Fachhochschule Flensburg. Äquivalenz von Wärme und Arbeit

Größe: px
Ab Seite anzeigen:

Download "Fachhochschule Flensburg. Äquivalenz von Wärme und Arbeit"

Transkript

1 Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und erkstoffe Name: Versuch-Nr: 1 Äquivalenz von ärme und Arbeit Gliederung: Seite 1. Einleitung 1 2. Äquivalenz von mechanischer Arbeit und ärme 2.1. Methode Versuchsdurchführung Auswertung 4 3. Äquivalenz von ektrischer Arbeit und ärme 3.1. Methode Versuchsdurchführung Auswertung 6 Semester:... Unterschrift des/der Studenten Als Übungsergebnis anerkannt: Flensburg, den Unterschrift des Dozenten

2 Labor für Physik Versuch : 1 Blatt: 1 1. Einleitung In diesem Versuch soll am Beispi von mechanischer und ektrischer Arbeit gezeigt werden, dass ärme und Arbeit äquivalent sind. Details zu den einznen Messungen sind in den Abschnitten 2 und 3 beschrieben. Energie und Arbeit sind wichtige Größen, um technische und physikalische Vorgänge zu charakterisieren. Allgemein beschreibt die Energie als eine Zustandsgröße die Fähigkeit eines Systems, Arbeit zu verrichten. Der physikalische Arbeitsbegriff entwickte sich aus dem Studium der Kräfteübertragung durch z.b. Heb oder Getriebe. Mitts mechanischer Geräte ließen sich Kräfte transformieren. Das Produkt Kraft eg erwies sich jedoch bei allen Vorgängen als eine Konstante. Der so definierte Begriff der mechanischen Arbeit ließ sich sehr viseitig anwenden, um irkungen von Kräften zu charakterisieren und zu vergleichen. Ein erweitertes Konzept der physikalischen Arbeit ließ sich auf ektrische und thermische Vorgänge übertragen. Eine wichtige Rolle spit in diesem Zusammenhang das Verhältnis zwischen Arbeit und Energie. - Energieerhaltungssatz: In einem energetisch abgeschlossenem System ist die Energie konstant. - ird an einem System Arbeit verrichtet, ändert sich dessen Energie um den Betrag der verrichteten Arbeit. Die an einem Körper (System) verrichtete mechanische oder ektrische Arbeit muss dann grundsätzlich zu einer entsprechenden Änderung der ärmeenergie, der inneren Energie U dieses Körpers führen. Dabei sind die Versuchsbedingungen so zu gestalten, dass die verrichtete Arbeit vollständig in ärme umgewandt wird und auf anderem ege kein weiterer Energieaustausch stattfindet. = U = C T (1.1) Die innere Energie U und die Temperatur sind nach den Gesetzen der Thermodynamik einander proportional. Als Proportionalitätskonstante existiert die für jeden Körper spezifische ärmekapazität C ([C]=J/K). Für die Einheiten der Größen Arbeit und Energie gilt: 2 kgm [ ] = [ U ] = = Nm = J = s (1.2) 2 s

3 Labor für Physik Versuch : 1 Blatt: 2 2 ksm Die Einheiten 2, Nm (Newtonmeter), J (Joule) und s (attsekunden) sind alle s gleichwertig. 2. Äquivalenz von mechanischer Arbeit und ärme 2.1 Methode Die Messung erfolgt dadurch, dass Reibungsarbeit vollständig in ärme überführt wird. Um ein mit asser gefülltes kupfernes Kalorimetergefäß ist mehrfach ein Kunststoffband geschlungen. Dessen freies Ende wird mit einer Masse von 5 kg bastet. Das andere Ende wird von einer Federwaage gehalten. Im Kalorimetergefäß befindet sich eine abgewogene Menge asser, deren Temperatur mit einem Thermometer gemessen werden kann. Man dreht das Kalorimetergefäß gerade so schnl, dass die Federwaage entlastet ist. Die Reibungskraft zwischen Kupfergefäß und Kupferband ist nun genau gleich der Gewichtskraft der 5kg-Masse. Die verrichtete mechanische Arbeit beträgt: mech = F s = m g π d n (2.1) G G

4 Labor für Physik Versuch : 1 Blatt: 3 m G = 5kg : Masse des Gewichts, d: Durchmesser des Kupfergefäßes, n: Anzahl der Umdrehungen Diese Arbeit erwärmt das asser, das Gefäß und das Thermometer um den Betrag T = T E T A. Q = U = ( C + m c + m c ) T (2.2) Thermometer ärmekapazität des Thermometers: C Cu Cu Thermometer 3 kj = 3,55 10, K kj spezifische ärmekapazität von Kupfer: c Cu = 0, 383, kgk spezifische ärmekapazität vom asser Die Beträge von mechanischer Arbeit und ärme sollen gleich sein, d.h. ihr Verhältnis Aergibt den ert 1. A = Q mech = ( C Thermometer m G + m g π d n Cu c Cu + m c ) T (2.3) 2.1 Versuchsdurchführung Der Versuch sollte nach folgendem Schema ablaufen: 1. Durchmesser des Kalorimeters bestimmen. iegen des Kalorimetergefäßes mit Verschraubung 2. Kalorimetergefäß mit asser füllen (ca g) und erneut wiegen 3. Thermometer einsetzen und verschrauben. Apparatur zusammensetzen (Kunststoffband 3 bis 4 mal um das Kalorimeter schlingen) 4. Anfangstemperatur TA des Kalorimeters ablesen 5. Langsam kurbn (ca. 2 Umdrehung/s), Anzahl der Umdrehungen zählen 6. Endtemperatur TE des Kalorimeters ablesen Hinweise: Es wird empfohlen, eine Temperaturspreizung T von 5 bis 6 K zu erreichen. Die Anfangstemperatur des Kalorimeters sollte um den Betrag unter der Raumtemperatur liegen, die Endtemperatur um den gleichen Betrag darüber. So werden Fehler durch ärmeaustausch mit der Umgebung vermieden: ärmezufuhr und ärmeabfuhr kompensieren sich gerade.

5 Labor für Physik Versuch : 1 Blatt: Auswertung 1. Durchführen des Versuchs wie in 2.2 beschrieben und die Messwerte in dem beiliegenden Formular protokollieren. 2. Messfehler für alle gemessenen Größen abschätzen mech 3. Verhältnis A = ermittn Q 4. Führen Sie auf der Grundlage der Gleichung 2.3 eine Fehlerfortpflanzungsrechnung nach Gauss durch 5. Erklären und bewerten Sie evtl. Abweichungen vom idealen ert A=1 6. Diskutieren Sie Versuch, Versuchsablauf und Ergebnis. Ist Ihnen etwas aufgefallen? 3. Äquivalenz von ektrischer Arbeit und ärme 3.1 Methode Die Äquivalenz von ektrischer Arbeit und ärme wird in diesem Versuch dadurch bestimmt, dass man die in einem stromdurchflossenen Leiter entwickte Joulsche ärme kalorimetrisch misst. Als Leiter dient hier ein Tauchsieder. Die ektrische Arbeit wird direkt durch einen Kilowattstundenzähler gemessen. Der Tauchsieder erwärmt ein mit asser gefülltes Kalorimeter. Die ärmekapazität des Gefäßes sbst beträgt C K = ( 0,28 ± 0,015) kj K Die im Tauchsieder umgesetzte ektrische Arbeit beträgt: th = U I t η = η (3.1) eff eff

6 Labor für Physik Versuch : 1 Blatt: 5 Die abgesene Arbeit E muss um den ektrischen irkungsgrad η = 0, 994 korrigiert werden. Damit werden Verluste in den Zuleitungen und im kh-zähler sbst berücksichtigt. Die Temperatur des gesamten Kalorimeters steigt beim Heizen um T = T E T. Q = U = ( C + c m ) T (3.2) K Die Beträge von ektrischer Arbeit und ärme sollten gleich sein, d.h. ihr Verhältnis A ergibt den ert 1. A = Q th = ( C K + c η m (3.3) ) T A 3.2 Versuchsdurchführung 1. Kalorimetergefäß mit asser füllen. Masse m der asserfüllung feststlen, indem das volle mit dem leeren Gefäß verglichen wird. 2. Anfangswerte von Temperatur und Zählerstand ablesen. 3. asser unter ständigem Mischen auf ca. 70 C erhitzen. 4. Endwerte von Temperatur und Zählerstand ablesen. Hinweise: Der Kilowattstundenzähler kann auf der Strichskala auf eine attstunde genau abgesen werden. Bei den Punkten b und d ist zu berücksichtigen, dass die Messungen der Temperaturen nur zuverlässig sind, wenn Dewargefäß, asser, Tauchsieder und Thermometer die gleiche Temperatur haben. Dieser Temperaturausgleich stlt sich erst mit der Zeit ein. Sowohl die Anfangs- als auch die Endtemperatur sollten daher mitts einer Messreihe bestimmt werden. Dabei geht man folgendermaßen vor: Beginnend fünf Minuten vor dem Einschalten wird die assertemperatur im Halbminutentakt (genau!) gemessen. Der zeitliche Verlauf der Temperatur wird grafisch aufgetragen und durch eine Gerade approximiert (grafisch optimal nach Augenmaß oder rechnerisch mitts Linearer Regression mit Hilfe eines geeigneten Programms oder eines Taschenrechners). Extrapoliert man diese Gerade bis zum Einschaltpunkt, erhält man die Anfangstemperatur TA.

7 Labor für Physik Versuch : 1 Blatt: 6 Temp. Extrapolierter Temperaturwert Zeit Die Endtemperatur TE bestimmt man entsprechend: Nach dem Ausschalten weiter mischen! Etwa eine Minute nach dem Ausschalten der Heizung beginnt man, die Temperatur im Halbminutentakt zu messen. Die approximierte Gerade wird rückwärts zum Ausschaltpunkt extrapoliert und liefert so den gewünschten Temperaturwert. 3.3 Auswertung 1. Durchführen des Versuchs wie in 3.2 beschrieben und die Messwerte in dem beiliegenden Formular protokollieren. 2. Messfehler für alle gemessenen Größen abschätzen th 3. Verhältnis A = ermittn Q 4. Führen Sie auf der Grundlage der Gleichung 3.3 eine Fehlerfortpflanzungsrechnung nach Gauss durch 5. Erklären und bewerten Sie evtl. Abweichungen vom idealen ert A=1 6. Diskutieren Sie Versuch, Versuchsablauf und Ergebnis. Ist Ihnen etwas aufgefallen?

8 Labor für Physik Versuch : 1 Anlage A Anmerkungen : Dieser Vordruck ist von jedem Studenten während der Versuchsdurchführung mit Tinte oder Kugschreiber auszufüllen. Tragen Sie übersichtlich die gemessenen erte und die abgeschätzten Messfehler ein. Diese Vordrucke sind zusammen mit den Laborberichten abzugeben Student Studiengruppe Datum Laboringenieur Tragen Sie hier Ihre Messwerte in die Table ein: Messwerte: Kupfermenge (Kalorimeter + Verschraubung) mcu kg Kupfermenge+assermenge mges kg assermenge mges - mcu m kg ägestück mg 5 kg Raumtemperatur C Anfangstemperatur TA C Endtemperatur TE C Temperaturdifferenz TE TA T C Anzahl der Umdrehungen N Kalorimeterdurchmesser D m Abgeschätzte Messunsicherheiten:

9 Labor für Physik Versuch : 1 Anlage B Anmerkungen : Dieser Vordruck ist von jedem Studenten während der Versuchsdurchführung mit Tinte oder Kugschreiber auszufüllen. Tragen Sie übersichtlich die gemessenen erte und die abgeschätzten Messfehler ein. Diese Vordrucke sind zusammen mit den Laborberichten abzugeben Student Studiengruppe Datum Laboringenieur Masse des leeren Kalorimeters mk kg Masse des Kalorimeters mit asser mges kg assermenge mges mk m kg Anfangstemperatur des assers TA C Endtemperatur des assers TE C Temperaturdifferenz TE TA T C Anfangsstand des kh-zählers A kh Endstand des kh-zählers E kh Zugeführte ektr. Energie E - A kh Abgeschätzte Messunsicherheiten:

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: W4 Die spezifische Wärmekapazität fester Körper Gliederung: Seite Einleitung 1 Berechnung 1 Versuchsbeschreibung

Mehr

Fachhochschule Flensburg. Dichte von Flüssigkeiten

Fachhochschule Flensburg. Dichte von Flüssigkeiten Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name : Name: Versuch-Nr: M9 Dichte von Flüssigkeiten Gliederung: Seite Einleitung 1 Messung der Dichte mit der Waage nach

Mehr

Spezifische Wärme fester Körper

Spezifische Wärme fester Körper 1 Spezifische ärme fester Körper Die spezifische, sowie die molare ärme von Kupfer und Aluminium sollen bestimmt werden. Anhand der molaren ärme von Kupfer bei der Temperatur von flüssigem Stickstoff soll

Mehr

Institut für Physik und Werkstoffe Labor für Physik

Institut für Physik und Werkstoffe Labor für Physik Fachhochschule Flensburg Institut für Physik und Werkstoffe Labor für Physik Name : Name: Versuch-Nr: M1 Der freie Fall Gliederung: Seite Einleitung 1 Versuchsaufbau 1 Aufgabenstellung 4 Semester:... Unterschrift

Mehr

Fachhochschule Flensburg. Torsionsschwingungen

Fachhochschule Flensburg. Torsionsschwingungen Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: M5 Torsionsschwingungen Gliederung: Seite 1. Das Hookesche Gesetz für Torsion 1 1.1 Grundlagen der

Mehr

W11. Energieumwandlung ( )

W11. Energieumwandlung ( ) W11 Energieumandlung Ziel dieses Versuches ist der experimentelle Nacheis der Äquivalenz von mechanischer und elektrischer Energie. Dazu erden beide Energieformen in die gleiche Wärmeenergie umgeandelt.

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Versuchsprotokoll. Spezifische Wärmekapazität des Wassers. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 7

Versuchsprotokoll. Spezifische Wärmekapazität des Wassers. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 7 Montag, 10.11.1997 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 7 Spezifische Wärmekapazität des Wassers 1 Inhaltsverzeichnis 1 Problemstellung

Mehr

W11. Energieumwandlung ( )

W11. Energieumwandlung ( ) W11 Energieumandlung Ziel dieses Versuches ist der experimentelle Nacheis der Äquivalenz von mechanischer und elektrischer Energie. Dazu erden beide Energieformen in die gleiche Wärmeenergie umgeandelt.

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie 10.08.2008 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: W 3 - Kalorimetrie 1. Grundlagen Definition und Einheit von Wärme und Temperatur; Wärmekapazität (spezifische und molare); Regel von Dulong

Mehr

Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent)

Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) 1. Ziel des Versuches Umwandlung von mechanischer Reibungsarbeit in Wärme, Umwandlung von elektrischer Arbeit bzw. Energie in Wärme,

Mehr

Bestimmung der spezifischen Wärmekapazität fester Körper

Bestimmung der spezifischen Wärmekapazität fester Körper - B02.1 - Versuch B2: Bestimmung der spezifischen Wärmekapazität fester Körper 1. Literatur: Demtröder, Experimentalphysik, Bd. I Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Walcher, Praktikum der Physik

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 5: Spezifische Wärme Durchgeführt am 10.11.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 6 Kalorimetrie Aufgabe: Mittels eines Flüssigkeitskalorimeters ist a) die Neutralisationsenthalpie von säure b) die ösungsenthalpie

Mehr

T1: Wärmekapazität eines Kalorimeters

T1: Wärmekapazität eines Kalorimeters Grundpraktikum T1: Wärmekapazität eines Kalorimeters Autor: Partner: Versuchsdatum: Versuchsplatz: Abgabedatum: Inhaltsverzeichnis 1 Physikalische Grundlagen und Aufgabenstellung 2 2 Messwerte und Auswertung

Mehr

Whitekalorimeter. Wärmekapazitätsbestimmung verschiedener Materialien. Dominik Büchler 5HL. Betreuer: Mag. Dr. Per Federspiel

Whitekalorimeter. Wärmekapazitätsbestimmung verschiedener Materialien. Dominik Büchler 5HL. Betreuer: Mag. Dr. Per Federspiel Dominik Büchler Physikalisch chemisches Laboratorium Betreuer: Mag. Dr. Per Federspiel 5HL Whitekalorimeter sbestimmung verschiedener Materialien Note: Datum: Unterschrift: Whitekalorimetrie Seite 1 von

Mehr

Protokoll zum Versuch: Elektrisches Wärmeäquivalent

Protokoll zum Versuch: Elektrisches Wärmeäquivalent Protokoll zum Versuch: Elektrisches Wärmeäquivalent Nils Brüdigam Fabian Schmid-Michels Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 07.12.2006 Inhaltsverzeichnis 1 Ziel 2 2 Theorie

Mehr

Kalorimeter ohne Widerstände Best.- Nr. MD00174

Kalorimeter ohne Widerstände Best.- Nr. MD00174 Kalorimeter ohne Widerstände Best.- Nr. MD00174 VORSTELLUNG 1. Einführung Einfacher Kalorimeter mit zwei konzentrischen Aluminiumzylindern. Der innere Zylinder B ruht auf einem Plastikkragen, der ihn vom

Mehr

Auswertung. B04: Spezifische Wärme

Auswertung. B04: Spezifische Wärme Auswertung zum Versuch B04: Spezifische Wärme Alexander FufaeV Partner: Jule Heier Gruppe 254 Inhaltsverzeichnis 2. Bestimmung der Wärmekapazität C1 des blauen Dewargefäßes... 3 3. Bestimmung der Schmelzwärme

Mehr

Experimentalphysik VO, Kapitel 4Wärme: Wärme als Energieform (1. Hauptsatz), Mischungsvorgänge,

Experimentalphysik VO, Kapitel 4Wärme: Wärme als Energieform (1. Hauptsatz), Mischungsvorgänge, 3 Wärme 3.1 Lernziel Die Studierenden vertiefen das Verständnis der Begriffe Innere Energie, Wärme, spezifische Wärmekapazität und molare Wärme von Festkörpern und Flüssigkeiten. Sie können den Wasserwert

Mehr

Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie. Protokollant: Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre

Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie. Protokollant: Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Physik Bachelor 2. Semester Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie Protokoll Harald Schmidt Sven Köppel Versuchsdurchführung:

Mehr

NICHT: W = ± 468 J, sondern: W = ± J oder: W = (1.283 ± 0.005) 10 5 J

NICHT: W = ± 468 J, sondern: W = ± J oder: W = (1.283 ± 0.005) 10 5 J Musterbericht Allgemeines Der Versuchsbericht sollte kurz gehalten werden, aber das Notwendige enthalten. Er sollte klar vermitteln was - wie gemessen wurden. Kapitelüberschriften helfen bei der sauberen

Mehr

Spezifische Wärmekapazität fester Körper

Spezifische Wärmekapazität fester Körper Version: 14. Oktober 2005 Spezifische Wärmekapazität fester Körper Stichworte Wärmemenge, spezifische Wärme, Schmelzwärme, Wärmekapazität, Wasserwert, Siedepunkt, innere Energie, Energiesatz, Hauptsätze

Mehr

Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz.

Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz. W1 Spezifische Wärmekapazität von festen Stoffen Stoffgebiet: Wärmemenge, spezifische Wärmekapazität, molare Wärmekapazität, Kalorimetrie, Dulong-Petitsches Gesetz. Versuchsziel: Bestimmung der spezifischen

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Institut für Physik und Werkstoffe Labor für Physik

Institut für Physik und Werkstoffe Labor für Physik Fachhochschule Flensburg Institut für Physik und Werkstoffe Labor für Physik Name : Name: Versuch-Nr: E3 Die Elementarladung (Millikan-Versuch) Gliederung: Seite Einleitung 1 Messeinrichtung 1 Grundlagen

Mehr

Unterrichtsmaterial. Die Unterrichtssequenz enthält drei verschiedene Teile/ Experimente:

Unterrichtsmaterial. Die Unterrichtssequenz enthält drei verschiedene Teile/ Experimente: Unterrichtsmaterial Die Unterrichtssequenz enthält drei verschiedene Teile/ Experimente: I. Mit dem Abkühlungsprozess vertraut werden Idee: Gegebenes Experiment / Beobachtung des Abkühlungsprozesses von

Mehr

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure 1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure In diesem Versuch soll der Satz von Hess (die umgesetzte Wärmemenge ist bei einer chemischen Reaktion unabhängig vom Weg)

Mehr

Physikalische Grundlagen und Aufgabenstellung

Physikalische Grundlagen und Aufgabenstellung Inhaltsverzeichnis Physikalische Grundlagen und Aufgabenstellung... 2 Versuchsziel... 2 Versuchsbeschreibung... 2 Elektrische Methode... 2 Mischungsmethode... 2 Messwerte... 2 Elektrische Methode... 2

Mehr

Technische Thermodynamik

Technische Thermodynamik Kalorimetrie 1 Technische Thermodynamik 2. Semester Versuch 1 Kalorimetrische Messverfahren zur Charakterisierung fester Stoffe Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik

Mehr

Versuch W1 für Nebenfächler Mechanisches Wärmeäquivalent

Versuch W1 für Nebenfächler Mechanisches Wärmeäquivalent Versuch W1 für Nebenfächler Mechanisches Wärmeäquivalent I. Physikalisches Institut, Raum 105 Stand: 15. Oktober 2013 generelle Bemerkungen bitte verwendeten Versuchsaufbau angeben bitte Versuchspartner

Mehr

2. Schulaufgabe im Fach Physik am xx. x.xxxx

2. Schulaufgabe im Fach Physik am xx. x.xxxx 2. Schulaufgabe im Fach Physik am xx. x.xxxx Name: Klasse 8x III www.klemm.biz 1. Aufgabe a) Was versteht man in der Physik unter einem Kraftwandler? b) Beschreibe einen Kraftwandler. Welche Komponenten

Mehr

Arbeitsweisen der Physik

Arbeitsweisen der Physik Übersicht Karteikarten Klasse 7 - Arbeitsweisen - Beobachten - Beschreiben - Beschreiben von Gegenständen, Erscheinungen und Prozessen - Beschreiben des Aufbaus und Erklären der Wirkungsweise eines technischen

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

ARBEITSBLATT STUDIUM EINFACHER BEWEGUNGEN

ARBEITSBLATT STUDIUM EINFACHER BEWEGUNGEN ARBEITSBLATT STUDIUM EINFACHER BEWEGUNGEN FREIER FALL NAME:.. KLASSE:.. DATUM:. Verwendete die Simulation: http://www.walter-fendt.de/ph14d/wurf.htm Wir untersuchen zum freien Fall folgende Fragestellungen:

Mehr

Spezifische Schmelzwärme von wis (Artikelnr.: P )

Spezifische Schmelzwärme von wis (Artikelnr.: P ) Lehrer-/Dozentenblatt Spezifische Schmelzwärme von wis (Artikelnr.: P1044700) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Wärmelehre Unterthema: Schmelzen,

Mehr

Illustrierende Aufgaben zum LehrplanPLUS. Realschule, Physik, Jahrgangsstufen 8 und 9. Wasserkocher

Illustrierende Aufgaben zum LehrplanPLUS. Realschule, Physik, Jahrgangsstufen 8 und 9. Wasserkocher Wasserkocher Schulart Jahrgangsstufen Fach/Fächer Zeitrahmen Benötigtes Material Stand: 2018-12-03 Realschule 8 (I), 9 (I) und 9 (II/III) Physik Teil einer Unterrichtsstunde bereitgestelltes Video, Videoplayer

Mehr

Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern

Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern Überlegungen zur Leistung und zum Wirkungsgrad von Solarkochern (Dr. Hartmut Ehmler) Einführung Die folgenden Überlegungen gelten ganz allgemein für Solarkocher, unabhängig ob es sich um einen Parabolkocher,

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

Kraft Arbeit Energie

Kraft Arbeit Energie Kraft Arbeit Energie Definition Kraft mit Beispielen Kraftmessung und Hooke sches Gesetz Gewichtskraft Kräftegleichgewicht Einfache Maschinen und Goldene Regel der Mechanik Definition Physikalische Arbeit

Mehr

F2 Volumenmessung Datum:

F2 Volumenmessung Datum: Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik Physikalisches Grundpraktikum Mechanik und Thermodynamik Datum: 14.11.005 Heiko Schmolke / 509 10 Versuchspartner: Olaf Lange / 507 7

Mehr

Grundwissen Physik 8. Klasse II

Grundwissen Physik 8. Klasse II Grundwissen Physik 8. Klasse II Größen in der Physik Physikalische Größen sind alle messbare Eigenschaften eines Körpers. Dabei gibt es Grundgrößen, deren Einheit der Mensch willkürlich, also beliebig

Mehr

Erstabgabe Übung nicht abgegeben

Erstabgabe Übung nicht abgegeben Erstabgabe Übung 9 6 5 4 3 2 1 nicht abgegeben T. Kießling: Auswertung von Messungen und Fehlerrechnung - Graphische Darstellungen, Etrapolation 18.01.2018 Vorlesung 10-1 Übungsaufgaben So soll es sein:

Mehr

Mechanik Erhaltungssätze (20 h) ENERGIE Historische Entwicklung des Energiebegriffs Energieerhaltungssatz

Mechanik Erhaltungssätze (20 h) ENERGIE Historische Entwicklung des Energiebegriffs Energieerhaltungssatz Mechanik Erhaltungssätze (0 h) Physik Leistungskurs ENERGIE Was ist Energie? Wozu dient sie? Probleme? 1 Historische Entwicklung des Energiebegriffs "Energie" = "Enérgeia (griechisch), deutsch: "Wirksamkeit".

Mehr

Physikalisches Grundpraktikum Sommer-Semester 2003 Kurs 1, Teil 1. Ausarbeitung

Physikalisches Grundpraktikum Sommer-Semester 2003 Kurs 1, Teil 1. Ausarbeitung Physikalisches Grundpraktikum Sommer-Semester 2003 Kurs 1, Teil 1 Ausarbeitung zu Versuch Nr.10 Messung der spezifischen Wärmekapazität und Schmelzwärme von Florian Staub Datum der Versuchsdurchführung:

Mehr

Mischen von Flüssigkeiten mit verschiedener Temperatur

Mischen von Flüssigkeiten mit verschiedener Temperatur V13 Thema: Wärme 1. Einleitung Ob bei der Regelung der Körpertemperatur, dem Heizen des Zimmers oder zahlreichen technischen Prozessen: Der Austausch von Wärme spielt eine wichtige Rolle. In diesem Versuch

Mehr

Versuch: Spezifische Wärmekapazität fester Körper

Versuch: Spezifische Wärmekapazität fester Körper ersuch T1 SPEZIFISHE WÄRMEKAPAZITÄT FESTER KÖRPER Seite 1 von 5 ersuch: Spezifische Wärmekapazität fester Körper Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, hemie,

Mehr

Stirling-Maschine (STI)

Stirling-Maschine (STI) TUM Anfängerpraktikum für Physiker II Wintersemester 26/27 Stirling-Maschine (STI) Inhaltsverzeichnis 5. Dezember 26 1. Einleitung...2 2. Thermodynamische Kreisprozesse...2 3. Versuchsdurchführung...3

Mehr

27 Energie und Leistung

27 Energie und Leistung 0 Energie und Leistung Wärmeenergie kann in mechanische Energie und umgekehrt verwandelt werden. Wenn eine Dampflokomotive einen Eisenbahnzug fortbewegt, verrichtet sie mechanische Arbeit, denn: Arbeit

Mehr

Laborübungen aus Physikalischer Chemie (Bachelor) Universität Graz

Laborübungen aus Physikalischer Chemie (Bachelor) Universität Graz Arbeitsbericht zum Versuch Temperaturverlauf Durchführung am 9. Nov. 2016, M. Maier und H. Huber (Gruppe 2) In diesem Versuch soll der Temperaturgradient entlang eines organischen Kristalls (Bezeichnung

Mehr

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8 Allgemeine Chemie 60 Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4 Tabelle 7: weiter Strukturtypen C Metallkristalle kubisch primitiv KZ = 6 kubisch innenzentriert KZ = 8 kubisch flächenzentriert, kubisch dichteste

Mehr

3. Berechnung der molaren Verbrennungsenthalpie. 4. Berechnung der Standardreaktionsenthalpie für die Hydrierung von Phthalsäureanhydrid

3. Berechnung der molaren Verbrennungsenthalpie. 4. Berechnung der Standardreaktionsenthalpie für die Hydrierung von Phthalsäureanhydrid Verbrennungswärme Aufgaben: 1. Ermittlung der Wärmekapazität des Kalorimeters durch Verbrennen einer Eichsubstanz. 2. Bestimmung der spezifischen Verbrennungswärmen von Phthalsäureanhydrid und Tetrahydrophthalsäureanhydrid.

Mehr

Energieverteilung lost and useful energy

Energieverteilung lost and useful energy 21a Entropie 1 Energieverteilung lost and useful energy 2 Prozesse, die wir selten beobachten Zeit Kaffeetasse wird wärmer in kälterer Umgebung Es fließt Strom, wenn man einen iderstand erhitzt enn man

Mehr

Energie zeigt sich in Arbeit

Energie zeigt sich in Arbeit Energie zeigt sich in Arbeit Versuchsbeschreibung Wir machen den folgenden Versuch mit der Holzbahn: Wir lassen einen Wagen mit der Masse m = 42 g von einer Schanze beschleunigen und in die Ebene fahren.

Mehr

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universitäu Berlin Institut für Physik Physikalisches Grundpraktikum Versuchsprotokoll Zustandsgleichung idealer Gase (T4) Arbeitsplatz durchgeführt

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Phasenumwandlungsenthalpie

Phasenumwandlungsenthalpie Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 7 Phasenumwandlungsenthalpie Die Enthalpieänderung beim Übergang eines Systems in einen anderen Aggregatzustand kann unter der Voraussetzung,

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

Prüfungsvorbereitung Physik: Wärme

Prüfungsvorbereitung Physik: Wärme Prüfungsvorbereitung Physik: Wärme Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt (Theoriefragen, physikalische Grössen, Fähigkeiten). Das heisst: Gut repetieren! Theoriefragen:

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

T3 - Wärmekapazität. Nutzen Sie die Fachliteratur, um die nachfolgenden Fragen und Aufgaben zu beantworten:

T3 - Wärmekapazität. Nutzen Sie die Fachliteratur, um die nachfolgenden Fragen und Aufgaben zu beantworten: T3 - Wärmekapazität Ziel des Versuches In diesem Versuch sollen Sie sich mit den Konzepten der Wärmekapazität und der Kalorimetrie vertraut machen. Hierzu bestimmen Sie die Wärmekapazität des zur Verfügung

Mehr

Arbeitsblatt: Studium einfacher Bewegungen Freier Fall

Arbeitsblatt: Studium einfacher Bewegungen Freier Fall Arbeitsblatt: Studium einfacher Bewegungen Freier Fall NAME:.. Klasse:.. Thema: Freier Fall Öffnen Sie die Simulation mit dem Firefox-Browser: http://www.walter-fendt.de/ph6de/projectile_de.htm Wir untersuchen

Mehr

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum Versuchsprotokoll zur Bestimmung der Federkonstante (F4) am Arbeitsplatz

Mehr

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung Versuch Nr. 02: Bestimmung eines Ohmschen Widerstandes nach der Substitutionsmethode Versuchsdurchführung: Donnerstag, 28. Mai 2009 von Sven Köppel / Harald Meixner Protokollant: Harald Meixner Tutor:

Mehr

Bestimmung der Wärmekapazitäten mit dem Erwärmungskalorimeter

Bestimmung der Wärmekapazitäten mit dem Erwärmungskalorimeter Bestimmung der Wärmekapazitäten mit dem Erwärmungskalorimeter 1.1 Durchführung In einem Stromkreis sind neben dem Netzgerät auch ein Amperemeter, Voltmeter und ein Kalorimeter miteingebunden. Auf einer

Mehr

Grundpraktikum M6 innere Reibung

Grundpraktikum M6 innere Reibung Grundpraktikum M6 innere Reibung Julien Kluge 1. Juni 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Pascal Rustige Raum: 215 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. 1. Grundlagen und Durchführung. 2. Auswertung

Inhaltsverzeichnis. 1. Grundlagen und Durchführung. 2. Auswertung Inhaltsverzeichnis 1. Grundlagen und Durchführung 2. Auswertung 2.1.1 Überlauf-Methode 2.1.2 Geometrie des Körpers 2.1.3 Auftriebsmessung 2.2 Ergebniszusammenfassung und Diskussion 3. Fragen 4. Anhang

Mehr

200 Spezifische Kondensationswärme von Wasserdampf

200 Spezifische Kondensationswärme von Wasserdampf 200 Spezifische Kondensationswärme von Wasserdampf 1. Aufgaben 1.1 Ermitteln Sie die Wärmekapazität eines Kalorimeters! 1.2 Bestimmen Sie die spezifische Kondensationswärme von Wasserdampf und berechnen

Mehr

Erwärmen verschiedener Wassermengen (Artikelnr.: P )

Erwärmen verschiedener Wassermengen (Artikelnr.: P ) Lehrer-/Dozentenblatt Gedruckt: 30.03.207 4:43:50 P043700 Erwärmen verschiedener Wassermengen (Artikelnr.: P043700) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema:

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Spezifische Wärmekapazität von Wasser mit SMARTsense (Artikelnr.: P )

Spezifische Wärmekapazität von Wasser mit SMARTsense (Artikelnr.: P ) Lehrer-/Dozentenblatt Spezifische Wärmekapazität von Wasser mit SMARTsense (Artikelnr.: P1043969) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Wärmelehre Unterthema:

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludigs-Universität Freiburg Lösungen zum 4. Übungsblatt zur orlesung Physikalische Chemie I SS 00 Prof. Dr. Bartsch 4. (6 Punkte) In einem Behälter mit der Grundfläche

Mehr

Physik 1. Kinematik, Dynamik.

Physik 1. Kinematik, Dynamik. Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist

Mehr

ADIABATISCHE KALORIMETRIE

ADIABATISCHE KALORIMETRIE VERSUCH 6 ADIABATISCHE KALORIMETRIE Thema Kalorimetrische Bestimmung von Lösungs- und Neutralisationswärmen Grundlagen Literatur 1. Hauptsatz der Thermodynamik adiabatische Kalorimetrie Lösungs-, Neutralisations-,

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

Maßeinheiten der Wärmelehre

Maßeinheiten der Wärmelehre Maßeinheiten der Wärmelehre Temperatur (thermodynamisch) Benennung der Einheit: Einheitenzeichen: T für Temp.-punkte, ΔT für Temp.-differenzen Kelvin K 1 K ist der 273,16te Teil der (thermodynamischen)

Mehr

Freie Universität Berlin

Freie Universität Berlin 2.5.2014 Freie Universität Berlin - Fachbereich Physik Kugelfallviskosimeter Protokoll zum Versuch des physikalischen Grundpraktikums I Teilnehmer: Ludwig Schuster, ludwig.schuster@fu- berlin.de Florian

Mehr

Erster und Zweiter Hauptsatz

Erster und Zweiter Hauptsatz PN 1 Einführung in die alphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

2.2 Spezifische und latente Wärmen

2.2 Spezifische und latente Wärmen 1 Einleitung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 2 Wärmelehre 2.2 Spezifische und latente Wärmen Die spezifische Wärme von Wasser gibt an, wieviel Energie man zu 1 kg Wasser zuführen

Mehr

Institut für Elektroprozesstechnik

Institut für Elektroprozesstechnik Institut für Elektroprozesstechnik Leibniz Universität Hannover Institut für Elektroprozesstechnik Elektrowärmelabor I Versuch T13 Schutzbeschaltung von Transistoren im Schaltbetrieb Name: Matr.-Nr.: Gruppe:

Mehr

Thema: Die Planck-Konstante

Thema: Die Planck-Konstante bitur 009 Physik. Klausur Hannover, 4.09.008 arei LK 3. Semester Bearbeitungszeit: 90 Thema: Die Planck-Konstante. ufgabe Die Fotozelle (bb.) wird mit dem Licht einer Quecksilberdampflampe bestrahlt. Die

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

Versuch W1: Kalorimetrie

Versuch W1: Kalorimetrie Versuch W1: Kalorimetrie Aufgaben: 1. Bestimmen Sie die Wärmekapazität zweier Kalorimeter (Kalorimeterkonstanten). 2. Bestimmen Sie die spezifische Wärmekapazität von 2 verschiedenen festen Stoffen. 3.

Mehr

Laborversuche zur Physik 1 I - 3. Bestimmung spezifischer Wärmen durch Kalorimetrie

Laborversuche zur Physik 1 I - 3. Bestimmung spezifischer Wärmen durch Kalorimetrie FB Physik Laborversuche zur Physik 1 I - 3 Kalorimetrie Reyher Bestimmung spezifischer Wärmen durch Kalorimetrie Ziele Messung der Schmelzwärme von Eis Messung der Verdampfungswärme von Wasser Messung

Mehr

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: Temperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers sind der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

Der spezifische Widerstand von Drähten (Artikelnr.: P )

Der spezifische Widerstand von Drähten (Artikelnr.: P ) Lehrer-/Dozentenblatt Der spezifische Widerstand von Drähten (Artikelnr.: P1372700) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Elektrizitätslehre Unterthema:

Mehr

3.1.2 SpezifISChe Wärmekapazität fester Körper

3.1.2 SpezifISChe Wärmekapazität fester Körper 110 3 Wärmelehre Kurvenverlaufs II kann man von der oben genannten Tatsache Gebrauch machen, daß - unabhängig vom zeitlichen Ablauf des Wärmeaustauschs im Inneren - die Fläche zwischen den Kurven I und

Mehr

Wärmeleitung und thermoelektrische Effekte Versuchsauswertung

Wärmeleitung und thermoelektrische Effekte Versuchsauswertung Versuch P2-32 Wärmeleitung und thermoelektrische Effekte Versuchsauswertung Marco A., Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 30.05.2011 1 Inhaltsverzeichnis 1 Bestimmung

Mehr

Grundpraktikum T4 Zustandsgleichung idealer Gase

Grundpraktikum T4 Zustandsgleichung idealer Gase Grundpraktikum T4 Zustandsgleichung idealer Gase Julien Kluge 4. Mai 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Luisa Esguerra Raum: 316 Messplatz: 2 INHALTSVERZEICHNIS

Mehr

Praktikum zur Vorlesung Einführung in die Geophysik

Praktikum zur Vorlesung Einführung in die Geophysik Praktikum zur Vorlesung Einführung in die Geophysik Hinweise zum Praktikum: Messunsicherheit und Fehlerrechnung Stefan Wenk, Prof. Thomas Bohlen TU Bergakademie Freiberg Institut für Geophysik www.geophysik.tufreiberg.de/pages/studenten/praktika/nebenfaechlerpraktikum.htm

Mehr

A. Grundlagen: B. Liste der Geräte

A. Grundlagen: B. Liste der Geräte Meteorologisches Praktikum (Modul B2 und B3) Versuch 1: Temperaturmessung mit einem Pt-100-Temperatursensor, Kalibrierung und Auswertung, Trägheitsuntersuchungen an verschiedenen Thermometern. A. Grundlagen:

Mehr

Messung der Wärmekapazität von Nieten

Messung der Wärmekapazität von Nieten 1/1 29.09.00,21:47 Erstellt von Oliver Stamm Messung der Wärmekapazität von Nieten 1. Einleitung 1.1. Die Ausgangslage zum Experiment 1.2. Die Vorgehensweise 2. Theorie 2.1. Begriffe und Variablen 2.2.

Mehr

Praktikum I PE Peltier-Effekt

Praktikum I PE Peltier-Effekt Praktikum I PE Peltier-Effekt Florian Jessen, Hanno Rein, Benjamin Mück Betreuerin: Federica Moschini 27. November 2003 1 Ziel der Versuchsreihe Der Peltier Effekt und seine Umkehrung (Seebeck Effekt)

Mehr