Neue Ansätze der Softwarequalitätssicherung

Größe: px
Ab Seite anzeigen:

Download "Neue Ansätze der Softwarequalitätssicherung"

Transkript

1 Neue Ansätze der Softwarequalitätssicherung Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Informatik Sommersemester 2009 Betreuer: Henning Wachsmuth Autor: Andreas Martens

2 Übersicht Motivation MapReduce-Modell von Google Einsatzfälle Apache Hadoop Framework Softwarequalität des Frameworks Demo Häufigkeit von Wörtern im Text Zusammenfassung 2

3 Motivation - Situation Aufgaben im Bereich von Datenverarbeitung Man möchte große Menge an Daten bearbeiten ( Tera- bis Petabytes) In akzeptabler Zeit mit minimalem Aufwand für Entwickler Leichte Änderung der Aufgabe nicht sofort von Vorne anfangen 3

4 MapReduce-Modell von Google Eingeführt in 2003 von Google Modell für hoch parallelisierte, verteilte Verarbeitung von großen Datenmengen Map- und Reduce-Funktionen Kernmethoden Mehrere darauf basierende Frameworks Oft auf Clustern betrieben 4

5 MapReduce-Modell - Einsatzfälle Häufigkeit von Wörtern im Text Maschinelle Übersetzung Globale Suche nach regulären Ausdrücken Verteiltes Sortieren Invertierter Index Dokument Clustering # SW-Produkten mit MapReduce-Modell... [Quelle: 5

6 MapReduce-Modell von Google map(key1, value1) => list(key2, value2) reduce(key2, list(value2)) => (key2,value3). [Quelle: 6

7 MapReduce-Modell von Google Map-Funktion: Abbilden der Eingabedaten (key1, value1) auf eine Liste von neuen Paaren (key2, value2) Zwischenergebnisse verteilt, auf mehreren Prozessoren Reduce-Funktion: Liste mit einem Key zugewiesenen Werten zu reduzieren bzw. auf möglichst kleine resultierende Menge abzubilden verteilt, auf mehreren Prozessoren hält benötigten Speicherplatz gering Verzicht in meisten Fällen auf weitere Umstrukturierung im Benutzerquellcode 7

8 MapReduce in Häufigkeit von Wörtern im Text 8

9 MapReduce in Häufigkeit von Wörtern im Text - 2 9

10 MapReduce in Häufigkeit von Wörtern im Text

11 MapReduce in Häufigkeit von Wörtern im Text

12 MapReduce-Modell am Beispiel von Invertierter Index Kommt in verschiedenen Bereichen vor Typischer Einsatzfall für MapReduce-Modell Indexieren Kernaufgabe der Suchmaschinen 12

13 MapReduce in Invertierter Index 13

14 Art der Daten Geeignet Textdokumente Inhaltsunabhängige Daten Schlecht geeignet für Bearbeitung Wenn Bearbeitungsreihenfolge eine Rolle spielt Binäre Daten (Bilder, PDF) Bei Aufgaben, bei denen die Struktur im Vordergrund steht (HTML, XML) 14

15 Apache Hadoop Open Source-Java Framework Basiert auf MapReduce-Modell Für Berechnungen auf Clustern gerichtet leistungsstark, flexibel, effizient Nimmt dem Entwickler sehr viel Arbeit ab 15

16 Apache Hadoop 2 Nimmt dem Entwickler sehr viel Arbeit ab Hadoop Distributed File System Basiert auf FUSE Im Vegleich mit Google FS nicht nur an Internetsuche optimiert Datenverwaltung, Datenverteilung Prozesssteuerung Datensicherung Fehlerbehandlung Scheduling (Map-, Reduce-Jobs Zuweisung)... 16

17 Apache Hadoop 3 mind. fünf wichtigsten Prozessen Name Node Namespaces, Metadaten des FS Secondary NameNode Änderungen in Log's speichern Data Node Daten auf FS speichert Job Tracker Master Prozess Task Tracker Worker Prozess 17

18 Softwarequalität Zuverlässigkeit Fehlertolerant - Fehlererkennung Absturzsicher - Master, Worker-Prozesse Datensicherung - Log's des SecondaryNameNodes Benutzbarkeit Debugging - Zähler, Zustände Beobachtbar zur Laufzeit Leicht einsetzbar Änderbarkeit Sehr leicht an konkrete Fälle anpassbar Relativ leichter Moduswechsel (Stand alone, Cluster mode) 18

19 Softwarequalität 2 Übertragbarkeit Auf untershciedlichen Plattformen ausführbar Hardwareunabhängig (Leistung der HW = Leistung des Modells) Effizienz Benchmarks: GreySort (TBs/min) und MinuteSort (TBs) Daytone allgemein gültige Implementierung (Größe des Rekords) GraySort: TB/min, auf 3451 Rechenknoten MinuteSort: 500 GB, auf 1406 üblichen Rechnern 19

20 Demo: Häufigkeit von Wörtern im Text Berechnen wie oft die Wörter vorkommen Hadoop Distributed File System (HDFS) Mehrere Eingabedokumenten Ergebnisse in HDFS abspeichern Implementierung von nur Map-, Reduce- Methoden und MapReduceDriver - WordCount. Cluster lokal betreiben Einsatz von IDE Eclipse für leichtere Projektverwaltung 20

21 Zusammenfassung MapReduce-Modell: Effektiv für verteilte Bearbeitung von großen Datenmengen Für hoch parallele Ausführung Auf dem Cluster betreibbar Apache Hadoop Realisiert MapReduce-Modell Nimmt dem Entwickler viel Arbeit ab Bringt hohe Softwarequalität mit Sehr leicht einsetzbar Leistungsstark 21

Neue Ansätze der Softwarequalitätssicherung. Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop

Neue Ansätze der Softwarequalitätssicherung. Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Neue Ansätze der Softwarequalitätssicherung Thema des Seminars Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik

Mehr

Neue Ansätze der Softwarequalitätssicherung. Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop

Neue Ansätze der Softwarequalitätssicherung. Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Neue Ansätze der Softwarequalitätssicherung Thema des Seminars Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik

Mehr

MapReduce in der Praxis

MapReduce in der Praxis MapReduce in der Praxis Rolf Daniel Seminar Multicore Programmierung 09.12.2010 1 / 53 Agenda Einleitung 1 Einleitung 2 3 Disco Hadoop BOOM 4 2 / 53 1 Einleitung 2 3 Disco Hadoop BOOM 4 3 / 53 Motivation

Mehr

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Brownbag am Freitag, den 26.07.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und

Mehr

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Big Data Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Agenda Was ist Big Data? Parallele Programmierung Map/Reduce Der Big Data Zoo 2 3Vs oder: Was ist Big Data? Deutsche Telekom:

Mehr

SEMT. Prof. G. Bengel. Searching as a Service (Programming Model: MapReduce)

SEMT. Prof. G. Bengel. Searching as a Service (Programming Model: MapReduce) Hochschule Mannheim Fakultät für Informatik SEMT Prof. G. Bengel Sommersemester 2009 Semester 8I Searching as a Service (Programming Model: MapReduce) Michel Schmitt (520361) 1.06.2009 Inhalt 1. Einführung...

Mehr

Sozio- Technische Systeme

Sozio- Technische Systeme Soziotechnische Informationssysteme 7. Skalierbarkeit 2013 757 Millionen melden sich täglich an (12/2013) 802 DAUs laut FB (1 Quartal 2014) 1.23 Milliarden Nutzer im Monat (12/2013) 556 Millionen täglich

Mehr

GPU-basierte Beschleunigung von MapReduce am Beispiel von OpenCL und Hadoop

GPU-basierte Beschleunigung von MapReduce am Beispiel von OpenCL und Hadoop am Beispiel von OpenCL und Masterseminar Hochschule für Technik, Wirtschaft und Kultur Leipzig Leipzig, 02.11.2011 Gliederung 1 Grundlagen 2 3 Gliederung 1 Grundlagen 2 3 Was ist? Clustersystem zur verteilten

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Spark, Impala und Hadoop in der Kreditrisikoberechnung

Spark, Impala und Hadoop in der Kreditrisikoberechnung Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort

Mehr

Hadoop. Simon Prewo. Simon Prewo

Hadoop. Simon Prewo. Simon Prewo Hadoop Simon Prewo Simon Prewo 1 Warum Hadoop? SQL: DB2, Oracle Hadoop? Innerhalb der letzten zwei Jahre hat sich die Datenmenge ca. verzehnfacht Die Klassiker wie DB2, Oracle usw. sind anders konzeptioniert

Mehr

Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim

Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim Tobias Neef Cloud-Computing Seminar Hochschule Mannheim WS0910 1/23 Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim Tobias Neef Fakultät für Informatik Hochschule Mannheim tobnee@gmail.com

Mehr

Hadoop in a Nutshell Einführung HDFS und MapReduce. Oracle/metafinanz Roadshow Februar 2014

Hadoop in a Nutshell Einführung HDFS und MapReduce. Oracle/metafinanz Roadshow Februar 2014 Hadoop in a Nutshell Einführung HDFS und MapReduce Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die

Mehr

DduP - Towards a Deduplication Framework utilising Apache Spark

DduP - Towards a Deduplication Framework utilising Apache Spark - Towards a Deduplication Framework utilising Apache Spark utilising Apache Spark Universität Hamburg, Fachbereich Informatik Gliederung 1 Duplikaterkennung 2 Apache Spark 3 - Interactive Big Data Deduplication

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

Überblick. Verarbeitung großer Datenmengen. MapReduce. Herausforderungen

Überblick. Verarbeitung großer Datenmengen. MapReduce. Herausforderungen Überblick Verarbeitung großer Datenmengen Verarbeitung großer Datenmengen Motivation MapReduce Zusammenfassung Problemstellungen (e) Indexierung des World Wide Web PageRank-Berechnungen für Web-Seiten

Mehr

Verteilte Systeme. Map Reduce. Secure Identity Research Group

Verteilte Systeme. Map Reduce. Secure Identity Research Group Verteilte Systeme Map Reduce Map Reduce Problem: Ein Rechen-Job (meist Datenanalyse/Data-Mining) soll auf einer riesigen Datenmenge ausgeführt werden. Teile der Aufgabe sind parallelisierbar, aber das

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER

APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER INHALT Das Hadoop Framework Hadoop s Distributed File System (HDFS) MapReduce Apache Pig Was ist Apache Pig & Pig Latin Anwendungsumgebungen Unterschied

Mehr

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache. Apache Hadoop Distribute your data and your application Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache The Apache Software Foundation Community und

Mehr

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2.

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2. Cloud Computing Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar, Sommersemester 2013 1. Definition

Mehr

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011 High Performance Batches in der Cloud Folie 1 Alles geht in die Cloud Image: Chris Sharp / FreeDigitalPhotos.net Cloud und Batches passen zusammen Batches Cloud Pay-per-Use Nur zeitweise genutzt Hohe Rechenkapazitäten

Mehr

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer Einführung in Hadoop & MapReduce Dr. Kathrin Spreyer Big Data Engineer München, 19.06.2013 Agenda Einleitung 1. HDFS 2. MapReduce 3. APIs 4. Hive & Pig 5. Mahout Tools aus Hadoop-Ökosystem 6. HBase 2 Worum

Mehr

MapReduce-Konzept. Thomas Findling, Thomas König

MapReduce-Konzept. Thomas Findling, Thomas König MapReduce - Konzept 1 Inhalt 1. Motivation 2. Einführung MapReduce Google Rechenzentren Vergleich MapReduce und Relationale DBS 3. Hadoop Funktionsweise Input / Output Fehlerbehandlung 4. Praxis-Beispiel

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

MapReduce mit Hadoop 08.11.12 1

MapReduce mit Hadoop 08.11.12 1 MapReduce mit Hadoop 08.11.12 1 Lernziele / Inhalt Wiederholung MapReduce Map in Hadoop Reduce in Hadoop Datenfluss Erste Schritte Alte vs. neue API Combiner Functions mehr als Java 08.11.12 2 Wiederholung

Mehr

Data Mining in der Cloud

Data Mining in der Cloud Data Mining in der Cloud von Jan-Christoph Meier Hamburg, 21.06.2012 1 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur 2 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

MapReduce in der Praxis

MapReduce in der Praxis Universität Passau Fakultät für Informatik und Mathematik Ausarbeitung MapReduce in der Praxis Verfasser: Rolf Daniel 09.12.2010 Zusammenfassung MapReduce ist ein von Google eingeführtes Framework, das

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Map Reduce. Programmiermodell. Prof. Dr. Ingo Claÿen. Motivation. Modell. Verarbeitungsablauf. Algorithmen-Entwurf. Map-Reduce in Java

Map Reduce. Programmiermodell. Prof. Dr. Ingo Claÿen. Motivation. Modell. Verarbeitungsablauf. Algorithmen-Entwurf. Map-Reduce in Java Map Reduce Programmiermodell Prof. Dr. Ingo Claÿen Hochschule für Technik und Wirtschaft Berlin Motivation Modell Verarbeitungsablauf Algorithmen-Entwurf Map-Reduce in Java Motivation Was ist Map-Reduce

Mehr

Google Caffeine. Was ist es, was ändert sich, wie bereite ich mich vor?

Google Caffeine. Was ist es, was ändert sich, wie bereite ich mich vor? Google Caffeine Was ist es, was ändert sich, wie bereite ich mich vor? Wer ist das? Johannes Beus, SISTRIX Suchmaschinenoptimierung seit 5 Monaten Betrieb eigener Webprojekte unterschiedlichster Themengebiete

Mehr

Hadoop-as-a-Service (HDaaS)

Hadoop-as-a-Service (HDaaS) Hadoop-as-a-Service (HDaaS) Flexible und skalierbare Referenzarchitektur Arnold Müller freier IT Mitarbeiter und Geschäftsführer Lena Frank Systems Engineer @ EMC Marius Lohr Systems Engineer @ EMC Fallbeispiel:

Mehr

Lehrgebiet Informationssysteme

Lehrgebiet Informationssysteme Lehrgebiet AG Datenbanken und (Prof. Michel, Prof. Härder) AG Heterogene (Prof. Deßloch) http://wwwlgis.informatik.uni-kl.de/ Was sind? Computergestützte Programmsysteme, die Informationen erfassen, dauerhaft

Mehr

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar!

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar! Clouds Wolkig bis Heiter Erwartungen der Nutzer Er ist verwöhnt! Verfügbarkeit Viele Anwendungen Intuitive Interfaces Hohe Leistung Er ist nicht dankbar! Mehr! Mehr! Mehr! Moore 1 Erwartungen der Entwickler

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

BigTable. 11.12.2012 Else

BigTable. 11.12.2012 Else BigTable 11.12.2012 Else Einführung Distributed Storage System im Einsatz bei Google (2006) speichert strukturierte Daten petabyte-scale, > 1000 Nodes nicht relational, NoSQL setzt auf GFS auf 11.12.2012

Mehr

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce MapReduce Jan Kristof Nidzwetzki MapReduce 1 / 17 Übersicht 1 Begriffe 2 Verschiedene Arbeiten 3 Ziele 4 DEDUCE: at the intersection of MapReduce and stream processing Beispiel 5 Beyond online aggregation:

Mehr

Teamprojekt & Projekt

Teamprojekt & Projekt 2. November 2010 Teamprojekt & Projekt Veranstalter: Betreuer: Prof. Dr. Georg Lausen Alexander Schätzle, Martin Przjyaciel-Zablocki, Thomas Hornung dbis Studienordnung Master: 16 ECTS 480 Semesterstunden

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

Managed Cloud Services

Managed Cloud Services Managed Cloud Services Autor.: Monika Olschewski Whitepaper Version: 1.0 Erstellt am: 14.07.2010 ADACOR Hosting GmbH Kaiserleistrasse 51 63067 Offenbach am Main info@adacor.com www.adacor.com Cloud Services

Mehr

MATCHING VON PRODUKTDATEN IN DER CLOUD

MATCHING VON PRODUKTDATEN IN DER CLOUD MATCHING VON PRODUKTDATEN IN DER CLOUD Dr. Andreas Thor Universität Leipzig 15.12.2011 Web Data Integration Workshop 2011 Cloud Computing 2 Cloud computing is using the internet to access someone else's

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

Projektpraktikum: Verteilte Datenverarbeitung mit MapReduce

Projektpraktikum: Verteilte Datenverarbeitung mit MapReduce Projektpraktikum: Verteilte Datenverarbeitung mit MapReduce Timo Bingmann, Peter Sanders und Sebastian Schlag 21. Oktober 2014 @ PdF Vorstellung INSTITUTE OF THEORETICAL INFORMATICS ALGORITHMICS KIT Universität

Mehr

Complex Hosting. Whitepaper. Autor.: Monika Olschewski. Version: 1.0 Erstellt am: 14.07.2010. ADACOR Hosting GmbH

Complex Hosting. Whitepaper. Autor.: Monika Olschewski. Version: 1.0 Erstellt am: 14.07.2010. ADACOR Hosting GmbH Complex Hosting Autor.: Monika Olschewski Whitepaper Version: 1.0 Erstellt am: 14.07.2010 ADACOR Hosting GmbH Kaiserleistrasse 51 63067 Offenbach am Main info@adacor.com www.adacor.com Complex Hosting

Mehr

Storage-Trends am LRZ. Dr. Christoph Biardzki

Storage-Trends am LRZ. Dr. Christoph Biardzki Storage-Trends am LRZ Dr. Christoph Biardzki 1 Über das Leibniz-Rechenzentrum (LRZ) Seit 50 Jahren Rechenzentrum der Bayerischen Akademie der Wissenschaften IT-Dienstleister für Münchner Universitäten

Mehr

Thema: Das MapReduce-Framework

Thema: Das MapReduce-Framework Software as a Service Cloud Computing und aktuelle Entwicklungen Seminararbeit Thema: Das MapReduce-Framework Betreuer: Prof. Dr. Klaus Küspert Dipl.-Inf. Andreas Göbel Nicky Kuhnt Friedrich-Schiller-Universität

Mehr

Pavlo Baron. Big Data. für IT-Entscheider. Riesige Datenmengen. und moderne Technologien. gewinnbringend nutzen HANSER

Pavlo Baron. Big Data. für IT-Entscheider. Riesige Datenmengen. und moderne Technologien. gewinnbringend nutzen HANSER Pavlo Baron Big Data für IT-Entscheider Riesige Datenmengen und moderne Technologien gewinnbringend nutzen HANSER Inhalt Vorwort XI 1 Management Summary 1 2 Was? 7 2.1 Mein klassisches Business ist konkurrenzlos,

Mehr

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de Big Data in a Nutshell Dr. Olaf Flebbe of ät oflebbe.de Zu mir Bigdata Projekt, benutzt Apache Bigtop Linux seit Anfang vor Minix/ATARI Linuxtag 2001? Promoviert in Computational Physics in Tü Seit Jan

Mehr

HDFS als schneller und günstiger Storage?

HDFS als schneller und günstiger Storage? HDFS als schneller und günstiger Storage? Das Hadoop Distributed File System (HDFS) verwaltet spielend riesige Datenmengen, lässt sich im laufenden Betrieb bequem skalieren und ist komfortabel zu administrieren.

Mehr

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013 Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien Berlin, Mai 2013 The unbelievable Machine Company? 06.05.13 The unbelievable Machine Company

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Hadoop und Zookeeper

Hadoop und Zookeeper AG June 5, 2010 Outline MapReduce paper MapReduce abstract wenn s mal ein paar Daten mehr sind... im großen geht immer was schief Herausforderungen an Applikationen Daten Redundanz Knotensterben einplanen

Mehr

Teamprojekt & Projekt

Teamprojekt & Projekt 18. Oktober 2010 Teamprojekt & Projekt Veranstalter: Betreuer: Prof. Dr. Georg Lausen Thomas Hordnung, Alexander Schätzle, Martin Przjyaciel-Zablocki dbis Studienordnung Master: 16 ECTS 480 Semesterstunden

Mehr

Hadoop aus IT-Operations Sicht Teil 2 Hardware- und Netzwerk-Grundlagen

Hadoop aus IT-Operations Sicht Teil 2 Hardware- und Netzwerk-Grundlagen Hadoop aus IT-Operations Sicht Teil 2 Hardware- und Netzwerk-Grundlagen Brownbag am Freitag, den 09.08.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich

Mehr

Map Reduce on Hadoop Seminar SS09. Similarity Join. Tim Felgentreff, Andrina Mascher

Map Reduce on Hadoop Seminar SS09. Similarity Join. Tim Felgentreff, Andrina Mascher Map Reduce on Hadoop Seminar SS09 Similarity Join Tim Felgentreff, Andrina Mascher Gliederung 2!! Aufgabe!! Demo!! Algorithmus!! Performance!! Veränderte Aufgabenstellung:!! Vergleich mit 1 Seite!! Ausblick!!

Mehr

Big Data Lösungen mit Apache Hadoop. Gunnar Schröder, T-Systems Multimedia Solutions GmbH

Big Data Lösungen mit Apache Hadoop. Gunnar Schröder, T-Systems Multimedia Solutions GmbH Big Data Lösungen mit Apache Hadoop Gunnar Schröder, T-Systems Multimedia Solutions GmbH Was ist Big Data? 2 Charakteristiken von Big Data Three Vs of Big Data VOLUME Terabytes Petabytes Exabytes Zettabytes

Mehr

MapReduce. Dhyan Blum

MapReduce. Dhyan Blum MapReduce Dhyan Blum Betreuer: Dirk Haage Seminar Innovative Internettechnologien und Mobilkommunikation SS2010 Lehrstuhl Netzarchitekturen und Netzdienste Fakultät für Informatik, Technische Universität

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Software Engineering für moderne, parallele Plattformen 10. MapReduce Dr. Victor Pankratius Agenda Motivation Der MapReduce-Ansatz Map- und

Mehr

Leistungsanalyse von XtreemFS als Ersatz für HDFS in Hadoop

Leistungsanalyse von XtreemFS als Ersatz für HDFS in Hadoop Bachelorarbeit am Institut für Informatik der Freien Universität Berlin, Arbeitsgruppe Technische Informatik, Zuverlässige Systeme Leistungsanalyse von XtreemFS als Ersatz für HDFS in Hadoop Lukas Kairies

Mehr

Repeatable Benchmarking Mahout

Repeatable Benchmarking Mahout Studienarbeitsexposé Repeatable Benchmarking Mahout Entwicklung eines Lasttest-Rahmenwerkes für Apache Mahout von: Oliver Fischer Institut für Informatik Humbold-Universität zu Berlin Matrikelnummer: 19

Mehr

Cloud Computing mit mathematischen Anwendungen

Cloud Computing mit mathematischen Anwendungen Cloud Computing mit mathematischen Anwendungen Vorlesung SoSe 2009 Dr. Marcel Kunze Karlsruhe Institute of Technology (KIT) Steinbuch Centre for Computing (SCC) KIT the cooperation of Forschungszentrum

Mehr

BIG DATA HYPE ODER CHANCE

BIG DATA HYPE ODER CHANCE BIG DATA HYPE ODER CHANCE 1 Fuchs Dominik 16.05.2014 Fahrplan 2 Begriff Big Data Die 3 V s Fallbeispiel Google Was? Wie? Womit? Fazit & Ausblick in die Zukunft Der Begriff Big Data 3 Datenmengen, die zu

Mehr

Überblick. Einführung Graphentheorie

Überblick. Einführung Graphentheorie Überblick Einführung Graphentheorie Graph-Algorithmen mit Map Kurzeinführung Graphentheorie Algorithmus zum Finden von Cliquen Graphen bestehen aus Knoten (englisch: Node, Vertex, Mehrzahl Vertices) Kanten

Mehr

Living Lab Big Data Konzeption einer Experimentierplattform

Living Lab Big Data Konzeption einer Experimentierplattform Living Lab Big Data Konzeption einer Experimentierplattform Dr. Michael May Berlin, 10.12.2012 Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS www.iais.fraunhofer.de Agenda n Ziele

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Googles Map-Reduce-Technik

Googles Map-Reduce-Technik Googles Map-Reduce-Technik Wolfgang Gassler wolfgang.gassler@student.uibk.ac.at Zusammenfassung Durch die ständig steigende Datenflut im Internet müssen auch die Datenverarbeitungskapazitäten stark steigen.

Mehr

Big Data. Hype oder Chance? Sebastian Kraubs

Big Data. Hype oder Chance? Sebastian Kraubs Big Data Hype oder Chance? Sebastian Kraubs Heute reden alle über Big Data Quellen: http://blogs.sybase.com/sybaseiq/2011/09/big-data-big-opportunity/ und McKinsey Studie 2011 Anwendungen Daten Technologien

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

Perzentile mit Hadoop ermitteln

Perzentile mit Hadoop ermitteln Perzentile mit Hadoop ermitteln Ausgangspunkt Ziel dieses Projektes war, einen Hadoop Job zu entwickeln, der mit Hilfe gegebener Parameter Simulationen durchführt und aus den Ergebnissen die Perzentile

Mehr

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg Review Freelancer-Workshop: Fit für Big Data Mittwoch, 29.04.2015 in Hamburg Am Mittwoch, den 29.04.2015, hatten wir von productive-data in Zusammenarbeit mit unserem langjährigen Partner Informatica zu

Mehr

ServiceGlobe: Flexible and Reliable Web Service Execution

ServiceGlobe: Flexible and Reliable Web Service Execution ServiceGlobe: Flexible and Reliable Web Service Execution Markus Keidl, Stefan Seltzsam und Alfons Kemper Universität Passau Fakultät für Mathematik und Informatik 94030 Passau @db.fmi.uni-passau.de

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Persönlichkeiten bei bluehands

Persönlichkeiten bei bluehands Persönlichkeiten bei Technologien bei Skalierbare Anwendungen mit Windows Azure GmbH & co.mmunication KG am@.de; posts..de/am 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

MapReduce. Johann Volz. 3. Juni 2010. Zusammenfassung

MapReduce. Johann Volz. 3. Juni 2010. Zusammenfassung MapReduce Johann Volz 3. Juni 2010 Zusammenfassung Bei der Verarbeitung von Datenmengen, die hunderte oder gar tausende Computer zur Fertigstellung in der gewünschten Zeit brauchen, muss man sich nicht

Mehr

Überblick: Data at Scale

Überblick: Data at Scale Überblick: Data at Scale Proseminar Data Mining Quirin Stockinger Fakultät für Informatik Technische Universität München Email: q.stockinger@in.tum.de Kurzfassung Der exponentielle Anstieg von verfügbaren

Mehr

Buildfrei skalieren für Big Data mit Z2

Buildfrei skalieren für Big Data mit Z2 Buildfrei skalieren für Big Data mit Z2 Henning Blohm ZFabrik Software KG 5.6.2013 1 Teil 1: Buildfrei entwickeln und skalieren Teil 2: Big Data, Cloud, und wie es zusammenpasst 2 1. Teil BUILDFREI ENTWICKELN

Mehr

Peter Hake, Microsoft Technologieberater

Peter Hake, Microsoft Technologieberater Peter Hake, Microsoft Technologieberater Risiken / Sicherheit Autos Verfügbarkeit Richtlinien Service Points Veränderungen Brücken Straßen Bahn Menschen Messe Airport Konsumenten Kennt die IT-Objekte,

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Hochleistungsrechnen in Grids. Seminar: Grid-Middleware. Mirko Dietrich mirko.dietrich@hrz.uni-kassel.de. 4. Dezember 2006

Hochleistungsrechnen in Grids. Seminar: Grid-Middleware. Mirko Dietrich mirko.dietrich@hrz.uni-kassel.de. 4. Dezember 2006 Seminar: Hochleistungsrechnen in Grids Grid-Middleware Mirko Dietrich mirko.dietrich@hrz.uni-kassel.de 4. Dezember 2006 2 Inhalt Funktionen einer Grid-Middleware Grid Standards Middleware-Systeme Zusammenfassung

Mehr

Big Data 10.000 ft. 20. Februar 2014 IHK Darmstadt DR. ROBERTO RAO, AXXESSIO GMBH

Big Data 10.000 ft. 20. Februar 2014 IHK Darmstadt DR. ROBERTO RAO, AXXESSIO GMBH Big Data 10.000 ft 20. Februar 2014 IHK Darmstadt DR. ROBERTO RAO, AXXESSIO GMBH Inhalte Big Data Was ist das? Anwendungsfälle für Big Data Big Data Architektur Big Data Anbieter Was passiert in Zukunft

Mehr

Ohne Build geht's besser: Makeloses Java mit dem z 2 -Environment. Henning Blohm 5.7.2012

Ohne Build geht's besser: Makeloses Java mit dem z 2 -Environment. Henning Blohm 5.7.2012 Ohne Build geht's besser: Makeloses Java mit dem z 2 -Environment Henning Blohm 5.7.2012 1 Z2 ist ein radikal neuer* Ansatz für System Life-Cycle Management in Java * jedenfalls für Java Ein Builtool?

Mehr

Frederik Wagner Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften

Frederik Wagner Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften Erfahrungen mit Single-Namespace NFS im HPC-Umfeld Frederik Wagner Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften Das Linux-Cluster am LRZ 2 Speichersysteme am Linux-Cluster Homeverzeichnisse

Mehr

IT SOLUSCOPE. Intuitiv, Rückverfolgbarkeit, Überwachung

IT SOLUSCOPE. Intuitiv, Rückverfolgbarkeit, Überwachung IT SOLUSCOPE Intuitiv, Rückverfolgbarkeit, Überwachung IT SOLUSCOPE Intuitiv IT SOLUSCOPE Basierend auf der Informationstechnologie vernetzt IT Soluscope Ihre Soluscope Geräte und informiert Sie in Echtzeit

Mehr

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1 Algorithmen Consistent Hashing Bloom Filter MapReduce Distributed Hash Tables Einführung 1 Consistent Hashing Problem: Wie finde ich den Speicherort für ein Objekt in einem verteilten System mit n Knoten?

Mehr

Cloud-Computing Seminar - Vergleichende Technologien: Grid-Computing Hochschule Mannheim

Cloud-Computing Seminar - Vergleichende Technologien: Grid-Computing Hochschule Mannheim Sven Hartlieb Cloud-Computing Seminar Hochschule Mannheim WS0910 1/23 Cloud-Computing Seminar - Vergleichende Technologien: Grid-Computing Hochschule Mannheim Sven Hartlieb Fakultät für Informatik Hochschule

Mehr

Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung

Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung A. Göbel, Prof. K. Küspert Friedrich-Schiller-Universität Fakultät für Mathematik und Informatik Lehrstuhl für Datenbanken

Mehr

Das SCAPE Projekt: Langzeitarchivierung und Skalierbarkeit Teil 2: Anwendungsfälle an der Nationalbibliothek

Das SCAPE Projekt: Langzeitarchivierung und Skalierbarkeit Teil 2: Anwendungsfälle an der Nationalbibliothek Das SCAPE Projekt: Langzeitarchivierung und Skalierbarkeit Teil 2: Anwendungsfälle an der Nationalbibliothek Dr. Sven Schlarb Österreichische Nationalbibliothek SCAPE ½ Informationstag 05. Mai 2014, Österreichische

Mehr

Überblick. MapReduce Einführung. Ablauf von MapReduce. MapReduce ist Modell zur Strukturierung von Programmen für parallele, verteilte Ausführung

Überblick. MapReduce Einführung. Ablauf von MapReduce. MapReduce ist Modell zur Strukturierung von Programmen für parallele, verteilte Ausführung Überblick MapReduce Einführung MapReduce Framework MapReduce Einführung und Grundlagen Ablauf eines MapReduce-Jobs Aufgaben des Frameworks Aufgabe 3 Abstract Factory Entwurfsmuster Vergleichen und Sortieren

Mehr

Gerrit Thede. Big and Fast Data - Verarbeitung von Streaming Data. Grundlagen Vertiefung und Anwendungen 2

Gerrit Thede. Big and Fast Data - Verarbeitung von Streaming Data. Grundlagen Vertiefung und Anwendungen 2 Gerrit Thede Big and Fast Data - Verarbeitung von Streaming Data Grundlagen Vertiefung und Anwendungen 2 Fakultät Technik und Informatik Studiendepartment Informatik Faculty of Engineering and Computer

Mehr

TECHNISCHE HERAUSFORDERUNGEN UND ANSÄTZE DER NUTZUNG VON SENTINEL-DATEN CARSTEN BROCKMANN, MARTIN BOETTCHER BROCKMANN CONSULT GMBH

TECHNISCHE HERAUSFORDERUNGEN UND ANSÄTZE DER NUTZUNG VON SENTINEL-DATEN CARSTEN BROCKMANN, MARTIN BOETTCHER BROCKMANN CONSULT GMBH TECHNISCHE HERAUSFORDERUNGEN UND ANSÄTZE DER NUTZUNG VON SENTINEL-DATEN CARSTEN BROCKMANN, MARTIN BOETTCHER BROCKMANN CONSULT GMBH BROCKMANN CONSULT Gegr. 1999, Geesthacht bei Hamburg 28 Mitarbeiter davon

Mehr

Verschiedene Arten des Datenbankeinsatzes

Verschiedene Arten des Datenbankeinsatzes 1 Beispiele kommerzieller DBMS: Kapitelinhalt Was charakterisiert und unterscheidet verschiedene Einsatzbereiche für. Welche prinzipiell unterschiedlichen Anforderungen ergeben sich für das DBMS bei Ein-

Mehr

Isilon Solutions + OneFS

Isilon Solutions + OneFS Isilon Solutions + OneFS Anne-Victoria Meyer Universität Hamburg Proseminar»Ein-/Ausgabe Stand der Wissenschaft«, 2013 Anne-Victoria Meyer Isilon Solutions + OneFS 1 / 25 Inhalt 1. Einleitung 2. Hardware

Mehr