Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1"

Transkript

1 1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker, Mathematiker und Informatiker im Wintersemester 2007/2008 besuchen, erhoben werden. Ω : Studenten, die die Vorlesung Statistik I für... im WS 07/08 besuchen ω i : Student i, der die Vorlesung Statistik I für... im WS 07/08 besucht X : mathematische Vorkenntnisse S = {keine Vorkenntnisse, GK Ma, LK Ma, Grundvorlesung Ma, sonstige} weitere erfassbare Merkmale: X 2 : angestrebter Studienabschluss, X 3 : Geschlecht, X 4 : Alter, X 5 : Geburtsort. (b) Die Verkehrsdichte einer Straße soll durch Zählung der pro Zeiteinheit an festgelegten Beobachtungspunkten passierenden Kraftfahrzeuge gemessen werden. Ω : Menge der Beobachtungspunkte ω i : Beobachtungspunkt i, i = 1,..., n X : Anzahl der pro Zeiteinheit passierenden Kraftfahrzeuge S = IN 0 weitere erfassbare Merkmale: X 2 : Anzahl passierender Kraftfahrzeugtypen, X 3 : Geschwindigkeit der vorbeifahrenden Fahrzeuge. (c) Das Kulturreferat der Stadt München läßt sich für eine statistische Analyse von allen Münchner Bühnen die Höhe der Einnahmen und der Ausgaben im Jahre 2006 melden. Ω = {Volkstheater, Deutsches Theater, Münchner Kammerspiele,...} ω i : Theater i, i = 1,..., n X = (X 1, X 2 ), X 1 : Ausgaben, X 2 : Einnahmen S = S 1 S 2 = [0, ) 2 weitere erfassbare Merkmale: X 3 : Anzahl Besucher, X 4 : Anzahl Vorstellungen.

2 2 Lösung Aufgabe 2 Wiederholung Bestandsmenge: Menge gleichartiger stat. Einheiten, die nur zu (in) einem Zeitpunkt ihrem Umfang nach erfasst werden können (Abgrenzung der Grundgesamtheit durch Zeitpunkt). Bewegungsmenge: Menge gleichartiger stat. Einheiten, die über einen bestimmten Zeitraum hinweg ihrem Umfang nach erfasst werden können (Abgrenzung der Grundgesamtheit durch Zeitraum). Lösung (a) Todesfälle durch Lungenkrebs in Bayern Bewegungsmenge (b) Geldumlaufmenge in der Bundesrepublik Deutschland Bestandsmenge. Korrespondierende Bewegungsmengen: Neudruck (+) und Vernichtung von Geldscheinen (-) (c) Papierverbrauch in einer Druckerei Bewegungsmenge (d) Fahrradunfälle mit Beteiligung von Kindern unter 6 Jahren Bewegungsmenge (e) Besucher eines Bundesligafußballspiels Bestandsmenge. Korrespondierende Bewegungsmengen: Zuschauer, die das Stadion betreten (+), Zuschauer, die das Stadion verlassen (-)

3 3 Lösung Aufgabe 3 Geschlecht (nominal, diskret), Temperatur in Celcius(intervallskaliert, stetig), Familienstand (nominal, diskret), Steuerklasse (ordinal, diskret), Lebensalter (verhältnisskaliert,quasi-stetig), Religion (nominal, diskret), Stückzahl in der Produktion (absolutskaliert, diskret), Reaktionszeit (verhältnisskaliert, stetig), Rückennummern von Fußballspielern (nominal, diskret), Schulnote (ordinal, diskret), Klausurpunkte (absolut,diskret (quasi-stetig)), Güteklasse von Restaurants (ordinal, diskret), Länge (verhältnisskaliert, stetig), Breitengrade der Erde (intervallskaliert, stetig), Semesterzahl (absolutskaliert,diskret), Kraftstoffverbrauch eines PKW auf 100 km (verhältnisskaliert, stetig)

4 4 Lösung Aufgabe 4 (a) Merkmal X: Besucherzahl; verhältnisskaliert (oder absolut). (b) relative Häufigkeit der Ausprägung a j : f j = f(a j ) = h j /n mit n = 100 a j f j kumulierte relative Häufigkeit der Ausprägung a j : F j = j l=1 f l a j F j (c) Stabdiagramm der relativen Häufigkeiten f j : f j a j (d) empirische Verteilungsfunktion: F (x) = a j x f(a j) = f(a 1 ) f(a j ), a j x, a j+1 > x. F(x) x

5 (e) Anteil der Tage mit mindestens 48 Besuchern: F (48 X) = a j 48 f(a j ) = 0.19 d.h. es kommen nur an 19% der Tage mindestens 48 Besucher. Somit sind die Zukunftsaussichten des Kinos finster. (f) Für mindestens 270 Euro Tageseinnahmen müssen mindestens 270/6 = 45 Besucher kommen. An einem Anteil von F (X 44) = F (44) = 0.36 = 36% der Tage nimmt der Kinobesitzer also weniger als 270 Euro ein. (g) Anteil Tage mit maximal 50, mindestens aber 45 Besucher entspricht F (45 X 50) = F (50) F (44) = = 0.61 = 61%. 5

6 6 Lösung Aufgabe 5 (a) Kreisdiagramm: Der Winkel der Kreissegmente α j ist proportional zur Häufigkeit h j. Es gilt n = 20000: α j = h j n 360 = 0.018h j Damit: α 1 = 4.1,α 2 = 62.8, α 3 = 178.8, α 4 = gut mittelmäßig schlecht sehr gut (b) Histogramm: Die Flächen sind proportional zur Häufigkeit h j (bzw. f j ). D.h. bei gleichen Klassenbreiten ist die Höhe des Balkens proportional zu h j (bzw. f j ). Bei Klassenbreite d j = 1 ist die Höhe des Balkens gleich h j (bzw. f j ). h j schlecht mittelmäßig gut sehr gut

7 7 Lösung Aufgabe 6 (a) Berücksichtigung aller Ziffern, d.h. Einheit: 16 0 = 160. Intervallbreite von 10 Folgen, d.h [160, 170), [170, 180),... Stammbreite ist 10. Stamm-Blatt-Diagramm: Interpretation: Die meisten der befragten Mitglieder haben mindestens 200 Folgen gesehen. Niemand hat weniger als 160 oder mehr als 210 Folgen gesehen. (b) Berücksichtigung der jeweils (gerundeten) führenden beiden Ziffern, d.h. Einheit: 1 6 = 160. Intervallbreite von 100 Folgen, d.h [100, 200), [200, 300). Stammbreite ist 100. Stamm-Blatt-Diagramm: Interpretation: Die Aussagefähigkeit dieser Darstellung ist geringer - verglichen mit jener aus (a). Es wird weniger differenziert. Grundsätzliche Tendenzen sind aber auch hier festzustellen.

8 8 Lösung Aufgabe 7 (a) Die Grundgesamtheit lautet Ω : Studenten, die im Juni 2004 an der Universität X in X-hausen immatrikuliert waren. Die statistischen Einheiten sind ω i : Student i, i = 1,..., n. Die Identifikationsmerkmale lauten Student (sachlich), X-Universität in X-hausen (räumlich) und Juni 2004 (zeitlich). (b) Das Merkmal X 1 : Studiengang ist nominalskaliert. Die absoluten und relativen Häufigkeiten sind in folgender Tabelle dargestellt Säulendiagramm: j a j Statistik Mathematik Informatik Physik h j f j Relative Häufigkeiten des Merkmals Studiengang f_j Statistik Mathematik Informatik Physik a_j (c) Das Merkmal X 2 : Anzahl der Geschwister ist absolutskaliert. Die absoluten und relativen Häufigkeiten sind in folgender Tabelle dargestellt, wobei H j := H(X a j ) und F j := H j /n. j a j h j f j H j F j

9 9 Kreisdiagramm: Relative Häufigkeiten des Merkmals Anzahl der Geschwister keine Geschwister 1 Schwester/Bruder 3 Geschwister 2 Geschwister (d) Wieviele Studenten haben höchstens zwei Geschwister? Gesucht ist H(X 2 2) = H(2) = 23. Also: 23 Studenten haben höchstens zwei Geschwister. Wieviel Prozent der Studenten haben mindestens zwei Geschwister? Gesucht ist F (X 2 2) = f(a j ) = f(a 3 ) + f(a 4 ) = = 0.24 = 1 F (1). a j 2 Also: 24 Prozent der Studenten haben mindestens zwei Geschwister. Wieviel Prozent der Studenten haben ein oder zwei Geschwister? Gesucht ist F (1 X 2 2) = F (X 2 2) F (X 2 0) = F (a 3 ) F (a 1 ) = f(a 2 )+f(a 3 ) = = 0.6. Also: 60 Prozent der Studenten haben ein oder zwei Geschwister. (e) Das Merkmal X 3 : Einkommen ist verhältnisskaliert. Die geordnete Urliste lautet 315, 323, 327, 327, 327, 328, 337, 337, 349, 349, 349, 349, 350, 380, 398, 403, 406, 416, 435, 435, 472, 543, 629, 698, 736 Die geordnete Urliste lautet nach dem Runden auf die beiden führenden Ziffern 320, 320, 330, 330, 330, 330, 340, 340, 350, 350, 350, 350, 350, 380, 400, 400, 410, 420, 440, 440, 470, 540, 630, 700, 740 Das Stamm-Blatt-Diagramm mit Einheit 3 2 = 320 und Stammbreite 100 lautet

10 10 Interpretation: Konzentration von Werten im Bereich [300, 440] (=20 von 25 Beobachtungen). Die Verteilung ist deutlich rechtsschief. Die meisten Studenten (in dieser Stichprobe) haben ein minimales Einkommen. (Offensichtlich stellen 320 Euro eine Art Existenzminimum dar.) (f) Die benötigten Größen sind in folgender Tabelle dargestellt j Klasse [c j 1, c j ) [300, 330) [330,350) [350, 450) [450,600) [600, 750) h j f j F j d j f j Histogramm des Merkmals Einkommen abzutragende Höhe Einkommen Vergleich: Auch das Histogramm ist deutlich rechtsschief. Außerdem ist es unimodal. Die höchste Einkommenskonzentration liegt im Bereich [330, 350). Im Vergleich zum Stamm-Blatt-Diagramm wird der Effekt eines minimalen Einkommens durch die (ungünstige) Klasseneinteilung verfälscht. (g) Welcher Anteil der Studenten hat ein Einkommen von mindestens 375 Euro und höchstens 700 Euro? Gesucht ist hier F (375 X 3 700) = F (700) F (375). Beide Werte berechnen wir mit Hilfe linearer Interpolation folgendermaßen: F (700) = F (600) = = F (375) = F (350) = = Damit erhalten wir F (700) F (375) = = 0.4.

11 11 D.h. 40 Prozent der Studenten haben ein Einkommen von mind. 375 Euro und höchstens 700 Euro. Welcher Anteil der Studenten hat ein Einkommen von mehr als 400 Euro? Hier ist gesucht F (X 3 > 400) = 1 F (X 3 400). Mit Hilfe linearer Interpolation berechnen wir Damit erhalten wir F (400) = F (350) = = F (X 3 > 400) = 1 F (400) = = D.h. 36 Prozent der Studenten haben ein Einkommen von mehr als 400 Euro. Welches maximale Einkommen trat unter den 50 Prozent einkommenschwächsten Studenten auf? Gesucht ist x 3, so dass F (X 3 x 3 ) = 0.5. Mit Hilfe der kumulierten relativen Häufigkeiten wissen wir, dass x 3 in die Klasse [350, 450) fällt. Damit erhalten wir 0.5 = F (350) + x = (x 3 350) 0.02 = x = x 3 x 3 = Das maximale Einkommen unter den 50 Prozent einkommenschwächsten Studenten beträgt Euro.

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

Die Statistik besitzt drei Grundaufgaben im Rahmen der Datenanalyse. Jeder entspricht ein Teilgebiet.

Die Statistik besitzt drei Grundaufgaben im Rahmen der Datenanalyse. Jeder entspricht ein Teilgebiet. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 1 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 1 Die Statistik besitzt drei Grundaufgaben im Rahmen der

Mehr

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52 2 Häufigkeitsverteilungen 2.0 Grundbegriffe Ziel: Darstellung bzw. Beschreibung (Exploration) einer Variablen. Ausgangssituation: An n Einheiten ω 1,..., ω n sei das Merkmal X beobachtet worden. x 1 =

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Verteilungen und ihre Darstellungen

Verteilungen und ihre Darstellungen Verteilungen und ihre Darstellungen Übung: Stamm-Blatt-Diagramme Wie sind die gekennzeichneten Beobachtungswerte eweils zu lesen? Tragen Sie in beiden Diagrammen den Wert 0.452 an der richtigen Stelle

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

Didaktik der Stochastik (Leitidee: Daten und Zufall)

Didaktik der Stochastik (Leitidee: Daten und Zufall) Didaktik der Geometrie und Stochastik WS 09 / 10 15. 1. 2010 Didaktik der Stochastik (Leitidee: Daten und Zufall) 7. Beschreibende Statistik 7.1 Zum Begriff Stochastik : Seit den Fünfziger Jahren werden

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Grafische Darstellung von Häufigkeitsverteilungen (1)

Grafische Darstellung von Häufigkeitsverteilungen (1) Grafische Darstellung von Häufigkeitsverteilungen () Grafische Darstellungen dienen... - Einführung - der Unterstützung des Lesens und Interpretierens von Daten. der Veranschaulichung mathematischer Begriffe

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK PROF. DR. CHRISTINA BIRKENHAKE Inhaltsverzeichnis 1. Merkmale 2 2. Urliste und Häufigkeitstabellen 9. Graphische Darstellung von Daten 10 4. Lageparameter 1

Mehr

Deskriptive Statistik Auswertung durch Informationsreduktion

Deskriptive Statistik Auswertung durch Informationsreduktion Deskriptive Statistik Auswertung durch Informationsreduktion Gliederung Ø Grundbegriffe der Datenerhebung Total-/Stichprobenerhebung, qualitatives/quantitatives Merkmal Einteilung der Daten (Skalierung,

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 1 Übung Lösungsvorschlag Gruppenübung G 1 Auf einer Touristeninsel in der Karibik wurden in den letzten beiden Juliwochen morgens zur gleichen Zeit die folgenden

Mehr

Statistik Grundbegriffe

Statistik Grundbegriffe Kapitel 2 Statistik Grundbegriffe 2.1 Überblick Im Abschnitt Statistik Grundbegriffe werden Sie die Bedeutung von statistischen Grundbegriffen wie Stichprobe oder Merkmal kennenlernen und verschiedene

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Kapitel III - Merkmalsarten

Kapitel III - Merkmalsarten Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Statistik 1 - Deskriptive Statistik Kapitel III - Merkmalsarten Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Statistik für Betriebswirte 1 Probeklausur Universität Hamburg Wintersemester 2016/ Dezember 2016

Statistik für Betriebswirte 1 Probeklausur Universität Hamburg Wintersemester 2016/ Dezember 2016 Statistik für Betriebswirte 1 Probeklausur Universität Hamburg Wintersemester 2016/2017 16. Dezember 2016 1 Aufgabe 1: Beschreibung univariater Daten (30 Punkte) Ein Autohändler verkauft Autos in fünf

Mehr

Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr.

Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr. Hochschule Darmstadt Fachbereich MN Prof. Dr. Dietrich Baumgarten Darmstadt, den 9.7.2012 Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr. Aufgabe 1 2 3 4 5 6 Summe Note Punkte 1 Aufgabe

Mehr

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 1. Grundbegriffe der beschreibenden Statistik Statistische Einheiten, Grundgesamtheit

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Muster einer Fachabschlußklausur (90 Min.)

Muster einer Fachabschlußklausur (90 Min.) Muster einer Fachabschlußklausur (90 Min.) Mathematik 3 für Wirtschaftsingenieure Teilnehmer (Name, Vorname): Matrikelnummer: erreichte Punkte Max. erreichte Punkte Max. Aufg. 1 11 Aufg. 5 15 Aufg. 2 9

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Aufgabenlösungen... Lösung zu Aufgabe 1:... Lösung zu Aufgabe... Lösung zu Aufgabe 3... Lösung zu Aufgabe 4... Lösung zu Aufgabe 5... 3 Lösung zu Aufgabe... 3 Lösung zu Aufgabe 7...

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung).

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). a) Die Anzahl der voneinander verschiedenen Beobachtungswerte eines statistischen Merkmals

Mehr

Allgemeine Grundlagen Seite Termin: Eindimensionale Häufigkeitsverteilung

Allgemeine Grundlagen Seite Termin: Eindimensionale Häufigkeitsverteilung Statistik für alle Gliederung insgesamt Allgemeine Grundlagen Seite 1 1. Termin: Allgemeine Grundlagen 2. Termin: Eindimensionale Häufigkeitsverteilung 3. Termin: Lageparameter 4. Termin: Streuungsparameter

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

f j = ( 2) = 5.5.

f j = ( 2) = 5.5. Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Statistik Dr. Thomas Zehrt Merkmale und Häufigkeitsverteilung Motivation In der heutigen Zeit fällt jeden Tag eine unvorstellbare Menge von Daten

Mehr

Probeklausur Statistik Lösungshinweise

Probeklausur Statistik Lösungshinweise Probeklausur Statistik Lösungshinweise Prüfungsdatum: Juni 015 Prüfer: Studiengang: IM und BW Aufgabe 1 18 Punkte 0 Studenten werden gefragt, wie viele Stunden sie durchschnittlich pro Tag ihr Smartphone

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A Prüfung aus Statistik 1 für SoziologInnen- Gruppe A 26. Juni 2012 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden 1) Wissenstest (maximal 20 Punkte) Lösungen Kreuzen ( ) Sie die jeweils richtige Antwort

Mehr

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage i Günther Bourier Beschreibende Statistik Praxisorientierte Einführung - Mit Aufgaben und Lösungen 12., überarbeitete und aktualisierte Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort V 1 Einführung

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung Prüfung aus Statistik 1 für SoziologInnen Gesamtpunktezahl =80 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 2 Stunden Musterlösung Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort

Mehr

Das Histogramm, bzw. Stabdiagramm / Histogramm / Balkendiagramm

Das Histogramm, bzw. Stabdiagramm / Histogramm / Balkendiagramm Histogram / Histogramm / histogram Akademische Disziplin der Statistik/academic field of statistics/ la discipline statistique/estadística/disciplina academica della statistica deskriptive Statistik/descriptive

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten

Mehr

Beschreibung von Daten

Beschreibung von Daten Kapitel 1 Beschreibung von Daten 1.1 Beispiele zum Üben 1.1.1 Aufgaben Achtung: die Nummerierung ist nicht ident mit der im Buch; Bsp. 1-1 enspricht Bsp 2-20 im Buch, 1-2 2-21 im Buch usw. 1 1 In einem

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Höhere Mathematik 2 (Weihenstephan) 1. Die Gemeinde Fronhausen besteht aus drei Ortsteilen: Neudorf, Wulling und Marking.

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen.

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen. 4. Analyse univariater Daten: Übersicht Mathematik ist die Wissenschaft der reinen Zahl, Statistik die der empirischen Zahl Von univariaten Daten spricht man, wenn bei der Datenerhebung nur ein Merkmal

Mehr

Statistik. Ronald Balestra CH St. Peter

Statistik. Ronald Balestra CH St. Peter Statistik Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. Januar 2010 Inhaltsverzeichnis 1 Statistik 1 1.1 Beschreibende Statistik....................... 1 1.2 Charakterisierung von Häufigkeitsverteilungen...........

Mehr

Kai Schaal. Universität zu Köln

Kai Schaal. Universität zu Köln Deskriptive Statistik und Wirtschaftsstatistik Tutorium zur Anwendung von Statistik 1 in Excel Kai Schaal Universität zu Köln Organisatorisches und Einleitung (1) Was, wann, wo? Anwendung von Statistik

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur

Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur Gesamtpunktzahl der Statistik I-Klausur: 12 Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur 03.07.2015 Name, Vorname: Matrikelnr.: Um die volle Punktzahl zu erhalten, müssen Sie bei den Berechnungen

Mehr

Analyse von Kontingenztafeln

Analyse von Kontingenztafeln Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden.

Mehr

F r a g e n k a t a l o g

F r a g e n k a t a l o g F r a g e n k a t a l o g 1. Was ist eine Konstante? 2. Was ist eine Variable? 3. Was ist ein Datum? 4. Welche Werte haben Variablen? 5. Was sind qualitative Variablen? 6. Was sind quantitative Variablen?

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 2. Beschreibende Statistik (descriptive Statistics) Literatur Kapitel 2 * Storrer: Kapitel 29-31 * Stahel: Kapitel 1-3 * Statistik in Cartoons:

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Häufigkeitsverteilung

Häufigkeitsverteilung 2. Eindimensionale Häufigkeitsverteilungen Thema dieses Abschnitts ist die Auswertung eindimensionalen (univariaten) Datenmaterials, d.h. Daten zu einem einzigen Merkmal einer Grundgesamtheit oder Stichprobe.

Mehr

Wirtschaftsstatistik-Klausur am

Wirtschaftsstatistik-Klausur am Wirtschaftsstatistik-Klausur am 7.01.01 Bearbeitungszeit: 60 Minuten Aufgabe 1 In der nachfolgenden Tabelle sind die Jahresendwerte des Dax 30 und das Wachstum (in %) des BIP gegenüber dem Vorjahr (Quelle:

Mehr

1 Einführung und Grundbegriffe

1 Einführung und Grundbegriffe 1 Einleitung Die deskriptive Statistik dient der systematischen Erfassung und Darstellung von Daten, die bestimmte Zustände oder Entwicklungen aufzeigen. Sehr viele Entscheidungen des Alltags, in Wirtschaftsunternehmen

Mehr

9. Kapitel: Grafische Darstellung quantitativer Informationen

9. Kapitel: Grafische Darstellung quantitativer Informationen 9. Kapitel: Grafische Darstellung quantitativer Informationen 9.1: Fallstricke bei der Übersetzung von Zahlen in Bilder a) optische Täuschungen b) absichtliche Manipulationen 9.2: Typologie von Datengrafiken

Mehr

Kapitel II - Grundbegriffe

Kapitel II - Grundbegriffe Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel II - Grundbegriffe Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Agenda 1 Statistische

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Statistik I WS 2014/2015. Prof. Dr. Walter Krämer

Statistik I WS 2014/2015. Prof. Dr. Walter Krämer Statistik I WS 2014/2015 Prof. Dr. Walter Krämer Organisatorisches Dozenten: Vorlesung: Prof. Dr. Walter Krämer Übungen: Dipl.-Stat. Marianthi Neblik cand.stat. Eva-Maria Becker cand.stat. Nicole Dauzenroth

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik

Mehr

Quantitative Linguistik 2 WS 2004/05,

Quantitative Linguistik 2 WS 2004/05, Quantitative Linguistik 2 WS 2004/05, 21.10.2004 Gegenüberstellung: Linguistik und QL Exempel: Das Zipfsche Gesetz Zielsetzung der Quantitativen Linguistik Zur Methodik der Quantitativen Linguistik Jürgen

Mehr

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein.

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein. 1 unterschiedliche Skalenniveaus Wir haben zuvor schon kurz von unterschiedlichen Skalenniveaus gehört, nämlich dem: - Nominalskalenniveau - Ordinalskalenniveau - Intervallskalenniveau - Ratioskalenniveau

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

Kapitel 3: Eindimensionale Häufigkeitsverteilungen

Kapitel 3: Eindimensionale Häufigkeitsverteilungen Kapitel 3: Eindimensionale Häufigkeitsverteilungen. Unklassierte Daten...29 a) Häufigkeitsverteilung...29 b) Tabellen und Graphiken...3 c) Summenhäufigkeiten...34 2. Klassierte Daten...38 a) Größenklassen...38

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 2 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr