fenster zunächst die jährliche Rente ein und bestätigt mit ENTER hier: 0) In der nächsten Zeile sagt man dem Rechner, wie er die Zinsen nach dem zweiten Jahr berechnen soll: Ans und bestätigt mit ENTER Ans übernimmt die Rolle des R1) Die Rente nach dem dritten Jahr berechnete sich ganz genau so, es reicht also, einfach nur ENTER zu drücken Der TI83 wertet dann den letzten eingegebenen Befehl noch einmal aus Diesmal setzt er allerdings automatisch für Ans wieder das zuletzt berechnete Ergebnis ein, dieses entsricht dem R2) Durch weiteres Drücken der ENTER -Taste erhält man die Renten für die kommenden Jahre ohne Rundung; dafür wäre eine leichte Modifikation nötig welche?), deren Anzahl wir allerdings selber zählen müssen 1 Hier werden der Einfachheit halber nur nachschüssige Renten betrachtet 2

3 Die zweite Methode geht über Folgen und hat den Vorzug, dass man sie grahisch darstellen kann und sich das n nicht selber zu merken braucht Außerdem kann man mit den Ergebnissen weiterrechnen Zunächst muss der Taschenrechner in den Folgenmodus umgeschaltet werden Dazu drückt man MODE, geht in die vierte Zeile und stellt dort die Einstellung Seq ein Dann drückt man Y = und kann die gewünschte Folge eingeben Oben wurde gezeigt, wie sich Rn) aus dem jeweils vorangehenden Wert Rn ) berechnen lässt, nämlich Rn) = Rn ) 0,04) + 0 e Dieses kann man jetzt unmittelbar in den TI83 eingeben: Zunächst wird nmin = 1 eingegeben, weil die Zeit-Zählung mit dem ersten Jahr beginnt Dann gibt man die Formel für die Berechnung der Rn) ein, was unserer Formel entsricht: un) = un ) 1, Anschließend ist noch der Startwert einzugeben: unmin) = 0, weil am Ende des ersten Jahres die soeben eingezahlten 0 e noch nicht keine Zinsen ergeben Setzt man dann bei 2nd + WINDOW T blstart = 1 und T bl = 1 sowie die beiden folgenden Werte auf Auto, dann kann man mit 2nd + GRAPH die Werte Rn) ansehen Durch geeignete Einstellungen unter WINDOW kann man die Werte auch zeichnen lassen und den Verlauf des Guthaben-Wachstums anschauen Dazu nmin = 1 und nmax wie gewünscht als maximales n eingeben und auf ZOOM + 0:ZoomFit gehen) Anschließend nicht vergessen, den Taschenrechner wieder in den Funktionsmodus umzuschalten! Vereinfachungen der Formeln Die Formel 2 sieht sehr komliziert aus Zum Glück lässt sie sich erheblich vereinfachen, es gilt nämlich für beliebige reelle Zahlen q die folgende Beziehung: q + q 2 + q 3 + q q n 2 + q n 1 = qn q 3) Klammert man also in Formel 2 die 0, die jährliche Rente, aus, dann erhält man: ) Rn) = 0 0,04) n 0,04) n 2 + 0,04) n ,04) 2 + 0,04) + 1 e Nun kann man die Formel 3 für die große Klammer verwenden und erhält: ) Rn) = 0 0,04) n 0,04) n 2 + 0,04) n ,04) 2 + 0,04) + 1 e } {{ } 1,04 n 1 1,04 1 = 0 1,04n 1,04 e = 0 1,04n e 0,04 Verallgemeinerung: Rentenformel Wird eine jährliche Rente R zu einem jährlichen Zinssatz von % angelegt, dann lässt sich das Kaital nach n Jahren durch folgende Formel berechnen Rn) = R ) n 4) 1 Weise die Richtigkeit der folgenden, umgestellten Formeln nach und erläutere ihre Anwendung Achtet auf Klammern bei der Eingabe in den TI83!) R = Rn) ) n 3

4 n = log 1+ Rn) ) + 1 R n = log/ Rn)/R + 1)/ log /) TI83-Eingabe Eine Auflösung der Gleichung nach gelingt nicht algebraisch In solchem Fall hilft nur ein geschicktes, systematisches Probieren oder eine numerische Lösung mit Hilfe des TI83 Z B kann n 0 = Rn) R ) uminterretiert werden als x n 0 = Rn) R ) x Wenn man dann alle bekannten Größen alle außer ) wie gegeben einsetzt, kann man die letzte Formel unter Y = in den TI83 eingeben, zeichnen lassen und mit Hilfe von 2nd + TRACE + 2:zero die Lösungen) für x, also für bestimmen In der Praxis kommen solche Fälle kaum vor, da die Zinssätze durch äußere Umstände Zinsolitik, Marktlage etc) vorgegeben sind 2 Ein Angestellter zahlt bei einer Rentenanstalt 30 Jahre lang jährlich je 1200 e bei einem Zinssatz von 4 % ein Welcher Betrag steht ihm dann zur Verfügung? 3 Ein Geldbetrag aus einer Erbschaft über e soll dazu verwendet werden, dass aus ihm eine jährliche Rente in Höhe von 7358 e gezahlt werden kann Über welchen Zeitraum ist die Rentenzahlung bei einem Zinssatz von 4 % möglich? 4 Anna möchte zu Beginn der nächsten 5 Jahre jeweils 0 e auf ein Konto einzahlen Der Zinssatz, den sie bekommen kann, beträgt 4 % a) Stelle eine Tabelle auf, aus der sie entnehmen kann, wie sich das Geld entwickelt Die Tabelle sollte folgendermaßen aussehen: Kontostand zu Zinsen am Ende Kontostand am Jahr Jahresbeginn des Jahres Ende des Jahres b) Vergleiche diese Art der Rentenzahlung mit der von uns behandelten und stelle eine Formel für diese vorschüssige Rentenzahlung auf 5 Herr Meier möchte für das Studium seiner Tochter Geld anlegen Dafür soll am eine Summe von e bereitstehen Welchen Betrag muss er jährlich auf ein Konto einzahlen, wenn der Zinssatz 5,5 % beträgt und er die Zahlung am beginnt? 6 Ein Sarer zahlt jährlich am Ende des Jahres) 6000 e auf ein Konto ein Nach 6 Jahren erhöht er die jährliche Zahlung auf 8000 e, die er weitere 5 Jahre einzahlt Berechne den angesarten Betrag nach diesen 11 Jahren, wenn der Zinssatz 4 % beträgt 7 Zahlt man bei einem Zinssatz von 4,25 % 20 Jahre lang einen Betrag von e jährlich auf ein Konto, dann sart man einen bestimmten Betrag an Dasselbe Guthaben kann man ersaren, wenn man gleich einen bestimmten Grundbetrag bei gleichem Zinssatz) verzinst Bestimme diesen Grundbetrag 8 Der Kunde einer Lebensversicherung, der in 6 Jahren eine Versicherungssumme von e erwartet, möchte diese einmalige Zahlung in eine nachschüssige Rente umwandeln, die ab jenem Jahr 20 Jahre lang gezahlt wird Zinssatz 4,5 %) Wie hoch wird die jährliche Rente? 4

5 9 Die rivate Rentenversicherung braucht zur Berechnung der Rentenhöhe die Dauer der Zahlung bei festem Grundkaital z B aus einer Lebensversicherung), aus dem die Rente gezahlt werden soll Wie könnten die Überlegungen der Versicherung aussehen? 10 Stiftungen z B die Nobel-Stiftung) brauchen einen festen Betrag, um daraus jährlich für unbegrenzte Zeit Preisgelder ausschütten zu können Wieviel Geld kann man jährlich aus einem Kaital von e bei einem Zinssatz von 3,2 % ausschütten, und zwar für theoretisch unbegrenzte Dauer? Wo liegen in der Praxis Probleme dieser Betrachtung und wie kann man sie evtl bewältigen? Kaitalaufbau Kaitalbewegungen sind selten so beschaffen, dass sie entweder nur den Gesetzmäßigkeiten der Zinseszinsrechnung oder nur den Gesetzmäßigkeiten der Rentenrechnung folgen In der Realität gehorcht der Auf- und Abbau von Kaitalbeträgen beiden Gesetzmäßigkeiten: Einmalige Zahlungen werden gemäß der Zinseszinsrechnung und gleichbleibende Zahlungen gemäß der Rentenrechnung behandelt Beisiel Ein Sarer zahlt einmalig 5000 e am Anfang eines Jahres auf ein Konto, dessen Guthaben mit 4,5 % verzinst wird, und dann nachschüssig) 8 Jahre lang 0 e Wie hoch ist das Guthaben am Ende des 8 Jahres? Das Guthaben nach 8 Jahren setzt sich aus dem aufgezinsten einmaligen Betrag und dem Rentenendwert zusammen und beträgt K8) = 5000 e 1, e 1,0458 1,045 = 16490, 51 e Verallgemeinerung: Sarkassenformel für den Kaitalaufbau Die Situation im vorangegangenen Beisiel lässt sich nun ganz leicht verallgemeinern, da wir oben die allgemeinen Formeln für Zinseszinsen und Rentenrechnung bereits aufgestellt haben: Wird zu einem Anfangskaital K0) eine jährliche Rente der Höhe R beginnend nach einer Zinseriode hinzugezahlt, so ergibt sich bei einem Zinssatz von % der Kontostand Kn) am Tage der n-ten Rate: Kn) = K0) ) n n + R ) ) 1 Auf einem Sarkonto 10 % a) befindet sich am ein Guthaben von e Der Kontoinhaber zahlt jährlich am e hinzu, insgesamt 12 Raten Wie lautet der Kontostand jeweils am 3112 in den Jahren von 2006 bis 2018? Stelle eine Tabelle wie folgt auf: Kontostand zu Zinsen am Ende Einzahlung am Kontostand am Jahr Jahresbeginn des Jahres Ende des Jahres Ende des Jahres Überrüfe das Ergebnis mit Hilfe der obigen Formel 2 Weise die Richtigkeit der folgenden, umgestellten Formeln nach und erläutere ihre Anwendung Achtet auf Klammern bei der Eingabe in den TI83!) K0) = 1+ Kn) R ) n ) n 1 5

6 ) n R = Kn) K0) 1 + ) n ) ) Kn) + R n = log 1+ K0) + R n = logkn) + R/)/K0) + R/))/ log /) TI83-Eingabe Eine Auflösung der Gleichung nach gelingt wieder nicht algebraisch In solchem Fall hilft nur ein geschicktes, systematisches Probieren oder eine numerische Lösung mit Hilfe des TI83 ähnlich dem Vorgehen bei der Rentenformel 3 Der Vater einer Tochter legt zu 4 % ein Kaital fest, mit dem er das Studium seiner Tochter finanzieren möchte Die Tochter beginnt in 5 Jahren mit ihrem Studium Welches Kaital muss der Vater anlegen, wenn er der Tochter jährlich 00 e auszahlen möchte? 4 Formuliere geeignete Sachkontexte, für deren Bearbeitung man je eine der vorangehenden Formeln heranziehen kann 5 Ein Sarer zahlt durch Dauerauftrag am Jahresanfang einen Betrag von 2000 e auf sein Sarkonto ein, das mit 3,75 % verzinst wird Nach 3 Jahren hebt er am Jahresende 3000 e ab, nach weiteren 2 Jahren zahlt er 5000 e ein Wie hoch ist der Kontostand nach 10 Jahren? 1 Anstatt des Kaitalaufbaus kann man auch den Kaitalabbau betrachten Er geht ganz analog vor sich Eine mögliche Situation ist die folgende: Ein Darlehen von 000 e z B für ein gekauftes Häuschen im Grünen) soll durch am Jahresende zu zahlende Raten auch: Annuitäten ) von 7000 e abbezahlt werden Stelle eine Formel auf, die die Restschuld am Ende des n-ten Jahres angibt Bestimme die Anzahl der Jahre, nach denen das Darlehen abbezahlt ist 2 Stelle wie oben eine allgemeine Formel für den Kaitalabbau auf und modifiziere die umgestellten Formeln geeignet 3 Die höhere Mathematik braucht der normale Mensch in seinem Leben doch niemals Nimm Stellung zu dieser Aussage im Zusammenhang mit dem vorliegenden Text 4 Suche Zeitungsausschnitte, in denen eine Ratenzahlung, ein Leasing-Vertrag oder ein Kreditangebot angeriesen wird und versuche mit Hilfe deiner neu gewonnenen Erkenntnisse die Korrektheit der Aussagen zu rüfen 6

Zinsen, Zinseszins, Rentenrechnung und Tilgung

Zinsen, Zinseszins, Rentenrechnung und Tilgung Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins

Mehr

Übungsserie 6: Rentenrechnung

Übungsserie 6: Rentenrechnung HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui Übungsaufgaben zur Einführung in die Finanzmathematik Übungsaufgaben Aufgabe 1: A hat B am 1.1.1995 einen Betrag von EUR 65,- geliehen. B verpflichtet sich, den geliehenen Betrag mit 7% einfach zu verzinsen

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000. Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche

Mehr

[FINANZMATHEMATIK] :(1 + i) n. aufzinsen. abzinsen

[FINANZMATHEMATIK] :(1 + i) n. aufzinsen. abzinsen [FINANZMATHEMATIK] Mag. Michael Langer 1. Zinseszinsrechnung Zinseszins Wird ein Kapital K 0 zum Jahreszinssatz i so angelegt, dass es jedes Jahr um die Zinsen vermehrt wird, dann beträgt das Kapital nach

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge

Mehr

3.3. Tilgungsrechnung

3.3. Tilgungsrechnung 3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es

Mehr

Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10

Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10 Rentenrechnung 5 Kai Schiemenz Finanzmathematik Ihrig/Pflaumer Oldenburg Verlag 50.Am 0.0.990 wurde ein Sparkonto von 000 eröffnet. Das Guthaben wird vierteljährlich mit % verzinst. a.wie hoch ist das

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe

Mehr

Finanzmathematik. 1. Aus einem Wasserhahn fließen in einer Minute 48 Liter. Wieviel Liter fließen in 8 3 4 Minuten?

Finanzmathematik. 1. Aus einem Wasserhahn fließen in einer Minute 48 Liter. Wieviel Liter fließen in 8 3 4 Minuten? Finanzmathematik Dreisatz Prozentrechnung Zinseszins Der Reichtum gleicht dem Seewasser, je mehr man davon trinkt, desto durstiger wird man. Arthur Schopenhauer 1. Aus einem Wasserhahn fließen in einer

Mehr

Finanzmathematik mit Excel 1

Finanzmathematik mit Excel 1 Finanzmathematik mit Excel 1 Einfache Zinsrechnung 2 Folgende Begriffe werden benötigt: Begriff Definition Kapital Geldbetrag, der angelegt oder einem anderen überlassen wird. Laufzeit Dauer der Überlassung.

Mehr

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden BspNr: G0010 Themenbereich Finanzmathematik - Rentenrechnung Ziele vorhandene Ausarbeitungen Arbeiten mit geom. Reihen TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische

Mehr

Das Mathe- Viertelfinale

Das Mathe- Viertelfinale Das Mathe- Viertelfinale 1. Geben Sie für die folgenden Untersuchungen mögliche statistische Einheiten und Masse an und bestimmen die notwendigen Identifikationskriterien. Geben Sie ferner die zugrundeliegende

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

Inhaltsverzeichnis. Finanzmathe Formelsammlung v.2.3 1

Inhaltsverzeichnis. Finanzmathe Formelsammlung v.2.3 1 Finanzmathe Formelsammlung v.2.3 1 Inhaltsverzeichnis I Zinsrechnung 1 I.1 Jährliche Verzinsung..................................... 1 I.1.1 Einfache Verzinsung................................. 1 I.1.2

Mehr

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten

Mehr

Ü b u n g s b l a t t 2

Ü b u n g s b l a t t 2 Mathe B für Wirtschaftswissenschaftler Sommersemester 01 Walter Oevel 4. 4. 001 Ü b u n g s b l a t t Wir bieten an, bearbeitete Aufgaben zu korrigieren, falls sie zum unten angegebenen Zeitunkt abgeliefert

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr

Berechnung des Grundwertes 27. Zinsrechnung

Berechnung des Grundwertes 27. Zinsrechnung Berechnung des Grundwertes 27 Das Rechnen mit Zinsen hat im Wirtschaftsleben große Bedeutung. Banken vergüten Ihnen Zinsen, wenn Sie Geld anlegen oder berechnen Zinsen, wenn Sie einen Kredit beanspruchen.

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung.

Unter einer Rente versteht man eine regelmässige und konstante Zahlung. Anwendungen aus der Finanzmathematik a) Periodische Zahlungen: Renten und Leasing Unter einer Rente versteht man eine regelmässige und konstante Zahlung Beispiele: monatliche Krankenkassenprämie, monatliche

Mehr

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?

2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind

Mehr

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 - 5 - Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 Frau X hat ein Angebot der Bank: Sie würde 5000 Euro erhalten und müsste

Mehr

5. Finanzwirtschaft 5.1 Inhalt und Aufgaben

5. Finanzwirtschaft 5.1 Inhalt und Aufgaben 5. Finanzwirtschaft 5.1 Inhalt und Aufgaben Die Funktionalbereiche der Unternehung und die Eingliederung der Finanzwirtschaft: Finanzwirtschaft Beschaffung Produktion Absatz Märkte für Produktionsfaktoren

Mehr

Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013

Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013 Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013 Finanzmathematik (TM/SRM/SM) Tutorium Finanzmathematik Teil 1 1 Zinseszinsrechnung Bei den Aufgaben dieses

Mehr

Bernd Luderer. Starthilfe Finanzmathematik. Zinsen - Kurse - Renditen. 4., erweiterte Auflage. Springer Spektrum

Bernd Luderer. Starthilfe Finanzmathematik. Zinsen - Kurse - Renditen. 4., erweiterte Auflage. Springer Spektrum Bernd Luderer Starthilfe Finanzmathematik Zinsen - Kurse - Renditen 4., erweiterte Auflage Springer Spektrum Inhaltsverzeichnis 1 Grundlegende Formeln und Bezeichnungen 1 1.1 Wichtige Bezeichnungen 1 1.2

Mehr

Ein Zugang zur Iteration (Zyklische Maschine) Zinseszinsrechnung (mit und ohne KESt) und Ratenrückzahlungsmodell

Ein Zugang zur Iteration (Zyklische Maschine) Zinseszinsrechnung (mit und ohne KESt) und Ratenrückzahlungsmodell Ein Zugang zur Iteration (Zyklische Maschine) Zinseszinsrechnung (mit und ohne KESt) und Ratenrückzahlungsmodell Walter Klinger (BG/BRG Stockerau) 1998 Themenbereich Zinseszinsrechnung und Ratenrückzahlung

Mehr

Eine Übersicht zu unseren Excel-Informationen finden Sie hier: www.urs-beratung.de/toolbox.htm

Eine Übersicht zu unseren Excel-Informationen finden Sie hier: www.urs-beratung.de/toolbox.htm urs toolbox - Tipps für Excel-Anwender Excel - Thema: Finanzmathematik excel yourself Autoren: Ralf Sowa, Christian Hapke Beachten Sie unsere Hinweise und Nutzungsbedingungen. Vorgestellte Musterlösungen

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Vorlesungsrogramm für den 23. 11. 2006 (K. Steffen, Heinrich-Heine-Universität Düsseldorf, WS 2006/07) 2.2 Zins- und Zinseszinsrechnung Einfache Verzinsung liegt

Mehr

Finanzmathematik mit Excel

Finanzmathematik mit Excel Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung

Mehr

Finanzplaner minimuss

Finanzplaner minimuss Finanzplaner minimuss Werden Sie Ihr eigener Finanzberater: Mit dem Finanzplaner minimuss prüfst Du eigenständig z.b. Kredit und Sparverträge oder berechnest Deine eigene Altersvorsorgestrategie. Der Finanzplaner

Mehr

Barwertmethode. So läßt sich jeder Geldbetrag über die Zeit transformieren.

Barwertmethode. So läßt sich jeder Geldbetrag über die Zeit transformieren. Barwertmethode Ausgangspunkt: Mit Geld ist es wie mit Obst, Autos, radioaktivem Material,., einfach allem. Mit der Zeit vergammelt es, zerfällt, verrostet. Jeder kann bestätigen, dass 1 Million sofort

Mehr

Aufgabensammlung Grundlagen der Finanzmathematik

Aufgabensammlung Grundlagen der Finanzmathematik Aufgabensammlung Grundlagen der Finanzmathematik Marco Papatrifon Zi.2321 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 1 Zinsrechnung Aufgabe 1 Fred überweist 6000 auf

Mehr

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W 6. Zinsrechnen 382 Wie viele Zinsen bringt ein Kapital in HoÈ he von 8.000,00 a bei einem Zinssatz von 6 % p.a. in 90 Tagen? (A) 90,00 W (B) 120,00 W (C) 180,00 W (D) 210,00 W (E) 240,00 W 383 Zu welchem

Mehr

Aufgaben zum Zinsrechnen, Nr. 1

Aufgaben zum Zinsrechnen, Nr. 1 Aufgaben zum Zinsrechnen, Nr. 1 1.) Berechnen Sie die jährlichen Zinsen! a) 42 T zu 9 % d) 36 T zu 6¾ % b) 30 T zu 7½ % e) 84 T zu 9¼ % c) 12 T zu 7¼ % f) 24 T zu 9¼ % 2.) Berechnen Sie Z! a) 2.540 zu

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 6 gesamt erreichbare P. 6 10 12 12

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

lebensbegleitenden Finanzmathematik

lebensbegleitenden Finanzmathematik Martin Hödlmoser Das lxl der lebensbegleitenden Finanzmathematik Kredit-, Darlehens-, Leasingraten Rendite von Veranlagungen (Sparbücher, Wertpapiere,...) Zinsverrechnungsmodalitäten Tilgungspläne Grundzüge

Mehr

Zinsrechnung A: Die Zinsen

Zinsrechnung A: Die Zinsen Zinsrechnung A: Die Zinsen EvB Mathematik Köberich Berechne bei den nachfolgenden Aufgaben jeweils die Zinsen! Z X X X X X x K 2400 2400 2400 2400 2400 2400 i 15 Tage 2 Monate 100 Tage 7 Monate ¼ Jahr

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Übungsblatt 1 Finanzmathematik

Übungsblatt 1 Finanzmathematik Übungsblatt 1 Finanzmathematik 1. Können bei einfacher Verzinsung von 6% und einer Anlagedauer von einem halben Jahr aus 1.000 e mehr als 1.030 e werden? 2. Ein fester Anlagebetrag wird bei der Privatbank

Mehr

Die Systematik der privaten, kapitalgedeckten Rentenversicherungen

Die Systematik der privaten, kapitalgedeckten Rentenversicherungen Die Systematik der privaten, kapitalgedeckten Rentenversicherungen Die Frage, wie diese Versicherungen funktionieren ist nicht einfach zu beantworten, weil es viele Unsicherheiten gibt und vieles undurchsichtig

Mehr

FINANZMATHEMATIK. 1. Investitionsrechnung. Finanzmathematik 135

FINANZMATHEMATIK. 1. Investitionsrechnung. Finanzmathematik 135 Finanzmathematik 15 FINANZMATHEMATIK 1. Investitionsrechnung Unter einer Investition im engeren Sinn versteht man die Beschaffung von Anlagen, die zur Erzielung eines wirtschaftlichen Nutzens dienen. Wir

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Vorlesungsprogramm für den 30. 11. 2006 (K. Steffen, Heinrich-Heine-Universität Düsseldorf, WS 2006/07) 2.4 Rentenrechnung bei Zinsesverzinsung Wir betrachten

Mehr

Aufgaben zur Finanzmathematik, Nr. 1

Aufgaben zur Finanzmathematik, Nr. 1 Aufgaben zur Finanzmathematik, Nr. 1 1.) Ein Unternehmen soll einen Kredit in Höhe von 800.000 in fünf gleich großen Tilgungsraten zurückzahlen. Der Zinssatz beträgt 6,5 % p. a. Erstellen Sie einen Tilgungsplan!

Mehr

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss: 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können.

Mehr

Finanzmathematik - Grundlagen

Finanzmathematik - Grundlagen Finanzmathematik - Grundlagen Aufgabensammlung Sommersemester 2005 Marco Papatrifon Institut für Statistik und Mathematische Wirtschaftstheorie Klausur 2002 Aufgabe 1 Student K. Toffel überzieht sein Girokonto

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Funktionen sind in Excel programmierte Berechnungsformeln, in die nur noch die für die Berechnung maßgebenden

Funktionen sind in Excel programmierte Berechnungsformeln, in die nur noch die für die Berechnung maßgebenden MS Excel 2010 Intensiv Funktionen 4 FUNKTIONEN Funktionen sind in Excel programmierte Berechnungsformeln, in die nur noch die für die Berechnung maßgebenden Argumente eingegeben werden müssen. Die Erstellung

Mehr

Grundlagen: Folgen u. endliche Reihen Zinsrechnung Renten-/Investitionsrechnung Tilgungsrechnung Abschreibungen. Finanzmathematik. Fakultät Grundlagen

Grundlagen: Folgen u. endliche Reihen Zinsrechnung Renten-/Investitionsrechnung Tilgungsrechnung Abschreibungen. Finanzmathematik. Fakultät Grundlagen Finanzmathematik Fakultät Grundlagen September 2011 Fakultät Grundlagen Finanzmathematik Grundlagen: Folgen und endliche Reihen Rentenrechnung Fakultät Grundlagen Finanzmathematik Folie: 2 Folgen Reihen

Mehr

Abschlussprüfung 2010 an zwei-, drei- und vierstufigen Wirtschaftsschulen

Abschlussprüfung 2010 an zwei-, drei- und vierstufigen Wirtschaftsschulen Abschlussprüfung 2010 an zwei-, drei- und vierstufigen Wirtschaftsschulen Prüfungsfach: Mathematik Prüfungstag: Donnerstag, 1. Juli 2010 Arbeitszeit: 180 Minuten Zugelassene Hilfsmittel: Elektronischer,

Mehr

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN Finanzmathematik Kapitel 3 Tilgungsrechnung Prof. Dr. Harald Löwe Sommersemester 2012 Abschnitt 1 HYPOTHEKENDARLEHEN Festlegungen im Kreditvertrag Der Kreditvertrag legt u.a. folgende Daten fest Kreditsumme

Mehr

Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER

Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER Kirsten Wüst Finanzmathematik Vom klassischen Sparbuch zum modernen Zinsderivat GABLER I Inhaltsverzeichnis VORWORT V INHALTSVERZEICHNIS VII ABBILDUNGSVERZEICHNIS XV TABELLENVERZEICHNIS XVII 1 ZINSFINANZINSTRUMENTE

Mehr

PLANUNG UND ENTSCHEIDUNG EXCEL-FORMELN. für INVESTITIONSRECHNUNGEN

PLANUNG UND ENTSCHEIDUNG EXCEL-FORMELN. für INVESTITIONSRECHNUNGEN . UNIVERSITÄT HOHENHEIM INSTITUT FÜR LNDWIRTSCHFTLICHE ETRIESLEHRE FCHGEIET: PRODUKTIONSTHEORIE UND RESSOURCENÖKONOMIK. Prof. Dr. Stephan Dabbert PLNUNG UND ENTSCHEIDUNG EXCEL-FORMELN für INVESTITIONSRECHNUNGEN

Mehr

Lernfeld 11 Finanzierung Musterlösungen zum Modul Finanzierungsbegleitende Buchungen

Lernfeld 11 Finanzierung Musterlösungen zum Modul Finanzierungsbegleitende Buchungen Aufgabe 1 Nennen und erläutern Sie drei Darlehensformen nach den Tilgungsarten und nennen Sie je ein Beispiel. Lösung 1 Hinweis: Leider werden die Begrifflichkeiten in verschiedenen Lehrbüchern u. a. Veröffentlichungen

Mehr

Einführung in die Betriebswirtschaftslehre

Einführung in die Betriebswirtschaftslehre Ernst-Moritz-Arndt- Rechts- und Staatswissenschaftliche Fakultät Lehrstuhl für Betriebswirtschaftslehre, insbesondere Marketing Daniel Hunold Skript zur Übung Einführung in die Betriebswirtschaftslehre

Mehr

Ganz entspannt zum Ziel: Mit regelmäßigem Sparen.

Ganz entspannt zum Ziel: Mit regelmäßigem Sparen. Ganz entspannt zum Ziel: Mit regelmäßigem Sparen. www.sparkasse-herford.de Es gibt vielfältige Strategien, ein Vermögen aufzubauen. Dabei spielen Ihre persönlichen Ziele und Wünsche, aber auch Ihr individuelles

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre. Lösungshinweise zur Einsendearbeit 1 (WS 2010/2011)

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre. Lösungshinweise zur Einsendearbeit 1 (WS 2010/2011) Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 1,2 und 3, WS 2010/2011 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

A n a l y s i s Finanzmathematik

A n a l y s i s Finanzmathematik A n a l y s i s Finanzmathematik Die Finanzmathematik ist eine Disziplin der angewandten Mathematik, die sich mit Themen aus dem Bereich von Finanzdienstleistern, wie etwa Banken oder Versicherungen, beschäftigt.

Mehr

Finanzmathematik. Über Kapital sollte man viel wissen. Besonders über sein eigenes.

Finanzmathematik. Über Kapital sollte man viel wissen. Besonders über sein eigenes. 1 Finanzmathematik TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Institut für Numerische Mathematik und Optimierung Dr.rer.nat. H. Schreier Sommersemester 2012 Die Finanzmathematik ist

Mehr

Kapitalversicherungen

Kapitalversicherungen Kapitalversicherungen Sanela Omerovic Proseminar Versicherungsmathematik TU Graz 11. Dezember 2007 Inhaltsverzeichnis 1 Einführung 1 2 Einfache Versicherungsformen 3 2.1 Todesfallversicherungen (Life Insurance)....................

Mehr

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Errata in Grundlagen der Finanzierung verstehen berechnen entscheiden Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Stand 10. April 2006 Änderungen sind jeweils fett hervorgehoben.

Mehr

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate 1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00

Mehr

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen.

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen. Zinsen berechnen Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Grundwert G Kapital K Prozentwert P Zinsen Z Prozentsatz p Zinssatz p Frau Mayer hat ein Guthaben von

Mehr

Geldanlage auf Bankkonten

Geldanlage auf Bankkonten Das Tagesgeldkonto ist ein verzinstes Konto ohne festgelegte Laufzeit. Dabei kann der Kontoinhaber jederzeit in beliebiger Höhe über sein Guthaben verfügen. Kündigungsfristen existieren nicht. Je nach

Mehr

Library 1672: Finanzmathematik

Library 1672: Finanzmathematik Library 1672: Finanzmathematik Inhalt: 1. Disclaimer & Copyright...2 2. Credits...2 3. Systemvoraussetzung & Installation...2 3.1. Systemvoraussetzung...2 3.2. Installation...2 4. Was dieses Programm berechnet...3

Mehr

Beschreibung der einzelnen Berechnungsarten

Beschreibung der einzelnen Berechnungsarten Beschreibung der einzelnen Berechnungsarten 1.0 Historische Wertentwicklungen 1.1 Berechnung einer Einzelanlage in Prozent Die Berechnung der Wertentwicklung erfolgt nach den Vorgaben des BVI: Die Berechnung

Mehr

Excel Pivot-Tabellen 2010 effektiv

Excel Pivot-Tabellen 2010 effektiv 7.2 Berechnete Felder Falls in der Datenquelle die Zahlen nicht in der Form vorliegen wie Sie diese benötigen, können Sie die gewünschten Ergebnisse mit Formeln berechnen. Dazu erzeugen Sie ein berechnetes

Mehr

Kreditmanagement. EK Finanzwirtschaft

Kreditmanagement. EK Finanzwirtschaft EK Finanzwirtschaft a.o.univ.-prof. Mag. Dr. Christian KEBER Fakultät für Wirtschaftswissenschaften www.univie.ac.at/wirtschaftswissenschaften christian.keber@univie.ac.at Kreditmanagement 1 Kreditmanagement

Mehr

10.1 Zinsperioden und effektive Raten

10.1 Zinsperioden und effektive Raten Kapitel 10 Themen aus der Finanzmathematik: Zinsraten und Barwerte Dann hättest du mein Geld zu den Wechslern bringen sollen, und wenn ich gekommen wäre, hätte ich das Meine wiederbekommen mit Zinsen.

Mehr

UNIVERSITÄT HOHENHEIM

UNIVERSITÄT HOHENHEIM UNIVERSITÄT HOHENHEIM INSTITUT FÜR LANDWIRTSCHAFTLICHE BETRIEBSLEHRE FACHGEBIET: PRODUKTIONSTHEORIE UND RESSOURCENÖKONOMIK Prof. Dr. Stephan Dabbert Planung und Entscheidung (B 00202) Lösung Aufgabe 7

Mehr

Anlageentscheidung. Wofür würdest du eigentlich sparen? 1 Sparen + Anlegen. Nele + Freunde. Sparmotive

Anlageentscheidung. Wofür würdest du eigentlich sparen? 1 Sparen + Anlegen. Nele + Freunde. Sparmotive 1 Wofür würdest du eigentlich sparen? Endlich 16 Jahre alt! Die Geburtstagsfeier war super, alle waren da. Und Nele hat tolle Geschenke bekommen. Das Beste kam allerdings zum Schluss, als die Großeltern

Mehr

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011 Mathematik-Klausur vom 08.07.20 und Finanzmathematik-Klausur vom 4.07.20 Studiengang BWL DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min

Mehr

Lebensversicherung. http://www.konsument.at/cs/satellite?pagename=konsument/magazinartikel/printma... OBJEKTIV UNBESTECHLICH KEINE WERBUNG

Lebensversicherung. http://www.konsument.at/cs/satellite?pagename=konsument/magazinartikel/printma... OBJEKTIV UNBESTECHLICH KEINE WERBUNG Seite 1 von 6 OBJEKTIV UNBESTECHLICH KEINE WERBUNG Lebensversicherung Verschenken Sie kein Geld! veröffentlicht am 11.03.2011, aktualisiert am 14.03.2011 "Verschenken Sie kein Geld" ist der aktuelle Rat

Mehr

Finanzmathematik I: Zins- und Zinseszinsrechnung

Finanzmathematik I: Zins- und Zinseszinsrechnung Dr. habil. Burkhard Utecht Berufsakademie Thüringen Staatliche Studienakademie Studienabteilung Eisenach Studienbereich Wirtschaft Wirtschaftsmathematik Wintersemester 2004/05 Finanzmathematik I: Zins-

Mehr

Anleitung Kredit-Inspektion

Anleitung Kredit-Inspektion Seite 1 Anleitung Kredit-Inspektion Copyright by: Instrumenta GmbH Alle Rechte vorbehalten. Seite 2 Der Mandant hat Ihrer Kanzlei den Auftrag zur Kredit-Inspektion gegeben. In dieser Anleitung erfahren

Mehr

Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 1244 ff. In Kraft getreten am 1.

Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 1244 ff. In Kraft getreten am 1. Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 44 ff. In Kraft getreten am 1. September 2000 6 Kredite (1) Bei Krediten sind als Preis die Gesamtkosten als jährlicher

Mehr

Private Altersvorsorge FLEXIBLE RENTE. Bleiben Sie flexibel. Die Rentenversicherung mit Guthabenschutz passt sich Ihren Bedürfnissen optimal an.

Private Altersvorsorge FLEXIBLE RENTE. Bleiben Sie flexibel. Die Rentenversicherung mit Guthabenschutz passt sich Ihren Bedürfnissen optimal an. Private Altersvorsorge FLEXIBLE RENTE Bleiben Sie flexibel. Die Rentenversicherung mit Guthabenschutz passt sich Ihren Bedürfnissen optimal an. Altersvorsorge und Vermögensaufbau in einem! Wieso zwischen

Mehr

Angewandte Mathematik

Angewandte Mathematik Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 11. Mai 2015 Angewandte Mathematik Teil B (Cluster 8) Hinweise zur Aufgabenbearbeitung Das vorliegende

Mehr

GTR bis Klasse 11 (in G9) (Stand 25.07.2009)

GTR bis Klasse 11 (in G9) (Stand 25.07.2009) GTR bis Klasse 11 (in G9) (Stand 25.07.2009) Länge einer Strecke: z.b. für A(1,2 4), B(3,4 5,5) ; über den Satz des Pythagoras: 2nd ( ( 3,4 1,2) 2 + (5,5 4) 2 ) ENTER 2,66 wenn man nicht über den Satz

Mehr

Wirtschaftsmathe für W-Ing. Aufgabensammlung Teil 1 Sommersemester 2015

Wirtschaftsmathe für W-Ing. Aufgabensammlung Teil 1 Sommersemester 2015 Wirtschaftsmathe für W-Ing. Aufgabensammlung Teil 1 Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Aufgabe 1 Eine Rechnung über 3.250 wird nicht sofort bezahlt. Daher sind Verzugszinsen

Mehr

auf den Effektivzins Von Prof. Heinrich Bockholt und Werner Dütting

auf den Effektivzins Von Prof. Heinrich Bockholt und Werner Dütting 38 finanzplanung konkret Finanz-Training Der Zwang von Restschuldversicherungen und Auswirkungen auf den Effektivzins Von Prof. Heinrich Bockholt und Werner Dütting In den Medien geistert seit einiger

Mehr

Das Sparkonto. 2. Wenn du ein Sparkonto eröffnest, erhältst du als Nachweis ein.

Das Sparkonto. 2. Wenn du ein Sparkonto eröffnest, erhältst du als Nachweis ein. Das Sparkonto 1. Warum eröffnen Menschen Sparkonten? Weil sie Geld möchten. 2. Wenn du ein Sparkonto eröffnest, erhältst du als Nachweis ein. 3. Deine Ersparnisse sind auf einem Sparkonto sicherer als

Mehr

Grundlagen Programmierung

Grundlagen Programmierung 1. Aufgabe (Spielen mit Objekten) Gegeben sei der auch von der Veranstaltungsseite erhältliche Programmcode auf der rechten Seite, der im Detail zuerst nicht verstanden werden muss. a) Erzeugen Sie sich

Mehr

Finanzmathematik, Investition und Finanzierung

Finanzmathematik, Investition und Finanzierung Finanzmathematik, Investition und Finanzierung Aufgaben und Fälle / von Prof. Dr. Christa Drees-Behrens Prof. Dr. Matthias Kirspel Prof. Dr. Andreas Schmidt Prof. Helmut Schwanke 2., überarbeitete Auflage

Mehr

Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1

Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 Berufliches Schulzentrum Matthäus Runtinger Rechnen für Bankkaufleute - 11. Jgst. BRW11-1 1. Aufgabe Der durchschnittliche Einlagenbestand eines KI gliedert sich in - Sichteinlagen 360 Mio. zu 0,4 % -

Mehr

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf?

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Andreas Rieder UNIVERSITÄT KARLSRUHE (TH) Institut für Wissenschaftliches Rechnen und

Mehr

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle CAS-Ansicht Computer Algebra System & Cas spezifische Befehle GeoGebra Workshop Handout 10 1 1. Einführung in die GeoGebra CAS-Ansicht Die CAS-Ansicht ermöglicht die Verwendung eines CAS (Computer Algebra

Mehr

Mathematik-Klausur vom 16.4.2004

Mathematik-Klausur vom 16.4.2004 Mathematik-Klausur vom 16..200 Aufgabe 1 Die Wucher-Kredit GmbH verleiht Kapital zu einem nominellen Jahreszinsfuß von 20%, wobei sie die anfallenden Kreditzinsen am Ende eines jeden Vierteljahres der

Mehr

Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter

Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter Aufgabe 3: Konto Um Geldbeträge korrekt zu verwalten, sind zwecks Vermeidung von Rundungsfehlern entweder alle Beträge in Cents umzuwandeln und

Mehr

Kurzanleitung und Hinweise zu dieser Vorlage

Kurzanleitung und Hinweise zu dieser Vorlage Kurzanleitung und Hinweise zu dieser Vorlage Enthaltene Vorlagen und Aufbau der Datei In dieser Excel Vorlagen Datei sind drei völlig unabhängige Vorlagen zur Berechnung von unterschiedlichen Darlehen

Mehr

Pensionskassen. Mitarbeitervorsorgekassen. Beschreibung der Kennzahlenberechnung

Pensionskassen. Mitarbeitervorsorgekassen. Beschreibung der Kennzahlenberechnung ensionskassen Mitarbeitervorsorgekassen Beschreibung der Kennzahlenberechnung Februar 2011 2 Inhalt Kennzahlen 1 Kennzahlenberechnung der OeKB 5 1.1 Kennzahlen für ensionskassen... 5 1.2 Kennzahlen für

Mehr

Finanzierung Kapitel 4: Der Zeitwert des Geldes

Finanzierung Kapitel 4: Der Zeitwert des Geldes Kapitel 4: Der Zeitwert des Geldes von Sommersemester 2010 Grundlegendes zur Investitionstheorie Jedes Investitionsprojekt kann abstrakt als eine zeitliche Verteilung von Cash-Flows betrachtet werden.

Mehr