Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)"

Transkript

1 Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die in den einzelnen Teilaufgaben erreichbaren Punkte: Aufgabe ( P) Aufgabe ( P) Aufgabe 3 ( P) Aufgabe 4 ( P) a b c d e a b c d e a b c d a b c d e Aufgabe 5 ( P) Aufgabe 6 (9 P) Aufgabe 7 (9 P) a b c d e a b c d a b c d Aufgabe ( Punkte) Gegeben sei eine Urliste mit den Paaren (x, y ),..., (x 9, y 9 ) j x j y j a) Berechnen Sie die Stichprobenmittel x, ȳ, die Stichproben-Standardabweichungen s x, s y und den empirischen Korrelationskoeffizienten r xy. Hinweis: 9 x j = 45, 9 x j = 85, 9 y j = 3.8, 9 yj = 4.3, 9 x j y j = 8.. b) Bestimmen Sie die zugehörige Regressionsgerade y = a + b x von y auf x. c) Berechnen Sie das.-getrimmte Stichprobenmittel ȳ. von (y,..., y 9 ). d) Bestimmen Sie das Stichproben- -Quantil ỹ 3 3 von (y,..., y 9 ).

2 e) Berechnen Sie den Quartilsabstand von (y,..., y 9 ). Lösung: a) Direkt aus den Daten ergeben sich nach den Abschnitten.4 und.5 im Skript mit Hilfe der Beziehung (x j x) (y j ȳ) = x j y j n x ȳ die Ergebnisse ( ( )) x = 5 s x = x i n x n ȳ = s y =.775 r xy =.953. i= =.739 b) Nach Abschnitt.5 des Skripts ist b = r xy sy s x und a = ȳ b x, also b =.68 a =.3 und die Regressionsgerade y = x. c) Für die Lösung der nächsten drei Aufgabenteile benötigen wir die aufsteigend sortierten y-werte. Es ist y () = (.6,.9,.9, 3., 3.8, 3.9, 4.3, 4.5, 4.7). Mit k = [9.] = [.8] = ergibt sich d) Da 9 3 ȳ. = = 6 ganzzahlig ist, ergibt sich 9 (y () y (8) ) = ỹ 3 = (y (6) + y (7) ) = 4.. e) Da.5 9 =.5 und.75 9 = 6.75 beide nicht ganzzahlig sind, ergibt sich mit k = und k = 6 ỹ.5 = y (k +) = y (3) =.9 ỹ.75 = y (k +) = y (7) = 4.3 und damit der Quartilsabstand zu ỹ.75 ỹ.5 =.4.

3 Aufgabe ( Punkte) Die gemeinsame Zähldichte f X,Y (i, j) zweier Zufallsvariablen X und Y sei durch die folgende Tabelle gegeben: i j /6 /8 /8 /4 /8 /4 /6 a) Bestimmen Sie die Zähldichte f X von X. b) Berechnen Sie P(Y ) und P(Y = X = ). c) Bestimmen Sie die Erwartungswerte EX, E(X + Y ) und E(X Y ). d) Bestimmen Sie den Korrelationskoeffizienten ρ(x, Y ) von X und Y. Sind X und Y stochastisch unabhängig? Begründen Sie. e) Für eine Zufallsvariable Z mit Wertebereich {, } sei P(Z = X = ) =, P(Z = X = ) = 3 4 und P(Z = X = ) = 7. Berechnen Sie die gemeinsame Verteilung von X und Z, d.h. P(X = i, Z = k) für alle i {,, } und k {, }. Lösung: a) Für i {,, } gilt f X (i) = j= f X,Y (i, j). f X (i) ist also durch Summation der Einträge der i-ten Zeile der Tabelle gegeben: f X () = = 3 6, f X() = = 3 8, f X() = = 7 6. b) Aus Symmetriegründen (k-te Zeile gleich k-te Spalte) gilt f Y = f X. Damit folgt direkt P(Y ) = P(Y < ) = P(Y = ) = f Y () = 3 6 = 3 6 und nach Definition der bedingten Wahrscheinlichkeit P(Y = X = ) = P(Y =, X = ) P(X = ) = f X,Y (, ) f X () = = 3. c) Es gilt E(X) = 3 i f X (i) = = 5 4, i= 3

4 und, da wegen f Y = f X auch E(Y ) = E(X) gilt, folgt mit der Additivität des Erwartungswertes Weiterhin ist E(X Y ) = E(X + Y ) = E(X) + E(Y ) = E(X) = 5. i j f X,Y (i, j) i,j= = f X,Y (, ) + f X,Y (, ) + f X,Y (, ) + f X,Y (, ) = = 8. d) Da wegen f Y = f X neben E(Y ) = E(X) auch V (Y ) = V (X) gilt, folgt für den Korrelationskoeffizienten ρ(x, Y ) nach Satz.3 des Skripts zunächst ρ(x, Y ) = C(X, Y ) V (X) V (Y ) = E(X Y ) E(X) E(Y ) V (X) = E(X Y ) (EX). V (X) Wegen E(X ) = i= i f X (i) = f X () + f X () = = 7 8 erhalten wir für die Varianz von X (nach Satz. b) des Skripts) V (X) = E(X ) (EX) = 7 8 ( ) 5 = = 9 6. Oben eingesetzt ergibt sich ρ(x, Y ) = ( ) = 5 9 = 3 9 = 3. X und Y sind somit negativ korreliert. Da stochastische Unabhängigkeit nach Satz.3 e) Unkorreliertheit implizieren würde, können X und Y nicht stochastisch unabhängig sein. e) Nach dem Skript ist P( X = ) eine Wahrscheinlichkeitsverteilung, also gilt Wir erhalten hiermit P(Z = X = ) + P(Z = X = ) = P(Z {, } X = ) =. P(Z = X = ) = P(Z = X = ) = =, und analog P(Z = X = ) = P(Z = X = ) = 3 4 = 4, P(Z = X = ) = P(Z = X = ) = 7 =

5 Mit Hilfe der Formel P(X = i, Z = k) = P(Z = k X = i) P(X = i) (Definition der bedingten Wahrscheinlichkeit) lässt sich nun direkt die gemeinsame Verteilung f X,Z von X und Z bestimmen: Wir erhalten und mit analoger Rechnung P(X =, Z = ) = P(Z = X = ) P(X = ) = 3 6 = 3 3 P(X =, Z = ) = 3 3, P(X =, Z = ) = 3 3, P(X =, Z = ) = 9 3, P(X =, Z = ) = 6, P(X =, Z = ) =

6 Aufgabe 3 ( Punkte) Die in regelmäßigen Abständen von einer Woche auszuführenden Kontrollen von 4 Maschinen M i, i =,... 4, erfordern folgenden Zeitaufwand t i (in Stunden): i 3 4 t i Um Überstunden innerhalb eines Arbeitstages von 8 Stunden möglichst zu vermeiden, entschließt man sich, jedes Mal nur Maschinen zu untersuchen, welche zur Vermeidung von Manipulationen zufällig ausgewählt werden. Sei Ω die Menge aller -Kombinationen ohne Wiederholung aus der Menge {M, M, M 3, M 4 } und P die Gleichverteilung auf Ω. a) Wieviele Elemente enthält die Menge Ω? b) Die Zufallsvariable X beschreibe die zufällige Dauer der Kontrolle der Maschinen. Geben Sie X(ω) für ω Ω in Form einer Tabelle an und bestimmen Sie die Zähldichte f X von X. c) Die Zufallsvariable K, welche die zufälligen Kontrollkosten beschreibt, sei gegeben durch { 5 X, falls X 8, K := (X 8), falls X > 8. Ergänzen Sie die Tabelle aus b) um die Kosten K(ω) und bestimmen Sie die zu erwartenden Kontrollkosten. d) Die zwei jeweils zu kontrollierenden Maschinen werden in aufeinanderfolgenden Wochen unabhängig voneinander ausgewählt. Berechnen Sie die Wahrscheinlichkeit, dass in zwei aufeinanderfolgenden Wochen alle 4 Maschinen kontrolliert werden. Bestimmen Sie die Wahrscheinlichkeit, dass in 3 aufeinanderfolgenden Wochen nicht alle Maschinen kontrolliert werden. Lösung: a) Es gilt Ω = ( ) 4 = 4 3 = 6. Die Elemente von Ω sind in der Tabelle in b) angegeben. b) Für i, j {,, 3, 4} ist X({M i, M j }) = t i + t j. Die Zufallsvariable X ist also durch die Werte in der folgenden Tabelle bestimmt: ω Ω {M, M } {M, M 3 } {M, M 4 } {M, M 3 } {M, M 4 } {M 3, M 4 } X(ω) K(ω) Der Wertebereich von X ist W X = {5, 6, 7, 8, 9}. Aufgrund der Gleichverteilungsannahme hat jedes ω Ω die Wahrscheinlichkeit. Da jeder Wert von X außer 7 nur für ein ω Ω 6 angenommen wird (und 7 für ), gilt für die Zähldichte von X: { für k = 5, 6, 8, 9 6 f X (k) = P(X = k) = für k = 7 6 6

7 c) Die Werte der Zufallsvariable K sind in der letzten Zeile der Tabelle in b) angegeben. Zur Bestimmung des Erwartungswertes von K genügt es, die Werte dieser Tabellenzeile mit den Gewichten 6 aufzusummieren: E(K) = 6 ( ) = 4 6 = 354. d) Wegen der Unabhängigkeitsannahmen ist die Menge der möglichen Auswahlen von je zwei Maschinen an aufeinanderfolgenden Wochen durch Ω beschrieben. Die günstigen Auswahlen des Ereignisses alle 4 Maschinen kontrolliert lassen sich folgendermaßen charakterisieren: In der ersten Woche kann jede beliebige Auswahl (der sechs möglichen) getroffen werden, in der zweiten Woche müssen dann die in der ersten Woche nicht gewählten Maschinen ausgewählt werden (eine Möglichkeit). Es gilt also P( in Wochen alle 4 Maschinen kontrolliert ) = Ω Ω = Ω Ω = Ω = 6. Analog ist die Menge der möglichen Auswahlen in 3 aufeinanderfolgenden Wochen gegeben durch Ω 3. Günstig für das Ereignis in 3 Wochen nicht alle 4 Maschinen kontrolliert ist, wenn genau bzw. 3 Maschinen in 3 Wochen kontrolliert werden. Für die Wahl von Maschinen gibt es genau Ω = 6 Möglichkeiten. (Diese Maschinen werden dann in jeder der 3 Wochen kontrolliert.) Für die Auswahl von genau 3 Maschinen aus den 4 gibt es 4 Möglichkeiten. (Jede Maschine kann weggelassen werden.) Die Auswahl in den 3 Wochen hat dann aus diesen 3 zu erfolgen. Für die erste Woche gibt es ( 3 ) = 3 Möglichkeiten aus den 3 auszuwählen, für die anderen beiden Wochen jeweils auch, also insgesamt 3 3 Möglichkeiten. Allerdings sind die Fälle wegzulassen, bei den 3 mal dasselbe Maschinenpaar gewählt wurde. (Denn in diesen Fällen werden in 3 Wochen nicht insgesamt 3 Maschinen gewählt, sondern nur ). Es ergibt sich also P( in 3 Wochen nicht alle 4 kontrolliert ) = P( in 3 Wochen genau kontrolliert ) + P( in 3 Wochen genau 3 kontrolliert ) = (33 3) 6 3 = =

8 Aufgabe 4 ( Punkte) Die gemeinsame Verteilung der Zufallsvariablen X und Y habe die Dichte { c (x + y ), für x, y, f X,Y (x, y) =, sonst, mit einer geeigneten Konstanten c >. a) Bestimmen Sie die Konstante c. b) Bestimmen Sie eine Dichte von X und berechnen Sie damit den Erwartungswert von X. c) Eine Dichte von Y ist f Y (y) = y, y. (Dafür ist kein Beweis erforderlich!) Bestimmen Sie die Verteilungsfunktion F Y und den Erwartungswert von Y. d) Bestimmen Sie die Kovarianz von X und Y. e) Sind X und Y stochastisch unabhängig? Lösung: a) Da f X,Y eine Wahrscheinlichkeitsdichte (auf der Menge [, ] ) ist, muss gelten = = c Damit folgt c = 6 7. f X,Y (x, y)dx dy = + y dy = c [ y + ] 3 y3 = c 7 6. c (x + y ) dx dy = c [ ] x + y x x= b) Nach Satz 8.7 im Skript ist eine Dichte von X gegeben durch f X (x) = f X,Y (x, y)dy. Für x [, ] gilt somit 6 ( f X (x) = f X,Y (x, y)dy = ) x + y dy = 6 [ 7 7 xy + ] 3 y3 = 6 y= 7 (x + 3 ) = 6 7 x + 4 7, für x / [, ] gilt f X (x) =. Damit folgt E(X) = x f X (x) dx = 6 7 x x dx = 7 [ x 3 + x ] = 4 7 c) Da f Y nur auf dem Intervall [, ] verschieden von ist, gilt für die Verteilungsfunktion F Y : R [, ] zunächst F Y (t) = für t sowie F Y (t) = für t. Für t (, ) gilt t t 3 F Y (t) = f Y (y)dy = y dy = 3 [ 7 y + 4 ] t 3 y3 = 3 7 t t3. Für den Erwartungswert von Y gilt E(Y ) = y f Y (y) dy = 3 7 y + 7 y3 dy = 3 [ ] 7 y + y 4 = = dy

9 d) Nach Satz.3 im Skript kann die Kovarinz nach der Formel C(X, Y ) = E(X Y ) EX EY berechnet werden. Da E(X Y ) = = 6 7 = 6 7 ergibt sich mit b) und c) x y f X,Y (x, y) dx dy = [ ] 3 x3 y + x y 3 [ 6 y + 4 y4 ] = 6 7 dy = = 5 4, C(X, Y ) = E(X Y ) EX EY = (x y + xy 3 ) dx dy 3 y + y3 dy 9 4 = = 98. e) C(X, Y ) ist gleichbedeutend mit E(X Y ) EX EY. Die Zufallsvariablen X und Y können also nicht stochastisch unabhängig sein, da in diesem Fall Gleichheit gelten würde, vgl. Satz.8 c). 9

10 Aufgabe 5 ( Punkte) Eine Maschine dreht zylinderförmige Kolben mit Solldurchmesser d = und Sollhöhe h = 5. Tatsächlich sind der Durchmesser X und die Höhe Y Zufallsvariablen mit den Verteilungen N (, /4) bzw. N (5, /9), die als unabhängig angenommen seien. Der zufällige Kolbenumfang sei U := π X und der zufällige Materialverbrauch sei M := π 4 X Y. a) Berechnen Sie den den Erwartungswert E(U) und die Varianz V (U) von U. b) Drücken Sie die Wahrscheinlichkeit P(6 U 64) mit Hilfe der Verteilungsfunktion Φ der Standardnormalverteilung N (, ) aus. c) Berechnen Sie den mittleren Materialverbrauch E(M). d) Berechnen Sie das.975-quantil von X. e) Ein Kolben muss nachbearbeitet werden, wenn X > oder wenn Y > 5.6 gilt. Berechnen Sie die Wahrscheinlichkeit, dass ein Kolben nachbearbeitet werden muss. Lösung: a) Da X N (, ), hat die Zufallsvariable U = πx nach Satz 9.7 im Skript die Verteilung 4 N (π, π ). Somit folgt 4 E(U) = π V (U) = π 4. b) Für die normalverteilte Zufallsvariable U ist die Standardisierung Ũ = U EU V (U) = U π π/ standardnormalverteilt. Deshalb gilt: = π (U π) = π U 4 P(6 U 64) = P( π 6 4 π U ) π = P( 4 π = Φ( 8 π c) Wegen der Unabhängigkeit von X und Y gilt 4 Ũ 8 π 4) 4) Φ(4 π 4). E(M) = E( π 4 X Y ) = π 4 E(X ) E(Y ). Dabei folgt aus der Gleichung V (X) = E(X ) (EX) (vgl. Satz. im Skript) und somit E(X ) = V (X) + (EX) = 4 + = 6 4 E(M) = π 4 E(X ) E(Y ) = π = π 45 6 = , 89.

11 d) Da X normalverteilt ist, ist die Standardisierung X = (X EX) = (X ) standardnormalverteilt. Wegen X = X + gilt nach Bemerkung. im Skript für das.975-quantil σ von X: t.975 (X) = t.975 ( X + ) = t.975( X) + = F X (.975) + = Φ (.975) +. Nach der Tabelle auf S.3 im Skript (bzw. Anh. A) ergibt sich t.975 (X).96 + =.98. e) Es gilt P( Kolben muss nachbearbeitet werden ) = P(X > oder Y > 5.6) wegen der Unabhängigkeit von X und Y. Da = P(X und Y 5.6) = P(X ) P(Y 5.6) P(X ) = P( X ( )) = P( X ) = Φ() und P(Y 5.6) = P(Ỹ 3(5.6 5)) = P(Ỹ.8) = Φ(.8), ergibt sich mit der Tabelle A im Skript eine Wahrscheinlichkeit von ca..58, d.h. etwa 5.8 Prozent der Kolben müssen nachbearbeitet werden.

12 Aufgabe 6 (9 Punkte) Es soll der unbekannte Parameter ϑ R für die Verteilung mit der Dichte e (log t ϑ), t >, f ϑ (t) = π t, t bestimmt werden. a) Geben Sie die zur Stichprobe x = (x,..., x n ) gehörende Loglikelihood-Funktion M x (ϑ) an. Sie dürfen dabei voraussetzen, dass x i > für i =,..., n. b) Berechnen Sie die Ableitung M x(ϑ). c) Bestimmen Sie einen Maximum-Likelihood-Schätzer ˆϑ(x) für ϑ zur Stichprobe x. d) Ist ˆϑ ein erwartungstreuer Schätzer für ϑ? Hinweis: Für eine Zufallsvariable X mit Dichte f ϑ gilt: log X N (ϑ, ). Lösung: a) Für t > ist also ist die Loglikelihoodfunktion M x (ϑ) = = = log(f ϑ (t)) = log( π t) (log t ϑ), log(f ϑ (x j )) = [ log( π x j ) ] (log x j ϑ) [ log( π x j ) ( (log xj ) log x j ϑ + ϑ )] log( π x j ) b) Für die Ableitung nach ϑ gilt somit (log x j ) + ϑ log x j nϑ M x(ϑ) = log x j n ϑ. c) Offenbar gilt M x(ϑ) = genau dann, wenn ϑ = n n log x j. Außerdem gilt { > M x(ϑ) < } { < ϑ > } ˆϑ(x) := n log x j. Daher ist ˆϑ(x) die einzige Maximumstelle von ϑ M x (ϑ) und somit ein Maximum- Likelihood-Schätzer für ϑ zur Stichprobe x.

13 d) Für die Erwartungstreue von ˆϑ(x) = ˆϑ(x,..., x n ) ist zu zeigen, dass für alle ϑ R gilt: E ϑ ˆϑ(X,..., X n ) = ϑ, wobei X,..., X n unabhängige, identisch verteilte Zufallsvariablen mit der Dichte f ϑ sind. Da X i die Dichte f ϑ hat, folgt mit dem Hinweis, dass die Zufallsvariable Y i := log X i die Verteilung N (ϑ, ) hat und somit E ϑ Y i = ϑ gilt. Damit folgt für alle ϑ R: ( ) E ϑ ˆϑ(X,..., X n ) = E ϑ log X i = E ϑ (log X i ) = ϑ = ϑ. n n n i= Also ist ˆϑ(x) ein erwartungstreuer Schätzer für ϑ. i= i= 3

14 Aufgabe 7 (9 Punkte) Eier werden entsprechend ihrer Größe in die Gewichtsklassen XL, L, M und S eingeteilt. Seien p XL, p L, p M und p S jeweils die Wahrscheinlichkeiten, dass ein Ei in die Gewichtsklasse XL, L, M bzw. S fällt. a) Von n N Eiern werde die Gewichtsklasse bestimmt. Sei dabei N L die zufällige Anzahl von Eiern der Gewichtsklasse L. Welche Verteilung hat N L? b) Analog zu a) sei N M die zufällige Anzahl an Eiern der Gewichtsklasse M. Sind N M und N L stochastisch unabhängig? c) Von n = 5 Eiern wurde die Gewichtsklasse bestimmt und man fand x L = 7 L-Eier, x M = 4 M-Eier und x S = S-Eier. Geben Sie ein zweiseitiges Konfidenzintervall zum Konfidenzniveau.95 für die Wahrscheinlichkeit p L an, dass ein Ei in die Gewichtsklasse L fällt. d) Da nur Eier der Gewichtsklassen L und M bei den Kunden beliebt sind, möchte man den Anteil der Eier dieser Gewichtsklassen schätzen. Geben Sie für die Stichprobe aus c) ein zweiseitiges Konfidenzintervall zum Konfidenzniveau.9 für die Wahrscheinlichkeit p an, dass ein Ei in eine der Gewichtsklassen L oder M fällt. Lösung: a) Es handelt sich um ein Treffer-Niete-Experiment mit n Versuchen und Trefferwahrscheinlichkeit p L. Die Zufallsvariable N L ist deshalb binomialverteilt mit den Parametern n und p L, d.h. N L Bin(n, p L ). b) Falls p L und p M beide verschieden von Null sind, dann sind N L und N M nicht stochastisch unabhängig, denn es gilt z.b. P(N L = n, N M = n) =, da N L + N M n, aber P(N L = n) P(N M = n) = p n L pn M und somit P(N L = n, N M = n) P(N L = n) P(N M = n). (Gilt p L = oder p M =, so liegt stochastische Unabhängigkeit vor.) c) Nach Voraussetzung kann das Heraussuchen der L-Eier (ähnlich wie in Beispiel 8.5 im Skript) als ein ideales Zufallsexperiment mit den zwei möglichen Ergebnissen L-Ei (Treffer) und kein L-Ei (Niete) und der (unbekannten) Trefferwahrscheinlichkeit p L angesehen werden. Nach diesem Beispiel und wegen 8.6 ist das gesuchte Konfidenzintervall [l(x), L(x)], wobei die Konfidenzgrenzen l(x) und L(x) für x = x L = 7 und n x = 5 7 = 8 und α =.95 Tabelle A.4 entnommen werden können. Es ergibt sich das Konfidenzintervall C(x) = [.3,.734]. d) Das Heraussuchen der L- und M-Eier kann (ähnlich wie in c)) als ein ideales Zufallsexperiment mit den zwei möglichen Ergebnissen L-Ei oder M-Ei (Treffer) und kein L-Ei und kein M-Ei (Niete) und der (unbekannten) Trefferwahrscheinlichkeit p = p L + p M angesehen werden. Wie in c) können die Konfidenzgrenzen l(x) und L(x) des gesuchten Konfidenzintervalls [l(x), L(x)] der Tabelle A.4 im Skript entnommen werden, wobei jetzt n = 5, x = x L + x M = =, n x = 5 = 4 und α =.9 ist. Es ergibt sich das Konfidenzintervall C(x) = [.489,.93]. 4

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Allgemeine Wahrscheinlichkeitsräume

Allgemeine Wahrscheinlichkeitsräume Kapitel 3 Allgemeine Wahrscheinlichkeitsräume 3. Einleitung Wir hatten schon bemerkt, dass der Begriff des diskreten Wahrscheinlichkeitsraums nicht ausreicht, um das unendliche Wiederholen eines Zufallsexperiments

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Klausur Stochastik und Statistik 18. September 2012

Klausur Stochastik und Statistik 18. September 2012 Klausur Stochastik und Statistik 18. September 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Institut für Stochastik, SoSe K L A U S U R , 13:

Institut für Stochastik, SoSe K L A U S U R , 13: Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 6

Übung zur Vorlesung Statistik I WS Übungsblatt 6 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 6 26. November 2012 Aufgabe 17 (4 Punkte): Sei X B(n, p) eine binomial verteilte Zufallsvariable, die ein Zufallseperiment mit n unabhängigen Wiederholungen

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 1 1. Klausur Wintersemester 2012/2013 Hamburg, 19.03.2013 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Probeklausur Statistik Lösungshinweise

Probeklausur Statistik Lösungshinweise Probeklausur Statistik Lösungshinweise Prüfungsdatum: Juni 015 Prüfer: Studiengang: IM und BW Aufgabe 1 18 Punkte 0 Studenten werden gefragt, wie viele Stunden sie durchschnittlich pro Tag ihr Smartphone

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Gemeinsame Wahrscheinlichkeitsverteilungen

Gemeinsame Wahrscheinlichkeitsverteilungen Gemeinsame Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Gemeinsame Wahrscheinlichkeits-Funktion zweier Zufallsvariablen Randverteilungen Bedingte Verteilungen Unabhängigkeit von Zufallsvariablen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Schleswig-Holstein Kernfach Mathematik

Schleswig-Holstein Kernfach Mathematik Aufgabe 5: Stochastik Der Schokoladenhersteller Nikolaus Hase produziert für namhafte Discounter Ostereier. Auf Grund langjähriger Erfahrungen ist davon auszugehen, dass 95 % der Produktion der Norm entsprechen

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Wahrscheinlichkeitstheorie (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3 1 / 7

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 09.02.2009 Bearbeitungszeit: 90 Minuten Aufgabe 1 a) Ein Unternehmen möchte den Einfluss seiner Werbemaßnahmen auf den erzielten Umsatz quantifizieren. Hierfür werden die jährlichen

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Stochastik I - Formelsammlung

Stochastik I - Formelsammlung Stochastik I - Formelsammlung Ereignis Ergebnisraum: Ω von Julian Merkert, Wintersemester 2005/06, Prof. Bäuerle Ereignisse und Wahrscheinlichkeiten Ereignis: A Ω Elementarereignis: {ω}, ω Ω A B := AB

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr