Zwei unbekannte Zahlen und alle vier Rechenarten

Größe: px
Ab Seite anzeigen:

Download "Zwei unbekannte Zahlen und alle vier Rechenarten"

Transkript

1 Zwei unekannte Zahlen und alle vier Rechenarten HELMUT MALLAS Online-Ergänzung MNU 8/1 ( ) Seiten 1, ISSN , Verlag Klaus Seeerger, Neuss 1

2 HELMUT MALLAS Zwei unekannte Zahlen und alle vier Rechenarten Gesucht sind zwei natürliche Zahlen. Bildet man ihre Summe, ihre Differenz, ihr Produkt und ihren Quotienten und addiert diese vier Terme, erhält man 19. a) Bestimme alle Lösungen. ) Formuliere Bedingungen, die dazu führen, dass die Lösung eindeutig ist und ewerte diese Bedingungen. Nenne weitere Zahlen, die anstelle der Zahl 19 unter den gleichen Bedingungen zu einer eindeutigen Lösung führen. S. I S. I + II S. II gc MNU 8/1 ( ), ISSN , Verlag Klaus Seeerger, Neuss

3 Lösung a) Man kann z.b. durch systematisches Proieren Lösungen finden. Weil für die Sutraktion und für die Division kein Kommutativgesetz gilt, sind die eiden Zahlen nicht gleicherechtigt. Als Sutrahend spielt die zweite Zahl keine Rolle, aer als Divisor. Das spricht dafür, die zweite Zahl systematisch zu verändern und die erste Zahl passend zu suchen. Damit sich eine natürliche Zahl wie 19 ergit, muss die erste Zahl ein Vielfaches der zweiten sein. a a + a a a : Ta. 1. Lösung durch systematisches Proieren MNU 8/1 ( ), ISSN , Verlag Klaus Seeerger, Neuss 3

4 Bereits die erste Zeile führt auf eine Lösung. In den nächsten Zeilen verfehlt die Summe den Wert 19. Sofern es keine Lösung git, sind für jeden Wert von jeweils die eiden Werte von a angegeen, mit denen sich eine ganzzahlige Summe ergit, die die 19 gerade üer- zw. unterschreitet. Mit anderen Werten der ersten Zahl wäre es zwar möglich, näher an die 19 zu gelangen, aer nicht ganzzahlig. Durch diesen Verzicht auf eine essere, aer nicht ganzzahlige Annäherung wird erkennar, wann man die Suche einstellen kann: ei der Lösung a = 13, = 13. Ist größer als 13, ergit sich für den zu kleinen Wert von a nur noch 0, womit a keine natürliche Zahl mehr ist. Das nächstgrößere Vielfache von ist 1. Dieser Wert von a ist schon zu groß; damit ergeen sich oerhal von 13 nur noch Quadratzahlen größer als 19. Es kann also jenseits der Lösung a = 13, =13 keine weiteren Lösungen mehr geen. Gezielter lassen sich die Lösungen mit einer Gleichung estimmen. Seien a und die eiden natürlichen Zahlen. Dann ist a ( a + ) + ( a ) + a + = 19. Das vereinfacht sich zu a a + a + =19 und auf den gleichen Nenner geracht a + a + a = 19, Ausklammern ergit a ( + + 1) = 19 und mit der ersten inomischen Formel a ( + 1) = 19. Die Primfaktorzerlegung von 19 ist 19 = 7. a = = = Ta.. Algeraische Lösung 4 MNU 8/1 ( ), ISSN , Verlag Klaus Seeerger, Neuss

5 Quadratzahl 3 = = = = = = = = = = = = 441 Ta. 3. Gleiche Aufgaenstellung für Quadratzahlen, die in zwei verschiedene Primzahlen in zweiter Potenz zerlegt werden können Die Taelle zeigt die Lösungen. Auch ei diesem Lösungsweg leit noch zu zeigen, dass dies die einzigen Lösungen sind. Der Zähler a ( +1) muss die Primfaktoren der Zahl 19 enthalten. Daei kann der Faktor ( +1) nur die Werte 7 oder oder 7 annehmen. Der Wert 1 ist nicht möglich, weil dann = 0 wäre. Der Faktor ( +1) kann auch keine anderen Primfaktoren außer und 7 enthalten, weil sich diese nur durch Kürzen mit eliminieren ließen. Es git aer nur eine einzige Möglichkeit, dass ( +1) durch teilar ist, + 1 nämlich +1= und = 1; für alle größeren Werte von ergit keine ganze Zahl als Quotient, sondern eine rationale Zahl, die sich von kommend der Zahl 1 annähert. Der Zähler muss um den Faktor größer sein als 19, damit sich durch Kürzen 19 ergit, also a ( + 1) = 19. Dieser Faktor muss in enthalten sein. Auflösen nach ergit 19 a =. ( + 1) MNU 8/1 ( ), ISSN , Verlag Klaus Seeerger, Neuss 5

6 ) Durch geeignete Formulierungen lässt sich jede der drei Lösungen eindeutig machen, in der Reihenfolge von oen nach unten z.b. "genau eine der eiden Zahlen ist eine Quadratzahl", "die eiden Zahlen sollen verschieden und größer als 1 sein", "die eiden Zahlen sollen gleich sein". Am esten ist daei die mittlere Formulierung, denn sie verrät am wenigsten üer die Lösung. Anstelle der Zahl 19 sind alle Quadratzahlen geeignet, die je zwei verschiedene Primfaktoren in zweiter Potenz enthalten. Wenn man = 1 und a = ausschließt, ist ei diesen Quadratzahlen nur die in der Taelle dargestellte Aufteilung der Primfaktoren möglich. htt p://www.mathema. math.uni-kiel.de HELMUT MALLAS, MNU 8/1 ( ), ISSN , Verlag Klaus Seeerger, Neuss

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Inhalt. 01 Lehrplanübersicht 02 Sequenzkarte Terme Sequenzkarte Gleichungen

Inhalt. 01 Lehrplanübersicht 02 Sequenzkarte Terme Sequenzkarte Gleichungen Inhalt Seminarbuch 37 Wie war das doch gleich wieder? Seminarbuch 38 Wir lösen Gleichungen - Lösungsmodelle 1 Seminarbuch 39 Lösungsmodelle 2 Seminarbuch 40 Lösungsmodelle 3 Seminarbuch 41 Rechenregeln

Mehr

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns!

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns! Aufgaben und Lösungen. Runde 04 Über Kommentare und Ergänzungen zu diesen n freuen wir uns!» KORREKTURKOMMISSION KARL FEGERT» BUNDESWETTBEWERB MATHEMATIK Kortrijker Straße, 577 Bonn Postfach 0 0 0, 5 Bonn

Mehr

Einmaleins-Tabelle ausfüllen

Einmaleins-Tabelle ausfüllen Einmaleins-Tabelle ausfüllen M0124 FRAGE Kannst du in die leere Einmaleins-Tabelle alle Ergebnisse eintragen? ZIEL über das Einmaleins geläufig verfügen MATERIAL Einmaleins-Tabelle (leer), Schreibzeug,

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Interaktive Lösung von Tourenproblemen G. Oehm, Bauhaus-Universität-Weimar

Interaktive Lösung von Tourenproblemen G. Oehm, Bauhaus-Universität-Weimar Interaktive Lösung von Tourenprolemen G. Oehm, Bauhaus-Universität-Weimar Zusammenfassung Durch Modifiierung des ekannten Savingsalgorithmus mittels fester w. varialer Savingsparameter läßt sich ein interaktiver

Mehr

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5 Personal Computer in Betrieb nehmen 1/6 Weltweit setzen die Menschen alltäglich das Zehnersystem für Zählen und Rechnen ein. Die ursprüngliche Orientierung stammt vom Zählen mit unseren 10 Fingern. Für

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Möglichkeiten zur Optimierung von WLAN für die multimediale Inhaus-Vernetzung

Möglichkeiten zur Optimierung von WLAN für die multimediale Inhaus-Vernetzung Möglichkeiten zur Optimierung von WLN für die multimediale Inhaus-Vernetzung r.-ing. Klaus Jostschulte, r.-ing. Wolfgang Endemann, Prof. r.-ing. Rüdiger Kays, Lehrstuhl für Kommunikationstechnik der Universität

Mehr

Wirtschaftsmathematik. Studienskript.

Wirtschaftsmathematik. Studienskript. y y = f() F F3 a F b Wirtschaftsmathematik. Studienskript. Betriebswirtschaftslehre (B.A.) BWMA0 Impressum Impressum Herausgeber: Internationale Hochschule Bad Honnef Bonn International University of Applied

Mehr

7 PHASENGLEICHGEWICHTE UND PHASENÜBERGÄNGE

7 PHASENGLEICHGEWICHTE UND PHASENÜBERGÄNGE -1-7 HASENGLEICHGEWICHE UND HASENÜBERGÄNGE 7.1 Ein-Koponenten-Systee Verdapfen, Gefrieren, oder die Uwandlung von Graphit in Diaant sind Beispiele für hasenüergänge einzelner Koponenten. Noralerweise werden

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Anreizwirkungen kostenbasierter Verrechnungspreise und die Vergabe von Verfügungsrechten für Investitionen

Anreizwirkungen kostenbasierter Verrechnungspreise und die Vergabe von Verfügungsrechten für Investitionen erscheint in: Zeitschrift für etrieswirtschaftliche Forschung Veröffentlichung voraussichtlich: Frühjahr 2006 Zur Veröffentlichung akzeptiert: Oktoer 2004 Anreizwirkungen kostenasierter Verrechnungspreise

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle CAS-Ansicht Computer Algebra System & Cas spezifische Befehle GeoGebra Workshop Handout 10 1 1. Einführung in die GeoGebra CAS-Ansicht Die CAS-Ansicht ermöglicht die Verwendung eines CAS (Computer Algebra

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

Aufsätze. Eine vergleichsweise fortschrittliche Möglichkeit der institutsindividuellen Erfassung

Aufsätze. Eine vergleichsweise fortschrittliche Möglichkeit der institutsindividuellen Erfassung Aufsätze Marco Wilkens / Rainer Baule / Oliver Entrop Basel II Berücksichtigung von Diversifikationseffekten im Kreditportfolio durch das Granularity Adjustment Nachdem im Januar 2001 das zweite Konsultationspapier

Mehr

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)

DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) Aufgabe 3 Bankkonto Schreiben Sie eine Klasse, die ein Bankkonto realisiert. Attribute für das Bankkonto sind der Name und Vorname des Kontoinhabers,

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Referat. zum Proseminar: Programmiersysteme. Thema: Serialisierung. von Benedict Fehringer. Betreuer: Guido Tack Lehrstuhl: Prof. Dr.

Referat. zum Proseminar: Programmiersysteme. Thema: Serialisierung. von Benedict Fehringer. Betreuer: Guido Tack Lehrstuhl: Prof. Dr. Referat zum Proseminar: Programmiersysteme Thema: Serialisierung von Beneict Fehringer Betreuer: Guio Tack Lehrstuhl: Prof. Dr. Gert Smolka Inhaltsverzeichnis: 1. Einführung 1.1 Anwenung 1.2 Umsetzung

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

1. Asymmetrische Verschlüsselung einfach erklärt

1. Asymmetrische Verschlüsselung einfach erklärt 1. Asymmetrische Verschlüsselung einfach erklärt Das Prinzip der asymmetrischen Verschlüsselung beruht im Wesentlichen darauf, dass sich jeder Kommunikationspartner jeweils ein Schlüsselpaar (bestehend

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren Vektorgeometrie Version: 28. Dezemer 2007 Bitte nur für den Eigengerauch verwenden) mathenachhilfe.ch. Mathematische Operationen für Vektoren Addition + a + 3 = a + + + 3 + Sutraktion a 3 = a 3 Skalare

Mehr

2. Zahlendarstellung und Rechenregeln in Digitalrechnern

2. Zahlendarstellung und Rechenregeln in Digitalrechnern Zahlendarstellung und Rechenregeln in Digitalrechnern Folie. Zahlendarstellung und Rechenregeln in Digitalrechnern. Zahlensysteme Dezimales Zahlensystem: Darstellung der Zahlen durch Ziffern 0,,,..., 9.

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Modelle zur Ermittlung der Messunsicherheit in der Härtprüfung; Statistische Auswertung eines Ringversuchs mit 90 Teilnehmern

Modelle zur Ermittlung der Messunsicherheit in der Härtprüfung; Statistische Auswertung eines Ringversuchs mit 90 Teilnehmern Modelle zur Ermittlung der Messunsicherheit in der Härtprüfung; Statistische Auswertung eines Ringversuchs mit 90 Teilnehmern Christian Weißmüller, Holger Frenz Institut für Eignungsprüfung, Herten; Fachhochschule

Mehr

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1 1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Neubau eines Rewe-Lebensmittelmarktes in Witten, Ardeystraße 184

Neubau eines Rewe-Lebensmittelmarktes in Witten, Ardeystraße 184 Neuau eines Rewe-Leensmittelmarktes in Witten, Ardeystraße 184 Verkehrsgutachten erstellt im Auftrag von Udo Dzykonski Projektierung & Consulting, Witten - Projekt-Nr. 0910 - lanke verkehr. infrastruktur

Mehr

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 - 5 - Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 Frau X hat ein Angebot der Bank: Sie würde 5000 Euro erhalten und müsste

Mehr

Zuschauer beim Berlin-Marathon

Zuschauer beim Berlin-Marathon Zuschauer beim Berlin-Marathon Stefan Hougardy, Stefan Kirchner und Mariano Zelke Jedes Computerprogramm, sei es ein Betriebssystem, eine Textverarbeitung oder ein Computerspiel, ist aus einer Vielzahl

Mehr

194 Beweis eines Satzes von Tschebyschef. Von P. E RDŐS in Budapest. Für den zuerst von T SCHEBYSCHEF bewiesenen Satz, laut dessen es zwischen einer natürlichen Zahl und ihrer zweifachen stets wenigstens

Mehr

Ein Turbo-Pascal-Programm zur Umrechnung vom Dezimalsystem in andere Zahlensysteme

Ein Turbo-Pascal-Programm zur Umrechnung vom Dezimalsystem in andere Zahlensysteme Ein Turbo-Pascal-Programm zur Umrechnung vom Dezimalsystem in andere Zahlensysteme Stefan Ackermann Mathematisches Institut der Universität Leipzig 11. November 2005 Zusammenfassung Dezimalzahlen bzw.

Mehr

Übungsaufgaben mit Lösungsvorschlägen

Übungsaufgaben mit Lösungsvorschlägen Otto-Friedrich-Universität Bamberg Lehrstuhl für Medieninformatik Prof. Dr. Andreas Henrich Dipl. Wirtsch.Inf. Daniel Blank Einführung in das Information Retrieval, 8. Mai 2008 Veranstaltung für die Berufsakademie

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

Risiko Dampfkonvektion Wann gibt es wirklich Schäden?

Risiko Dampfkonvektion Wann gibt es wirklich Schäden? Risiko Dampfkonvektion Wann git es wirklich Schäden? Regelmäßige Leser dieser Zeitschrift wissen es längst: Tauwasserrisiken entstehen in Holzauteilen vor allem durch Wasserdampf, der per Luftströmung

Mehr

MGI Exkurs: Rechnen. Prof. Dr. Wolfram Conen Version 1.0a2. Prof. Dr. W. Conen, FH Gelsenkirchen, Version 1.0a2 1

MGI Exkurs: Rechnen. Prof. Dr. Wolfram Conen Version 1.0a2. Prof. Dr. W. Conen, FH Gelsenkirchen, Version 1.0a2 1 MGI Exkurs: Rechnen Prof. Dr. Wolfram Conen Version 1.0a2 Version 1.0a2 1 Schauen Sie sich um Computer und Netzwerke sind überall! Sie ermöglichen ein feingesponnenes Geflecht komplexer menschlicher Aktivitäten:

Mehr

Wurzeln, Potenzen, reelle Zahlen

Wurzeln, Potenzen, reelle Zahlen 1. Zahlenpartner Wurzeln, Potenzen, reelle Zahlen Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? Quelle: Schnittpunkt 9 (1995) Variationen: (a) einfachere

Mehr

Gewerbegebiet Langes Feld in Kassel

Gewerbegebiet Langes Feld in Kassel Geweregeiet Langes Feld in Kassel Verkehrsuntersuchung erstellt im Auftrag der Stadt Kassel - Projekt-Nr. 0850 - Dr.-Ing. Philipp Amrosius Dipl.-Ing. (FH) André Harms unter Mitareit von Dipl.-Ing. Alexander

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Sophie Friedrich, Nicholas Höllermeier, Martin Schwaighofer 11. Juni 2012 Inhaltsverzeichnis Einleitung Motivation Mathematische Definitionen Wiederholung Gruppe Ring Gruppenhomomorphisums

Mehr

Corporate Design Manual. Grundlagen, Geschäftsausstattung und Printanwendungen

Corporate Design Manual. Grundlagen, Geschäftsausstattung und Printanwendungen Corporate Design Manual Grundlagen, Geschäftsausstattung und Printanwendungen 01 Inhalt RUB Ruhr-Universität Bochum 02 Das Inhaltsverzeichnis S. 03 02 Vorwort S. 04 03 Allgemeine Hinweise S. 05 04 Grundlagen

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Sprechen wir über Zahlen (Karl-Heinz Wolff)

Sprechen wir über Zahlen (Karl-Heinz Wolff) Sprechen wir über Zahlen (Karl-Heinz Wolff) Die Überschrift ist insoweit irreführend, als der Autor ja schreibt und nicht mit dem Leser spricht. Was Mathematik im allgemeinen und Zahlen im besonderen betrifft,

Mehr

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Errata in Grundlagen der Finanzierung verstehen berechnen entscheiden Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Stand 10. April 2006 Änderungen sind jeweils fett hervorgehoben.

Mehr

Die Duration von Standard-Anleihen. - Berechnungsverfahren und Einflussgrößen -

Die Duration von Standard-Anleihen. - Berechnungsverfahren und Einflussgrößen - Die Duration von Standard-Anleihen - Berechnungsverfahren und Einflussgrößen - Gliederung Einleitendes Herleitung einer Berechnungsvorschrift Berechnungsvorschriften für Standardfälle Einflussgrößen und

Mehr

Inhalte der Zellen A1 bis A3 addieren

Inhalte der Zellen A1 bis A3 addieren Grundrechenarten 10 und 5 addieren =10+5 3 von 10 subtrahieren =10-3 11 mit 2 multiplizieren =11*2 12 durch 4 dividieren =12/4 Excelspezifische Grundrechenarten Inhalte der Zellen A1 bis A3 addieren =SUMME(A1:A3)

Mehr

Working Paper Warum beteiligen sich Banken an anderen Unternehmen?

Working Paper Warum beteiligen sich Banken an anderen Unternehmen? econstor www.econstor.eu Der Open-ccess-Pulikationsserver der ZBW Leiniz-normationszentrum Wirtschat The Open ccess Pulication Server o the ZBW Leiniz normation Centre or Economics Streiterdt, Felix Working

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Mathematik Akzentfach

Mathematik Akzentfach Mathematik Akzentfach 1. Stundendotation Klasse 1. Klasse 2. Klasse 3. Klasse 4. Klasse Wochenlektionen 3 3 2. Didaktische Konzeption Überfachliche Kompetenzen Das Akzentfach Mathematik fördert besonders...

Mehr

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine

Mehr

Nicht alle Modelle sind in allen Ländern verfügbar. Die meisten Abbildungen in dieser Installationsanleitung zeigen das Gerät FAX-2845.

Nicht alle Modelle sind in allen Ländern verfügbar. Die meisten Abbildungen in dieser Installationsanleitung zeigen das Gerät FAX-2845. Installationsanleitung Hier eginnen FAX-2840 / FAX-2845 FAX-2940 Lesen Sie zuerst die Produkt-Siherheitshinweise und anshließend diese Installationsanleitung, um eine korrekte Einrihtung und Installation

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Peter Albrecht (Mannheim) Die Prüfung des Jahres 2004 im Bereich Finanzmathematik (Grundwissen) wurde am 09. Oktober 2004 mit diesmal

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? FRANZ PAUER, FLORIAN STAMPFER (UNIVERSITÄT INNSBRUCK) 1. Einleitung Eine natürliche Zahl heißt Primzahl, wenn sie genau zwei Teiler hat. Im Lehrplan der Seundarstufe

Mehr

Y b 2 - a 2 = p 2 - q 2 (*)

Y b 2 - a 2 = p 2 - q 2 (*) Um den Flächeninhalt eines Dreieckes zu bestimmen, das keinen rechten Winkel besitzt, muss man bekanntlich die Längen einer Seite mit der dazugehörigen Höhe kennen Wir setzen voraus, dass uns alle 3 Seitenlängen

Mehr

Public Relation & Direct Mailing

Public Relation & Direct Mailing MARKETING WORKSHOP Public Relation & Direct Mailing Dipl.Wirt.Ing. Olaf Meyer marketing@me-y-er.de 1 / 7 AGENDA 1. Vorstellung der Teilnehmer 2. Produktthema bestimmen 3. Grundlagen Public Relation 4.

Mehr

Eine Klasse für sich. Comjell der einfache Weg zur modernen Schule

Eine Klasse für sich. Comjell der einfache Weg zur modernen Schule Eine Klasse für sich Comjell der einfache Weg zur modernen Schule Verwalten heißt gestalten Comjell hat spürar die Kolleginnen und Kollegen entlastet. Eltern und Schüler loen die neue Informationskultur

Mehr

Übungen zu C++ Kapitel 1

Übungen zu C++ Kapitel 1 Übungen zu C++ Kapitel 1 Aufgabe 1 Ergänze den Text. a) Die sechs logischen Einheiten eines Computers sind Eingabe-Einheit, Ausgabe-Einheit, RAM, ALU, CPU, Plattenspeicher. b) Die Programme, welche Hochsprachenprogramme

Mehr

Stunden Inhalte Mathematik 9 978-3-14-121839-8 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 Zentrische Streckung

Stunden Inhalte Mathematik 9 978-3-14-121839-8 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 Zentrische Streckung 1 Zentrische Streckung Bauzeichnungen 8 vergrößern und verkleinern einfache nutzen Geometriesoftware zum Erkunden Maßstäbliches Vergrößern und Verkleinern 10 Figuren maßstabsgetreu inner- und außer- Ähnliche

Mehr

Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben

Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben 1. Wiederholung aus Jg 8 und Vorbereitung auf den Einstellungstest 3 Wochen Seiten 206-228 2. Potenzen und Wurzeln Seiten 32-45 3. Kreisumfang und Kreisfläche Brüche und Dezimalzahlen Brüche und Dezimalzahlen:

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck.

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck. Bruchzahlen Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. Hinweis: a.) Färbe ; ; ; ; ; ; 6 b.) Färbe ; ; ; ; ; ; 6 von diesem Rechteck. von diesem Rechteck.

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

ist er in den Kindergarten gekommen

ist er in den Kindergarten gekommen Lektion 1: Glück im Alltag 1 A Das ist vor ein paar Jahren passiert, als ich in Österreich war. Wiederholung Schritte plus 1 Lektion 7, Schritte plus 3 Lektion 1 A1 A3 1 Ergänzen Sie. passieren regnen

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

Zahlensysteme. von Christian Bartl

Zahlensysteme. von Christian Bartl von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.

Mehr

Fachspezifische Studien- und Prüfungsordnung für den Bachelor-Studiengang Textiltechnologie - Textilmanagement

Fachspezifische Studien- und Prüfungsordnung für den Bachelor-Studiengang Textiltechnologie - Textilmanagement Fachspezifische Studien- und Prüfungsordnung für den Bachelor-Studiengang Textiltechnologie - Textilmanagement Aufgrund von 8 As. 5 Verdung mit 32 As. 3 des Gesetzes üer die Hochschulen Baden-Württemerg

Mehr

Vom Taschengeld zum Haushaltsbudget

Vom Taschengeld zum Haushaltsbudget Mithilfe eines Tabellenkalkulationsprogramms kannst du Tabellen erstellen, Daten erfassen und auswerten, Kosten ermitteln, Diagramme erstellen, Notendurchschnitte errechnen usw. Die Dateien können als

Mehr

Übungsaufgabe 3 - Goodwill

Übungsaufgabe 3 - Goodwill Übungsaufgabe 3 - Goodwill Teilaufgabe 1 Gegeben: Die Aktien haben einen Nennwert von 5. Das Unternehmen hat liquide Mittel über 4.500.000. Die Eigenkapitalquote liegt in der Branche bei 22% Gesucht: Wie

Mehr

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann (Auszug aus einem Schreiben Riemann s an Herrn Weierstrass) [Journal für

Mehr

Institut für Informatik. Aufgaben zum Seminar Technische Informatik

Institut für Informatik. Aufgaben zum Seminar Technische Informatik UNIVERSITÄT LEIPZIG Institut für Informatik bt. Technische Informatik Dr. Hans-Joachim Lieske ufgaben zum Seminar Technische Informatik ufgabe 2.4.1. - erechnung einer Transistorschaltung mit Emitterwiderstand

Mehr

1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen

1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen Stoffverteilungsplan EdM 8RhPf Abfolge in EdM 8 Bleib fit im Umgang mit rationalen Zahlen Kompetenzen und Inhalte Umgang mit rationalen Zahlenim Zusammenhang 1. Terme und Gleichungen mit Klammern Leitidee

Mehr

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18 Naive Bayes 5. Dezember 2014 Naive Bayes 5. Dezember 2014 1 / 18 Inhaltsverzeichnis 1 Thomas Bayes 2 Anwendungsgebiete 3 Der Satz von Bayes 4 Ausführliche Form 5 Beispiel 6 Naive Bayes Einführung 7 Naive

Mehr

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren:

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren: Daten und ihre Codierung Seite: 1 Zur Universalität der Informatik Gott ist ein Informatiker Die Grundordnung der Welt läßt sich mathematisch formulieren: Naturgesetze, wie wir sie in der Physik, Chemie

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

ESS-400 ESS Zeitwirtschaft für Mitarbeiter/innen

ESS-400 ESS Zeitwirtschaft für Mitarbeiter/innen Abteilung V/6 PM-SAP Applikationsmanagement Hintere Zollamtsstrasse 2b 1030 Wien Version 4.0 ESS-400 ESS Zeitwirtschaft für Mitarbeiter/innen PM-SAP Kurzanleitung 1 Arbeitszeit erfassen Der Aufruf des

Mehr

Jochen Ludewig. Software-Prozesse und Software-Qualität

Jochen Ludewig. Software-Prozesse und Software-Qualität Jochen Ludewig Software-Prozesse und Software-Qualität 52 Bei einem Motorrad wird diese Präzision nicht aus irgendwelchen romantischen oder perfektionistischen Gründen gepflegt. Es ist nur so, dass die

Mehr

Multiplikationstafeln

Multiplikationstafeln Multiplikationstafeln Rechenintensive Arbeiten in der Landesvermessung und Astronomie, sowie im Handel, machten es in früheren Jahrhunderten wünschenswert, höhere Rechenarten auf niedrigere zurück zu führen.

Mehr

Probeunterricht 2013 an Wirtschaftsschulen in Bayern. Mathematik 7. Jahrgangsstufe

Probeunterricht 2013 an Wirtschaftsschulen in Bayern. Mathematik 7. Jahrgangsstufe M 7 Zahlenrechnen Probeunterricht 2013 an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 8: Arbeitszeit Teil II (Textrechnen) Seiten 9 bis 13:

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr