Dipl.-Math. Robert Offinger Wintersemester 2006/07 Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik

Größe: px
Ab Seite anzeigen:

Download "Dipl.-Math. Robert Offinger Wintersemester 2006/07 Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik"

Transkript

1 Dipl.-Math. Robert Offinger Wintersemester 6/7 Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Materialien zur Vorlesung Mathematik III für Ingenieure Ergänzungen zur Einführung in Matlab R und Scilab. Lineare Gleichungssysteme. Eigenwerte, Eigenvektoren 3. QR-, Cholesky-Zerlegung und positive Definitheit 4. Programmierung: Newton-Verfahren 5. Einfache Grafiken 6. Symbolisches Rechnen Die Einführung in Matlab R und Scilab ist wie dieses Dokument im Internet verfügbar unter rooff/mathe3/

2 Lineare Gleichungssysteme Hat man eine m n Matrix A und einen m Vektor b definiert, so kann man mit dem \ -Operator das zugehörige Gleichungssystem Ax = b lösen. Ist die Matrix A quadratisch und hat sie vollen Rang, dann ist die Lösung eindeutig und nichts weiter zu beachten. Ist die Matrix quadratisch, hat sie jedoch keinen vollen Rang, erhält man eine Warnung: >> A=[ 3 ; 4 ; 7 ] ; >> b = [ ; ; 7 ] ; >> A\b >> B=[ ; ; ] ; >> B\b Warning : Matrix i s s i n g u l a r to working p r e c i s i o n. NaN Inf Inf Ist die Matrix nicht quadratisch, so erhält man auch in Fällen mit unendlich vielen Lösungen oder keiner Lösung als Ergebnis immer einen Vektor! Ist das Gleichungssystem unlösbar, so erhält man die sogenannte Least-Squares-Lösung: Es wird dann versucht, einen bestmöglichen Lösungsvektor x zu finden in dem Sinne, dass Ax b minimal wird, d.h. Ax b = min x Ax b. Diese Fälle erkennt man daran, dass der Rang von A kleiner als der Rang der erweiterten Matrix [A, b] ist. >> B=[ ; ; ; ] ; >> b = [ ; ; ; ] ; >> x=b\b Warning : Rank d e f i c i e n t, rank =, t o l =.986 e 5. x =.5.5 >> B x.. >> rank (B)

3 >> rank ( [ B, b ] ) 3 Gibt es dagegen unendlich viele Lösungen, d.h. in Fällen mit Rang(A) = Rang([A, b]) < n, so wird nur eine spezielle Lösung (mit höchstens k = Rang(A) vielen Einträgen ungleich ) ausgegeben. Die allgemeine Lösung erhält man in diesem Fall, indem man noch den Nullraum berechnet, in unserem Falle ergibt sich die Lösungsmenge {(.5,,.5) t + λ(,, ) t : λ R}. Ist der Nullraum mehrdimensional, so geben die Spalten der Resultatsmatrix eine Basis des Nullraums an, hier N (D) = span{(,,, ) t, (,,, ) t } für die angegebene 4-Matrix D. Der Parameter r sorgt jeweils dafür, dass statt normierter Vektoren solche mit rationalen Einträgen ausgegeben werden. >> C=[ ; ] ; >> c = [ ; ] ; >> C\ c.5.5 >> rank (C) >> rank ( [ C, c ] ) >> null (C) >> null (C, r ) >> D=[ ; ] ; >> null (D, r ) Wollte man im Fall einer singulären quadratischen n n Matrix A für das Gleichungssystem Ax = b eine Least-Squares-Lösung (falls Rang(A) < Rang([A, b])) bzw. eine spezielle Lösung (falls Rang(A) = Rang([A, b]) < n), dann müsste man x = pinv(a)*b verwenden. 3

4 Eigenwerte, Eigenvektoren Die Eigenwerte einer Matrix erhält man mit der Funktion eig. Will man daneben noch die Eigenvektoren, muss man das Ergebnis einem Vektor zweier Variablen zuweisen. Der erste Eintrag, hier die Matrix V, enthält in den Spalten normierte Eigenvektoren, der zweite Eintrag, die Matrix D, ist die Diagonalmatrix der zugehörigen Eigenwerte, so dass V DV = F (in Matlab-Schreibweise: inv(v)*d*v) bzw. sogar V t DV = F (in Matlab- Schreibweise: V *D*V) gilt, falls die Voraussetzungen dazu erfüllt sind (siehe Theorem.4 bzw. Theorem.). Warnung: Falls algebraische und geometrische Vielfachheiten nicht übereinstimmen sollten, sind die Spalten der Matrix der Eigenvektoren nicht linear unabhängig! >> F=[6 ; 5 ; 9 ] ; >> eig (F) 5 5 >> [V,D]= eig (F) V = D = 5 5 >> [ V, D]= eig ( [ ; ] ) ; V V =... 3 QR-, Cholesky-Zerlegung und positive Definitheit Eine QR-Zerlegung einer Matrix ermittelt die Funktion qr. Um beide Ergebnismatrizen angezeigt zu bekommen, muss man wieder an einen Vektor zweier Variablen zuweisen. >> G=[ 3 ; ; 3 ] ; >> [ Q,R]=qr (G) Q = R =

5 Die Cholesky-Zerlegung ist für positiv definite (und damit insbesondere symmetrische) Matrizen möglich. Matlab R führt dabei einen Test auf positive Definitheit durch, so dass man nicht die Eigenwerte ausrechnen und nachsehen muss, ob alle positiv sind. Für das berechnete Ergebnis (eine rechte Dreiecksmatrix) R der Cholesky-Zerlegung von H gilt dann R t R = H (in Matlab-Schreibweise: R *R), d.h. mit der linken Dreiecksmatrix L = R t gilt dann wie im Skript LL t = H (Theorem.3). >> F=[6 ; 5 ; 9 ] ; >> chol (F)??? Error using ==> chol Matrix must be p o s i t i v e d e f i n i t e. >> H=[ ; ; 5 ] ; >> eig (H).. 7. >> R=chol (H) R = Programmierung: Newton-Verfahren Ein übliches Verfahren zur Lösung einer nichtlinearen Gleichung f(x) = (zu einer Funktion f : R R) ist das Newton-Verfahren, das wir hier zu Demonstrationszwecken programmieren. In Matlab R steht zur Lösung von nichtlinearen Gleichungssystemen die Funktion fsolve zur Verfügung, mit der wir dann unsere Lösung vergleichen. Das Newton-Verfahren besteht darin, zu einem gegebenen geeigneten Startwert x iterativ die Punkte x k+ = x k f(x k), k =,,,... f (x k ) zu berechnen und geeignet abzubrechen. Wir brechen hier (etwas naiv) ab, wenn die Änderung in den x-werten gering ist, d.h. falls x k+ x k ɛ für einen vorher gewählten Wert ɛ, oder - weniger erfolgreich mit einer Fehlermeldung - falls k > k max ist, d.h. eine vorher gewählte Maximalanzahl k max an Iterationen überschritten wird. Der Funktion newtonsolve, die in einer eigenen Datei mit dem Namen newtonsolve.m (einer sogenannten m-datei) im aktuellen Verzeichnis steht, werden dabei die Funktion f (Parameter func), ein Startwert x (Parameter startval), die Ableitung f (Parameter func_deriv), die gewünschte Genauigkeit ɛ (Parameter epsi) und die Maximalanzahl k max an Iterationen (Parameter max_steps) übergeben. Die Funktion f und die Ableitung f stehen unter dem Namen newtfunc bzw. newtablfunc wieder jeweils in einer eigenen m-datei namens newtfunc.m bzw. newtablfunc.m. Genauer wird beim Aufruf von newtonsolve ein sogenanntes Handle auf diese Funktionen übergeben, daher das -Zeichen bei der Übergabe der Funktionen. Wie auch bei der Verwendung 5

6 der Funktion fsolve geschehen, könnte alternativ die Funktion und Ihre Ableitung einmalig beim Funktionsaufruf ( inline ) definiert werden mittels des Aufrufs newtonsolve(@(x) x - exp(-/*x),,@(x) +/*exp(-/*x),e-6,). function y = newtfunc ( x ) y = x exp( / x ) ; function y=newtablfunc ( x ) y=+/ exp( / x ) ; function y = newtonsolve ( func, s t a r t v a l, f u n c d e r i v, epsi, max steps ) % L o e s u n g d e r n i c h t l i n e a r e G l e i c h u n g f u n c = mit H i l f e d e s % N e w t o n v e r f a h r e n s ; Abbruch, f a l l s d i e G e n a u i g k e i t e p s i e r r e i c h t % o d e r nach m a x s t e p s I t e r a t i o n e n % I n p u t p a r a m e t e r : % f u n c n i c h t l i n e a r e G l e i c h u n g mit f u n c = % s t a r t v a l S t a r t w e r t d e r I t e r a t i o n ( kann auch komplex s e i n ) % f u n c d e r i v A b l e i t u n g von f u n c nach d e r u n a b h a e n g i g e n V a r i a b l e n % e p s i G e n a u i g k e i t d e s E r g e b n i s s e s % m a x s t e p s M a x i m a l z a h l an I t e r a t i o n e n % % O u t p u t p a r a m e t e r : % y N u l l s t e l l e von f u n c xold = s t a r t v a l ; % H i l f s v a r i a b l e xnew = s t a r t v a l ; d i f f e r = e p s i ; % Laenge d e s a k t u e l l e n I n t e r v a l l s s t e p s = ; % Anzahl d e r b e r e i t s d u r c h g e f u e h r t e n S c h r i t t e while ( abs ( d i f f e r ) > e p s i ) & ( s t e p s < max steps ) abl = f u n c d e r i v ( xold ) ; i f ( abl==) error ( Ableitung hat N u l l s t e l l e ) end ; xnew = xold func ( xold )/ abl d i f f e r = xnew xold ; xold = xnew ; s t e p s = s t e p s + ; end i f s t e p s >= max steps error ( k e ine Konvergenz des Newton Verfahrens ) ; else y = xnew ; end Wir testen unser Programm für die Funktion f : R R, f(x) = x exp( x/) mit der Ableitung f (x) = +/ exp( x/). Die Funktion ist also streng monoton steigend. Der Graph der Funktion ist im Abschnitt 5 zu finden. Wir starten hier mit dem Startwert x = (beachte: f() = und f().39). Nach wenigen Schritten erreichen wir die gewünschte Genauigkeit für ɛ = 6 und ein vergleichbares Ergebnis wie Matlab R. Da 6

7 im Programm in der Zeile xnew = xold - func(xold)/abl kein abschließender Strichpunkt steht, wird der aktuelle Wert von x k+ in jeder Iteration mit ausgegeben. Um mehr gültige Stellen zu sehen, verwendeten wir zudem vor dem Programmaufruf den Befehl format long. Mit dem Befehl format short schaltet man wieder zur kurzen Ausgabe mit weniger gültigen Stellen zurück. >> format long >> e 6,) xnew = xnew = xnew = xnew = >> x=f s o l v e (@( x ) x exp( / x ), ) Optimization terminated: first-order optimality is less than options.tolfun. x = >> format s h o r t 5 Einfache Grafiken 3 sqrt(x. + y. ) y.5..4 x.6.8 >> x = :.:3; >> y=newtfunc ( x ) ; >> plot ( x, y ) >> grid on >> grid o f f >> e z p l o t ) >> e z p l o t [, 3 ] ) >> fh x, y ) sqrt ( x. ˆ + y. ˆ ) ; >> e z s u r f ( fh, [, ], [ /, ] ) 7

8 Wir wiederholen kurz den Plot einer eindimensionalen Funktion, hier für obige Funktion f(x) = x exp( x/) im Intervall x 3. Mittels grid on legt man dabei ein Liniengitter über die Grafik, das man mit grid off wieder löschen kann. Man sieht so gut die Nullstelle bei x.7. Alternativ kann man die Funktion ezplot verwenden. Ferner wollen wir noch den Graph der Funktion f : R R, f(x, y) = x + y im Intervall x und / y ausgeben und verwenden dazu ezsurf, den einfachsten Befehl, der hierzu verfügbar ist. Weitere Informationen zu diesem und Querverweise zu ähnlichen (und komplizierteren) Befehlen mit vielen zusätzlichen Optionen erhält man z.b. mit dem Befehl doc ezsurf. 6 Symbolisches Rechnen Im Gegensatz zu Scilab kann Matlab R mit Hilfe der Symbolic Math Toolbox etwas symbolisch rechnen, wobei es dabei auf Routinen des Programms Maple R zurückgreift. Oft ist es in solchen Fällen empfehlenswert, dann gleich das Programm Maple R zu benutzen; trotzdem demonstrieren wir das Vorgehen in Matlab R. Nachdem die symbolischen Variablen x und y definiert wurden, kann man in dem Ausdruck y 3 x 4 die partielle Ableitung nach x oder nach y berechnen lassen. Ansonsten bestimmen wir noch die Jacobi-Matrix zur Funktion f(x, y) = ( y 3 x 4, exp( x y) ) und werten diese im Punkt (x, y) = (, ) aus. Abschließend lassen wir noch die gewöhnliche Differentialgleichung.Ordnung ( x )y xy + 6y = mit den Randwertbedingungen y() = y( ) = lösen und erhalten als Lösung die Funktion y(x) = + 3 x. >> syms x y >> f=yˆ3 x ˆ( 4); >> d i f f ( f, x ) 4 yˆ3/xˆ5 >> d i f f ( f, y ) 3 yˆ/xˆ4 >> j a c=j a c o b i a n ( [ yˆ3 x ˆ( 4);exp( xˆ y ) ] ) j a c = [ 4 yˆ3/x ˆ5, 3 yˆ/x ˆ 4 ] [ x exp( xˆ y ), exp( xˆ y ) ] >> subs ( jac, { x, y },{,}) >> y=dsolve ( ( x ˆ) Dy x Dy+6 y=, y()=, y( )=, x ) y = /+3/ xˆ Hinweis: Die Ein- und Ausgabe geschah jeweils unter der Version 7. von Matlab R. 8

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Beispiel einer Koordinatentransformation Gegeben seien zwei

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Freitag 6 $Id: jordantex,v 7 9/6/ :8:5 hk Exp $ 5 Eigenwerte und die Jordansche Normalform 5 Die Jordansche Normalform Nachdem wir bisher das Vorgehen zur Berechnung

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice: Sommer Prof. H.-R. Künsch Gegeben sei die folgende Matrix A = 4. 4 (a) x AA T ist eine 4 4 Matrix mit ( AA T) = 4. AA T ist

Mehr

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch:

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch: Aufgabe 8 Punkte Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R des folgenden linearen Gleichungssystems: 4x + x + 3x 3 =, x + ax 3 =, ax + x 3 =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 2014 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 91 91a) Sei A eine n n-matrix Das Gleichungssystem Ax

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 2 Beweise Sie folgende

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 3.4. Dr. Daniel Haase FS daniel.haase@math.ethz.ch Grundlagen der Mathematik II (LVA 4-6- U) 8 Zur Übungsstunde vom 3.4. Aufgabe (Ausgleichsrechnung) Gegeben sei das lineare Gleichungssystem

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo sungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS2/ Dipl.-Math. T. Pawlaschyk, 29.0.2 Thema: Wiederholung Aufgabe Zeigen Sie, dass

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 6 Eigenwerte

Mehr

Einführung in MATLAB Blockkurs DLR:

Einführung in MATLAB Blockkurs DLR: Einführung in MATLAB Blockkurs DLR: 19.4-22.4.2004 Tag 2, 2.Teil Programmieren mit MATLAB II 20.4.2004 Dr. Gerd Rapin grapin@math.uni-goettingen.de Gerd Rapin Einführung in MATLAB p.1/25 Programmieren

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Klausur DI/LA F 2006 LA : 1

Klausur DI/LA F 2006 LA : 1 Klausur DI/LA F 26 LA : Aufgabe (4+2=6 Punkte): Gegeben seien die Matrix A und der Vektor b mit λ A = λ und b = λ a) Bestimmen Sie die Werte λ R, für welche das Gleichungssystem Ax = b genau eine, keine

Mehr

Aufgaben und Lösungen zur Abschlußklausur zur Mathematik 1 (Wiederholer und Nachzügler) vom

Aufgaben und Lösungen zur Abschlußklausur zur Mathematik 1 (Wiederholer und Nachzügler) vom Aufgaben und Lösungen zur Abschlußklausur zur Mathematik (Wiederholer und Nachzügler) vom 6.3.8. In der Menge M n n aller quadratischen Matrizen vom Format n n mit Einträgen aus R werden die folgenden

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Gauss-Algorithmus. 1. Hausaufgabe: Rang einer Matrix Bestimmen Sie den Rang der Matrix

Gauss-Algorithmus. 1. Hausaufgabe: Rang einer Matrix Bestimmen Sie den Rang der Matrix Technische Universität Berlin WS 200/02 Fakultät II Institut f. Mathematik Seiler, Rambau, Wiehe, Gentz, Scherfner Körner, Schulz-Baldes, Schwarz Lösung zum 4. Übungsblatt Lineare Algebra für Ingenieure

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Numerische Mathematik mit Matlab

Numerische Mathematik mit Matlab Günter Grämlich Wilhelm Werner Numerische Mathematik mit Matlab Eine Einführung für Naturwissenschaftler und Ingenieure ГЗ I dpunkt.verlag Inhaltsverzeichnis 1 Einleitung 1 2 MATLAB-Grundlagen 5 2.1 Was

Mehr

Diplomvorprüfung LA H 06 VD : 1

Diplomvorprüfung LA H 06 VD : 1 Diplomvorprüfung LA H 6 VD : Aufgabe : (3 + + = 6 Punkte) Gegeben sei die Matrix A = a) Bestimmen Sie die Eigenwerte von A b) Bestimmen Sie alle Eigenvektoren der Matrix A c) Ist die Matrix A invertierbar?

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 018 Prof Dr N Hungerbühler Serie 8: Online-Test Schicken Sie Ihre Lösung bis spätestens Freitag, den 3 November um 14:00 Uhr ab Diese Serie besteht nur aus Multiple-Choice-Aufgaben

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 5 4.5.5 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 15.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Übung 5. Symbolische/Nummerische Integralrechnung. clear all clc. syms x % Definition symbolischer Variablen

Übung 5. Symbolische/Nummerische Integralrechnung. clear all clc. syms x % Definition symbolischer Variablen Einführung in die Modellierung Übung 5 Symbolische/Nummerische Integralrechnung 1. Bestimmen Sie symbolisch die Stammfunktionen folgender Zusammenhänge: a) 2x (x 2 + 3) c) arcsin (x) b) 1 x ln(x 2 ) 1

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 14. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 14. Übung: Woche vom (Lin.Alg. Übungsaufgaben 14. Übung: Woche vom 30. 1.-3. 2. 2017 (Lin.Alg. III): Heft Ü 3: 3.2.6.a,b,l,n; 3.2.12; 3.2.13; 5.4.1; 5.4.5.c; Hinweis 1: 3. Test (Integration, analyt. Geom.) ist seit 9.1. freigeschalten

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3

9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3 MAPLE_Mini_09_V1-0.doc 9-1 9 Gleichungen 9.1 Eine Gleichung mit einer Unbekannten exakt lösen x Beispiel 1: Die Gleichung x 2 = 4 lösen. solve( x / (x 2) = 4, x ); 8 3 Beispiel 2: Lösen Sie die Gleichung

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei die Matrix Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei die Matrix 1 1 1 A = 3 3 3 2 2 2 (a) Bestimmen Sie Rang(A), Kern(A) und Bild(A). Ist A invertierbar? Geben Sie zwei verschiedene rechte Seiten b 1, b 2 an, so

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS 6.. Prüfungsaufgaben zur Lösbarkeit von LGS Aufgabe : Lösbarkeit von LGS () Berechne mit Hilfe des Gauß-Verfahrens die Lösungsmengen der drei folgenden inhomogenen Gleichungssysteme. Gib außerdem die Lösungsmengen

Mehr

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/ Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/2012 21.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN. Nachname:...................................................................

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Nichtlineare Gleichungen, mehrere Unbekannte

Nichtlineare Gleichungen, mehrere Unbekannte Dritte Vorlesung, 6. März 2008, Inhalt Aufarbeiten von Themen der letzten Vorlesung, und Nichtlineare Gleichungen, mehrere Unbekannte Systeme nichtlinearer Gleichungen Vektor- und Matrixnormen Fixpunkt-Iteration,

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Name, Vorname: Studiengang: Matrikelnummer: 2 4 5 6 Z Punkte Note Klausur zum Grundkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 22. Februar 2007, 8.00 -.00 Uhr Zugelassene

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/2018 1.03.2018 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2 Fakultät Mathematik WS 27/8 Institut für Mathematische Stochastik / Institut für Analysis Dr. W. Kuhlisch, Dr. F. Morherr Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Name a a Note Vorname Leginummer Datum 19.08.2016 1 2 3 4 5 6 Total 7P 11P 10P 11P

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag

Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 23): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag 3. Mit Hilfe elementarer Zeilenumformungen sowie der Tatsache, daß sich die Determinante

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Serie 13. Aufgabe Aufgabe Aufgabe Herbstsemester ETH Zürich D-MATH

Lineare Algebra für D-ITET, D-MATL, RW. Serie 13. Aufgabe Aufgabe Aufgabe Herbstsemester ETH Zürich D-MATH Dr. V. Gradinaru T. Welti Herbstsemester 2017 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Serie 13 Aufgabe 13.1 13.1a) Berechnen Sie die Eigenwerte und die zugehörigen Eigenvektoren von 2

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 206/207 20.03.207 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Musterlösung. Aufgaben zu Iterative Lösung Linearer Gleichungssysteme. Vordiplomskurs Numerische Methoden Sommer 2008

Musterlösung. Aufgaben zu Iterative Lösung Linearer Gleichungssysteme. Vordiplomskurs Numerische Methoden Sommer 2008 Musterlösung Aufgaben zu Iterative Lösung Linearer Gleichungssysteme Vordiplomskurs Numerische Methoden Sommer 8. Betrachte das Gleichungssystem Ax b mit ( ( 3 A, b. 6 8 a Konvergiert das Jacobi Verfahren

Mehr

Gruppe II Lineare Algebra

Gruppe II Lineare Algebra Pflichtbereichs Klausur in der Lehrerweiterbildung am 7.Juni 22 Bearbeiten Sie 3 der folgenden 6 Aufgaben, dabei aus jeder der beiden Gruppen (Lineare Algebra und Analysis) mindestens eine Aufgabe! Zur

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B R. Käppeli T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Winter 2016 Typ B Name a a Note Vorname Leginummer Datum 03.02.2017 1 2 3

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG Winter 2013 Prof. H.-R. Künsch. Regeln Multiple Choice:

Lineare Algebra und Numerische Mathematik D-BAUG Winter 2013 Prof. H.-R. Künsch. Regeln Multiple Choice: b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG Winter 03 Prof. H.-R. Künsch c Alle Aufgaben haben das gleiche Gewicht. Die Lösungswege müssen, abgesehen von Aufgabe, nachvollziehbar dargestellt

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 13

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 13 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Serie 13 Diese letzte Serie des Semesters befasst sich noch einmal mit wichtigen Themen

Mehr

Überbestimmte Gleichungssysteme, Regression

Überbestimmte Gleichungssysteme, Regression Überbestimmte Gleichungssysteme, Regression 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas MUL 16. Mai 2013 C. Brand, E. Hausenblas 8. Vorlesung 1 / 19 Gliederung 1 Überbestimmte

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr