Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Größe: px
Ab Seite anzeigen:

Download "Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66"

Transkript

1 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

2 Skalenniveaus Skalenniveau Relation zwischen Ausprägungen Beispiele Nominal Klassifikation Familienstand, Religion, Parteineigung Ordinal Rangordnung Einstellungsmessungen Intervall Ratio Abstand Verhältnis Temperatur in Grad Celsius, Geburtsjahr Alter, Einkommen, Geburtsgewicht Intervall- & Ratioskalen: metrische Skalen Gruppierte Daten (meist metrische )Daten werden in Kategorien zusammengefasst Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

3 Häufigkeitstabellen ungruppierte Daten Valid Missing Total Total System Bundesland Cumulative Frequency Percent Valid Percent Percent Absolute Häufigkeit Relative Häufigkeit Gültige relative Häufigkeit Kumulierte relative Häufigkeit Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

4 Häufigkeitstabellen ungruppierte Daten k..anzahl der Kategorien einer Variable (15) n..anzahl der Beobachtungen (5444) nk.. Anzahl der Beobachtungen in Kategorie k Absolute Häufigkeit: n k..anzahl der Fälle, die die k-te Ausprägung der Variable x annehmen (n8 = 303) Relative Häufigkeit p k =n k /n *100 er Ausprägung k (p8 = 5.6%) Prozentanteil der Beobachtungen in Kategorie k Gültige Relative Häufigkeit p k (gültig)=n k /(n - missing) : (p8 (gültig) = 5.6) Prozentanteil der gültigen Beobachtungen in Kategorie Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

5 Häufigkeitstabellen ungruppierte Daten Kumulierter Anteil Summe der Anteile von der ersten Kategorie einer Variablen bis zur zu einer bestimmten Kategorie, einschliesslich des Wertes der Kategorie cp(x 8 )=47.2% cp t ( t) = p i t=1,..,k i= 1 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

6 Häufigkeitstabellen gruppierte Daten Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 Quelle: Kühnel, Krebs 2001 S. 49 6/19

7 Empirische Verteilungsfunktion Quelle: Kühnel, Krebs 2001 S. 51 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

8 Quantilwerte ungruppierte Daten Kumulierter Anteil % Median: 3400g Q 0.25 =3060g Q 0.75 =3710g Geburtsgewicht in g Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

9 Quantile Q25: 25% Quantil 25% der Geburtsgewichte sind kleiner bzw. gleich 3060g, 75% der Geburtsgewichte liegen über 3060g Q50=Median 50% der Geburtsgewicht liegen unter 3400g, 50% darüber Q75: 75% Quantil 75% der Geburtsgewichte sind kleiner bzw. gleich 3710g, 25% liegen darüber Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

10 Bestimmung von Quantilswerten 1. Ungruppierte Daten: entsprechen kumulierten relativen Häufigkeiten in einer Häufigkeitstabelle 2. Rangreihen von Daten 1,4, 6,7,9,10,20,22,25,36,38,50,55,60,61,67,68 Bsp: n=17 Quantilanteil =0.25 i=4.25 ->nächsthöhere ganze Zahl=5 Q25=9 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

11 Bestimmung von Quantilswerten bei gruppierte Daten Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

12 Graphische Darstellung von Häufigkeitsverteilungen 1. Metrische Variablen Stabdiagramm Histogramm Box plots 2. Nominalskalierte Variablen Balkendiagramm Kreisdiagramm Säulendiagramm Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

13 Stabdiagramm Länge der Linie: Häufigkeit der Ausprägung nicht so günstig für metrische Variablen mit vielen Ausprägungen Anzahl Missing Geburtsgewicht in g Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

14 Histogramm Gruppierte metrische Variablen einander berührende Balken Flächentreue A) B) gleich grosse ungleich grosse Klassen Klassen Höhe der Balken: Höhe der Balken: Häufigkeit der Quotient Relative Häufigkeit Kategorie zu Klassenbreite Geburtsgewicht in g Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

15 Charakteristika von Häufigkeitsvereilungen Unimodal, symmetrisch U-förmig, bimodal, symmetrisch Linksschief, rechtssteil Rechtsschief, linkssteil steile Verteilung flache Verteilung Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 Kühnel, Krebs 2001 S /19

16 N = Box-Plot metrische Variablen rote Box: mittlere 50% der Verteilung Grenzen der Box: 25% und 75% Quantil mittlerer Wert in der Box: Median Kreise: Outliers; Sterne: extreme Outliers Linien außerhalb der Box: Wertebereich der Normalverteilung 5406 Geburtsgewicht in g Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

17 Balkendiagramm %Häufigkeit der Wahlabsicht Kühnel, Krebs 2001 S. 62 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

18 Kreis/Tortendiagramm Kühnel, Krebs 2001 S. 62 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

19 Säulendiagramm %Anteil Geburten nach Geschlecht 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Mädchen Buben Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /19

20 Kennwerte Univariater Verteilungen Kühnel, Krebs Statistik für die Sozialwissenschaften, S Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

21 Kennwerte univariater Verteilungen Lagemasse (Masse der zentralen Tendenz) Streuungsmasse Schiefemasse Lagemasse Arithmetische Mittel: Schwerpunkt der Verteilung Modus: am häufigsten auftretende Ausprägung einer Verteilung Median: teilt Verteilung in zwei gleich grosse Teile Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

22 Lagemasse SPSS Output Statistiken Geburtsgewicht in g N Gültig Fehlend Mittelwert Median Modus Perzentile , , , , ,00 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

23 Lagemasse Stabdiagramm Geburtsgewicht Modus: 3700g Median: 3420g Mittelwert: 3360g Q 0.25 : 3030g Q 0.75 : 3720g Absolute Werte Fehlend Geburtsgewicht in g Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

24 Median=Q 0.50 Gerade Fallzahl Ungerade Fallzahl Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

25 Arithmetische Mittel Rohdaten n.. Anzahl der Beobachtungen Ungruppierte Häufigkeitstabelle n k..anzahl der Beobachtungen in Kategorie k Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

26 Arithmetische Mittel Gruppierte Häufigkeitstabelle m k..klassenmitte der Kategorie k n i= 1 ( x x) = 0 i Die Summe aller Abweichungen vom Mittelwert ist stets Null Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

27 Geometrische Mittel Durchschnittswert bei prozentuellen Änderungen Jahr Zinsen Basispreis 1 E 1 15% 1,15 E 2 10% 1,265 E (=1.15 E*1.10) 3 20% 1,518 E (=1,265 E*1.20) 1,518=1 E * 1,15 * 1,10 * 1,20 Durchschnittliche Zinsen? = *1.10*1. 20 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

28 Welches Lagemass soll wann eingestezt werden? Abhängig von Skalenniveau Robustheit gegenüber Extremwerten Modus: häufigste Wert Vorteile alle Skalenniveaus leicht zu bestimmen Nachteile Geringe Informationen über Verteilung Fehlende Eindeutigkeit bei mehrgipfeligen Verteilungen Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

29 Welches Lagemass soll wann eingesetzt werden? Extremwerte Information aus Verteilung Median unempfindlich wenig arithmetisches Mittel empfindlich alle Werte Skalenniveau Rang + metrische Skalen metrische Skalen Beobachtung i Beispiel 1 Beispiel Median ( i=(n+1)/2=6) arithmetisches Mittel 12-78,91 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

30 Streuungsmasse Spannweite (Maximum-Minimum) Quartilabstand (Q Q 0.25 ) Varianz Standardabweichung Variationskoeffizient Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

31 Varianz Varianz wird kleiner: je näher die einzelnen Werte beim Mittelwert liegen Daten Arithmetische Mittel=2,5 SSx (1-2,5) 2 (2-2,5) 2 (3-2,5) 2 (4-2,5) 2 Varianz 1,66667 Varianz wird größer: je mehr die einzelnen Werte vom Mittelwert abweichen Daten Arithmetische Mittel=2,5 SSx (1-2,5) 2 (1-2,5) 2 (1-2,5) 2 (7-2,5) 2 Varianz 9 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

32 Standardabweichung Daten Arithmetische Mittel=2,5 SSx (1-2,5) 2 (2-2,5) 2 (3-2,5) 2 (4-2,5) 2 Varianz 1,66667 Standardabweichung 1, Daten Arithmetische Mittel=2,5 SSx (1-2,5) 2 (1-2,5) 2 (1-2,5) 2 (7-2,5) 2 Varianz 9 Standardabweichung 3 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

33 Variationskoeffizient Daten Arithmetische Mittel=2,5 SSx (1-2,5) 2 (2-2,5) 2 (3-2,5) 2 (4-2,5) 2 Varianz 1,66667 Standardabweichung 1, Variationskoeffizient 0, Daten Arithmetische Mittel=2,5 SSx (1-2,5) 2 (1-2,5) 2 (1-2,5) 2 (7-2,5) 2 Varianz 9 Standardabweichung 3 Variationskoeffizient 1,2 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

34 Streuungsmasse SPSS Output Spannweite Quartilabstand Varianz Standardabweichung Variationskoeffizient Statistiken Geburtsgewicht in g N Standardabweichung Varianz Spannweite Minimum Maximum Perzentile Gültig Fehlend , , , , ,00 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

35 Schiefe & Steilheit von Verteilungen Bestimmung über Lagemasse Unimodale symmetrische Verteilung: Modus=Median=Mittelwert 2. Mehrgipfelige symmetrische Verteilung Median=Mittelwert 3. Rechtsschiefe Verteilung Modus<Median<Mittelwert 4. Linksschiefe Verteilung Modus>Median>Mittelwert Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

36 Schiefe & Steilheit von Verteilungen Schiefekoeffizient (SK) SK>0 rechtsschiefe Verteilung SK<0 linksschiefe Verteilung SK=0 symmetrische Verteilung Steilheit (Kurtosis) ST>0 steile Verteilung ST<0 flache Verteilung Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

37 Geburtsgewichtsverteilung Statistiken Geburtsgewicht in g N Gültig 539 Fehlend 3 Mittelwert 3366g Lagemasse Median 3420g Modus 3700g Standardabweichung 544,56g Streuungsmasse Varianz ,03 Variationskoeffizient 0,16 Spannweite 3480g Minimum Maximum 1190g 4670g Perzentile g g g Quartilsabstand 690g Schiefe -0,75 Schiefe und Steilheit Kurtosis 1,24 Linksschiefe, steile Verteilung Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS /18

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Statistik I im Sommersemester 2006

Statistik I im Sommersemester 2006 Statistik I im Sommersemester 2006 Themen am 23.4.2007: Univariate Häufigkeitsverteilungen I Darstellung univariater Verteilungen in Häufigkeitstabellen Verteilungsfunktionen und Quantile Grafische Darstellungen

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Univariate Kennwerte mit SPSS

Univariate Kennwerte mit SPSS Univariate Kennwerte mit SPSS In diesem Paper wird beschrieben, wie eindimensionale Tabellen und Kennwerte mit SPSS erzeugt werden. Eine Herleitung der Kennwerte und eine inhaltliche Interpretation der

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 25. August 2009 25. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Überblick: 1. Hilfsbefehl und Datentransformationsbefehl (EXECUTE und COMPUTE) 2. Möglichkeiten

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Verteilungen und ihre Darstellungen

Verteilungen und ihre Darstellungen Verteilungen und ihre Darstellungen Übung: Stamm-Blatt-Diagramme Wie sind die gekennzeichneten Beobachtungswerte eweils zu lesen? Tragen Sie in beiden Diagrammen den Wert 0.452 an der richtigen Stelle

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen

Mehr

Beschreibung univariater Verteilungen

Beschreibung univariater Verteilungen Inhaltsverzeichnis Beschreibung univariater Verteilungen... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-4)... 4 1. Verteilungsformen... 4 2. Masse der zentralen Tendenz (Mittelwerte)... 5 Einleitung...

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik. Deskriptive Statistik. Deskriptive Statistik. 1.Tabellen.

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik. Deskriptive Statistik. Deskriptive Statistik. 1.Tabellen. Department of Sport Science and Kinesiology Block 1 Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Gerda Strutzenberger Block I Mittwoch 15.2.2012 13:00 bis 14:50 Grundlagen, Skalenniveau

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Sommersemester 2009 Modus Median Arithmetisches Mittel Symmetrie/Schiefe Wölbung/Exzess 4 6 8 10 ALQ Tutorien Begleitend zur Vorlesung, inhaltlich identisch mit der Übung Mögliche Zeiten: Do 10-12, Do

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Ziel: Charakterisierung der Verteilung einer Variablen. Je nach Variablentyp geschieht dies durch Häufigkeitsauszählung und Modus (Nominale

Mehr

Univ.-Prof. Dr. Georg Wydra

Univ.-Prof. Dr. Georg Wydra Univ.-Prof. Dr. Georg Wydra Methoden zur Auswertung von Untersuchungen 1 SKALENTYPEN UND VARIABLEN 2 ZUR BEDEUTUNG DER STATISTIK IN DER FORSCHUNG 3 STATISTIK ALS VERFAHREN ZUR PRÜFUNG VON HYPOTHESEN 4

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Sommersemester 2009 Wiederholung/Einführung Modus Median Arithmetisches Mittel Symmetrie/Schiefe Wölbung/Exzess 4 6 8 10 ALQ Tutorien Begleitend zur Vorlesung, inhaltlich identisch mit der Übung Mögliche

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

PROC UNIVARIATE. Starten Sie die Programmzeilen aus dem Beispiel, zeigt SAS im Output-Fenster die Informationen auf der Rückseite:

PROC UNIVARIATE. Starten Sie die Programmzeilen aus dem Beispiel, zeigt SAS im Output-Fenster die Informationen auf der Rückseite: PROC UNIVARIATE zum Berechnen statistischer Maßzahlen, Prüfung auf Normalverteilung, Häufigkeitslisten für stetige Merkmale (für quantitative Merkmale) Allgemeine Form: PROC UNIVARIATE DATA=name Optionen

Mehr

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK PROF. DR. CHRISTINA BIRKENHAKE Inhaltsverzeichnis 1. Merkmale 2 2. Urliste und Häufigkeitstabellen 9. Graphische Darstellung von Daten 10 4. Lageparameter 1

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 8. Mai 2009 8. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Hilfsbefehl und Datentransformationsbefehl (II) 1.a. execute 1.b. compute

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von

Mehr

Deskriptive Statistik & grafische Darstellung

Deskriptive Statistik & grafische Darstellung Deskriptive Statistik & grafische Darstellung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Deskriptive

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter, hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Ziele 2. Lageparameter 3.

Mehr

Maße der zentralen Tendenz

Maße der zentralen Tendenz UStatistische Kennwerte Sagen uns tabellarische und graphische Darstellungen etwas über die Verteilung der einzelnen Werte einer Stichprobe, so handelt es sich bei statistischen Kennwerten um eine Kennzahl,

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 1 Univariate deskriptive Statistik 80 Deskriptive Statistik Data

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Univariate deskriptive Statistik. Rohdaten und Datenmatrix

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Univariate deskriptive Statistik. Rohdaten und Datenmatrix Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Univariate deskriptive Statistik Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 80 Deskriptive Statistik Rohdaten

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

2. Beschreibung von eindimensionalen (univariaten) Stichproben

2. Beschreibung von eindimensionalen (univariaten) Stichproben 1 2. Beschreibung von eindimensionalen (univariaten) Stichproben Bei eindimensionalen (univariaten) Daten wird nur ein Merkmal untersucht. Der Fall von zwei- oder mehrdimensionalen Daten wird im nächsten

Mehr

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage i Günther Bourier Beschreibende Statistik Praxisorientierte Einführung - Mit Aufgaben und Lösungen 12., überarbeitete und aktualisierte Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort V 1 Einführung

Mehr

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19 Inhaltsverzeichnis Über den Autor 7 Über den Fachkorrektor 7 Einführung 19 Über dieses Buch 19 Törichte Annahmen über den Leser 20 Wie dieses Buch aufgebaut ist 20 Teil I: Ein paar statistische Grundlagen

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

2 Statistische Maßzahlen

2 Statistische Maßzahlen 2 Statistische Maßzahlen Übersicht 2.1 Quantile, speziellmedian, QuartileundPerzentile... 25 2.2 Modus, Median, arithmetischesmittel... 28 2.3 Arithmetisches,geometrisches,harmonischesMittel... 31 2.4

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

Bivariate Kreuztabellen

Bivariate Kreuztabellen Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52 2 Häufigkeitsverteilungen 2.0 Grundbegriffe Ziel: Darstellung bzw. Beschreibung (Exploration) einer Variablen. Ausgangssituation: An n Einheiten ω 1,..., ω n sei das Merkmal X beobachtet worden. x 1 =

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Deskriptive Statistik II. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Deskriptive Statistik II. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Deskriptive Statistik II Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Übersicht Wiederholung Maße der zentralen Tendenz Streuungsmaße Zusammenfassung einer Verteilung tabellarisch

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Kapitel 1: Univariate Statistik

Kapitel 1: Univariate Statistik Kapitel 1: Univariate Statistik 1.1 Begriffsdefinitionen 1.1.1 Beobachtungseinheit, Merkmal Die kleinste Einheit einer statistischen Auswertung, an der Beobachtungen durchgeführt werden, ist die Beobachtungseinheit

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Gundlagen empirischer Forschung & deskriptive Statistik Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Grundlagen Vorbereitung einer empirischen Studie Allgemeine Beschreibung

Mehr

Statistische Erhebung

Statistische Erhebung Fachhochschule Hannover Sommersemester 2001 Fachbereich Information und Kommunikation Studiengang Allgemeine Dokumentation Lehrveranstaltung Deskriptive Statistik II Frau Prof. Dr. Kira Klenke Statistische

Mehr

Begriffe zur Statistik-Vorlesung

Begriffe zur Statistik-Vorlesung Begriffe zur Statistik-Vorlesung 1. Vorlesung Grundgesamtheit gesamte zu beobachtende Menge, über die man eine Aussage machen möchte; z.b. alle Studenten der FH BRS Stichprobe Teil der GGH; nutze ich,

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

Statistik 1 für SoziologInnen. Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten

Statistik 1 für SoziologInnen. Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten Statistik 1 für SoziologInnen Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten Univ.Prof. Dr. Marcus Hudec Absolute Häufigkeiten diskreter Merkmale X sei ein diskretes

Mehr

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1 1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker,

Mehr

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/ Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/2015 13.02.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

Analyse von Querschnittsdaten. Arten von Variablen und Strategien der Datenanalyse

Analyse von Querschnittsdaten. Arten von Variablen und Strategien der Datenanalyse Analyse von Querschnittsdaten Arten von Variablen und Strategien der Datenanalyse Gliederung 1. Arten von Variablen 2. Analyse einzelner Variablen (univariate Verteilungen) 3. Analyse der Zusammenhänge

Mehr

ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE

ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE 1.1 Füllen Sie bitte folgenden Lückentext aus. Daten, die in Untersuchungen erhoben werden, muss man grundsätzlich nach ihrem unterscheiden.

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Kapitel 13 Häufigkeitstabellen

Kapitel 13 Häufigkeitstabellen Kapitel 13 Häufigkeitstabellen Die gesammelten und erfaßten Daten erscheinen in der Datendatei zunächst als unübersichtliche Liste von Werten. In dieser Form sind die Daten jedoch wenig aussagekräftig

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Beschreibung von Daten

Beschreibung von Daten Kapitel 1 Beschreibung von Daten 1.1 Beispiele zum Üben 1.1.1 Aufgaben Achtung: die Nummerierung ist nicht ident mit der im Buch; Bsp. 1-1 enspricht Bsp 2-20 im Buch, 1-2 2-21 im Buch usw. 1 1 In einem

Mehr