Elemente der Stochastik (SoSe 2016) 10. Übungsblatt

Größe: px
Ab Seite anzeigen:

Download "Elemente der Stochastik (SoSe 2016) 10. Übungsblatt"

Transkript

1 Dr. M. Weimar Elemente der Stochastik (SoSe 206) 0. Übungsblatt Aufgabe ( = Punkte) Zur zweimaligen Drehung des nebenstehenden Glücksrads (mit angenommener Gleichverteilung bei jeder Drehung) betrachte man die Summe der beiden Versuchsausgänge als Zufallsvariable X. a) Geben sie einen geeigneten W-Raum (Ω, P ) an, der das Experiment vollständig beschreibt, und visualisieren sie Ω in geeigneter Form. b) Geben sie die formale Definition der Zufallsvariable X an und stellen sie ihre möglichen Werte geeignet dar. c) Berechnen sie P (X = 4) und P (X = 5). d) Beschreiben sie die Verteilung von X vollständig in Tabellenform und als Stabdiagramm. e) Berechnen Sie Erwartungswert, Varianz und Standardabweichung von X. Aufgabe 2 ( =0 Punkte) Auf einem Jahrmarkt wird ein Spiel basierend auf dem nebenstehend abgebildeten Glücksrad angeboten. Dabei tritt grün (g) bei jeder Drehung mit der selben W-keit auf wie rot (r) und es gelten folgende Spielregeln: Für das gesamte Spiel ist ein Startkapital von 2 Euro erforderlich. Das Spiel besteht aus der höchstens sechsmaligen Drehung des Glücksrads. Bei jedem Auftreten von grün gewinnt man jeweils 2 Euro, bei rot verliert man jeweils 2 Euro. Das Spiel endet, wenn entweder.) der Teilnehmer kein Kapital mehr im Spiel hat, oder 2.) das Spielkapital inklusive Startkapital 8 Euro beträgt, oder 3.) die sechs Drehungen absolviert sind. Nach Spielende erhält der Teilnehmer das verbleibende Spielkapital. a) Zeichnen Sie ein Baumdiagramm, das alle möglichen Spielausgänge darstellt. b) Modellieren sie das Spiel und die Endauszahlung mittels einer Zufallsvariable auf einem geeigneten W-Raum. c) Geben sie die Verteilung ihrer Zufallsvariable an. d) Berechnen Sie den Erwartungswert der Auszahlung am Ende. e) Ist das Spiel fair? Abgabe (freiwillig): In den Tutorien während der 2. Vorlesungswoche ( )

2 Musterlösung zum 0. Übungsblatt Elemente der Stochastik (SoSe 206) Aufgabe. a) Als Ergebnismenge ist hier Ω = {(2k, 2j) k, j {0,,..., 4}} = {(d, d 2 ) d, d 2 {0, 2, 4, 6, 8}} = {0, 2, 4, 6, 8} 2 = {(0, 0), (0, 2),..., (0, 8), (2, 0), (2, 2),..., (8, 8)} geeignet, wobei 2k (bzw. d ) das Ergebnis der ersten Drehung beschreibt und 2j (bzw. d 2 ) das der Zweiten. Beachte, dass die ersten beiden Darstellungen deutlich einfacher verständlich sind, als die letzte (explizite)! Die Dritte eignet sich besonders gut um die Anzahl Ω der Elementarereignisse zu bestimmen. Im Hinblick auf die weiteren Teilaufgaben bietet es sich an, im Folgenden die erste Darstellung zu verwenden. Als W-Maß P wählen wir die Gleichverteilung auf Ω, d.h. P ({(2k, 2j)}) := / Ω = / für alle k und j in {0,,..., 4}. Als Visualisierung von Ω bietet sich eine Tabelle an: Hier wurden die fünf möglichen Ausgänge für jede Drehung mit, 2,..., 5 durchnummeriert. Man hätte jedoch genauso gut die Werte für k bzw. j, also 0,,..., 4, auftragen können. b) Wir setzen X(ω) = X((2k, 2j)) := 2k + 2j für alle ω = (2k, 2j) Ω. Mithilfe der vorangegangen Tabelle lassen sich auch die möglichen Werte der Zufallsvariable X leicht vollständig in Tabellenform angeben: c) Wir haben P (X = 4) = P ({ω Ω X(ω) = 4}) = P ({(2k, 2j) Ω 2k + 2j = 4}) = P ({(0, 4), (2, 2), (4, 0)}) = 3 und P (X = 5) = 0 (entweder analog explizit oder durch Beobachtung dass ungerade Werte für X hier prinzipiell nicht möglich sind, d.h. insb. {X = 5} = ).

3 d) In b) sieht man, dass X nur endlich viele Werte annehmen kann: X {2i i {0,,..., 8}}. Gemäß Satz 2.2 ist die Verteilung P X von X damit vollständig durch die Angabe der W-keiten für alle möglichen Werte von X bestimmt. Das sieht in Tabellenform so aus (W-keiten durch Abzählen in obiger Tabelle wie in Teilaufgabe c)!): Nun die Verteilung von X in Form eines Stabdiagramms: Beachte: Die W-keiten addieren sich (wie immer!) zu. e) Vermutung (aufgrund des Stabdiagramms): E-Wert 8 (da dort hohe W-keit und Diagramm symmetrisch) und kleine Varianz und Standardabweichung (da Werte die stark vom E-Wert abweichen kleine W-keit haben, z.b. P (X = 0) = /). Tatsächlich gilt nach Definition 3. bzw. der nachfolgenden Bemerkung, dass 8 E(X) = 2i P (X = 2i) i=0 = = = 200 = 8. Satz 3.6 liefert dann 8 Var(X) = (2i 8) 2 P (X = 2i) i=0 = = = 400 = 6. Schließlich ist gemäß Definition 3.5 σ(x) = Var(X) = 6 =

4 Aufgabe 2. a) Im folgenden Baumdiagramm bezeichnet Gx Gewinn (also grün) in der jeweils aktuellen Stufe, sowie den danach aktuellen Kapitalstand x. Entsprechend wird die Bezeichnung Vx für Verlust (also rot) in der jeweils aktuellen Stufe und den danach aktuellen Kapitalstand x verwendet. Die Wahrscheinlichkeiten an den Kanten sind dabei jeweils /2. Geht von einem Knoten keine weitere Kante ab, so ist das Spiel (gemäß den Regeln) an diesem Punkt zuende und x beschreibt den Auszahlungsbetrag. b) 2 Varianten:.) Man betrachtet jeden der Pfade 5 vom Ursprung bis zu einem Endknoten in obigem Diagramm als ein Elementarereignis ω Ω. Das W-Maß P ist durch Angabe aller P ({ω}) vollständig beschrieben (vgl. Satz 5.5). Diese W-keiten ergeben sich hier einfach durch Multiplikation der Kanten-W-keiten entlang des jeweiligen Pfades. Da diese wiederum jeweils /2 sind gilt also P ({ω}) = (/2) Anzahl der Kanten entlang von ω, ω Ω. Als Zufallsvariabe X setzen wir dann für jedes der fünfzehn verschiedenen ω X(ω) := Kapitalstand im Endknoten des Pfades ω. Hier sind Ω und P kompliziert zu bestimmen (man benötigt zuerst den Baum), X und seine Verteilung sind dann aber einfach anzugeben. 2.) Als Ereignismenge kommt auch Ω := {(d,..., d 6 ) d i {g, r}} in Frage. Es wird also der Einfachheit halber stets sechs mal gedreht, sodass man im Geiste einen einfachen (aber sehr großen) Baum mit 2 6 = 64 möglichen Pfaden vor Augen hat. Als W-Maß P kann einfach die Gleichverteilung auf diesem Ω gewählt werden.

5 Die Zufallsvariable X wird auch hier wieder durch Angabe aller (diesmal 64) Werte X(ω) definiert. Die komplizierten Spielregeln erfordern es dann aber wieder jedem Pfad solange zu folgen bis das Spiel faktisch endet und unterwegs das Spielkapital mitzurechnen. Endet das Spiel vorzeitig, so wird jedem Pfad (also jedem ω Ω), der vom betreffenden Knoten an dem es endet ausgeht, der dort gültige Kapitalwert als X(ω) zugewiesen. Also z.b. X((r, d 2, d 3, d 4, d 5, d 6 )) := 0, für alle d 2,..., d 6 {r, g}, da bereits im ersten Dreh rot erschienen ist und das Spielkapital verloren wurde (vgl. obigen Baum). Ein anderes Beispiel: X((g, g, g, d 4, d 5, d 6 )) := 8, da hier das Spiel nach drei Drehungen endet weil das Maximalkapital von 8 Euro erreicht wurde. In dieser Variante ist also der Raum (Ω, P ) sehr einfach, X jedoch kompliziert zu bestimmen. Dieser trade-off der Schwierigkeiten taucht bei der Modellierung mit ZV n sehr oft auf. In der Regel wird man die zweite Variante wählen und von einem einfachen W-Raum ausgehen. Das erleichtert bei umfangreicheren Problemstellungen (z.b. mehrere ZV n für das gleiche Experiment) die Arbeit. Vgl. dazu auch Bsp. 3.(i) im Skript (Produkt der Augenzahlen beim Wurf von zwei Würfeln)! c) Es bezeichne also X die Zufallsvariable, die den Besitzstand eines Spielers in Euro am Ende des Spiels angibt. (Egal welche Variante oben gewählt wird, die möglichen Werte von X und ihre W-keiten müssen in beiden Fällen die gleichen sein, da ja das selbe Spiel beschrieben wird!) Als Wertemenge ergibt sich {x,..., x 4 } = {0, 2, 6, 8} (vgl. Baumdiagramm oben). Die Verteilung von X sieht dann in Tabellenform so aus: Die W-keiten ergeben sich dabei als Summe von W-keiten der entsprechenden Pfade und addieren sich (wie immer) insgesamt zu eins. Hier wurde die Berechnung mit Variante Nr. von oben durchgeführt: x = 0 : P (X = 0) = = 6 x 2 = 2 : P (X = 2) = 4 x 3 = 6 : P (X = 6) = 4 64 = 6 64 = 6 x 4 = 8 : P (X = 8) = = 3 6. Man überlege sich selbst, wie anhand der Tabelle ein entsprechendes Stabdiagramm aussehen würde!

6 d) Für den Erwartungswert ergibt sich nach der üblichen Formel (Bemerkung nach Definition 3..): E(X) = 4 x i P (X = x i ) i= = = = 32 6 = 2 e) Man setzt 2 Euro ein und bekommt am Ende durchschnittlich E(X) = 2 Euro raus, also ist es fair.

7 Vorschläge für die Tutorien zum 0. Übungsblatt Elemente der Stochastik (SoSe 206) Aufgabe 3 Kütting/Sauer, Sect. 4.5/Aufg. 8, S.6 LÖSUNG: Kütting/Sauer, Sect..4/Aufg. 8, S.388 Aufgabe 4 Kütting/Sauer, Sect. 4.5/Aufg., S.5f LÖSUNG: Kütting/Sauer, Sect..4/Aufg., S.387 Aufgabe 5 Kütting/Sauer, Sect. 4.5/Aufg. 5, S.6 LÖSUNG: Kütting/Sauer, Sect..4/Aufg. 5, S.388

Elemente der Stochastik (SoSe 2016) 3. Übungsblatt

Elemente der Stochastik (SoSe 2016) 3. Übungsblatt Dr. M. Weimar 18.04.016 Elemente der Stochastik (SoSe 016) 3. Übungsblatt Aufgabe 1 (1++=5 Punkte) Das nachfolgende Glücksrad wird einmal gedreht. Ferner bezeichne P eine Abbildung mit den Eigenschaften

Mehr

Zufallsvariable X. 30 e. 40 e = 33,33...% 6

Zufallsvariable X. 30 e. 40 e = 33,33...% 6 Zufallsvariable Wir führen ein Zufallsexperiment mit Ergebnisraum Ω durch. Eine Zufallsvariable X ordnet jedem möglichen Ergebnis einen Zahlenwert zu. Eine Zufallsvariable ist also eine Funktion X : Ω

Mehr

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Dr. M. Weimar 06.06.2016 Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Aufgabe 1 (2+2+2+2+1=9 Punkte) In einer Urne befinden sich sieben Lose, darunter genau ein Gewinnlos. Diese Lose werden nacheinander

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Elemente der Stochastik (SoSe 2016) 6. Übungsblatt

Elemente der Stochastik (SoSe 2016) 6. Übungsblatt Dr. M. Weimar 19.05.2016 Elemente der Stochastik (SoSe 2016 6. Übungsblatt Aufgabe 1 ( Punkte Eine Klausur, die insgesamt von zwölf Kursteilnehmern geschrieben wurde, soll von drei Gutachtern bewertet

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! =

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! = Übungsblatt Höhere Mathematik - Weihenstephan SoSe 00 Michael Höhle, Hannes Petermeier, Cornelia Eder Übung: 5.6.00 Die Aufgaben -3 werden in der Übung am Donnerstag (5.6. besprochen. Die Aufgaben -6 sollen

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Elemente der Stochastik (SoSe 2016) 4. Übungsblatt

Elemente der Stochastik (SoSe 2016) 4. Übungsblatt Dr. M. Weimar 26.04.2016 Elemente der Stochastik (SoSe 2016) 4. Übungsblatt Aufgabe 1 (1+1+2=4 Punkte) Eine Autofahrerin verursacht einen Unfall und begeht Fahrerflucht. Ein Zeuge will sich die Nummer

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Elemente der Stochastik (SoSe 2016) 7. Übungsblatt

Elemente der Stochastik (SoSe 2016) 7. Übungsblatt Dr. M. Weimar 23.05.2016 Elemente der Stochastik (SoSe 2016 7. Übungsblatt Aufgabe 1 (1+1+13 Punkte Maria, Joseph und Hannes gehen zusammen mit drei weiteren Personen zur Nikolausparty ihres Tischtennisclubs.

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors Level Grundlagen Blatt Dokument mit Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

1,00 2,00 3,00 4,00 Bestimme den Gewinnerwartungswert. Entscheide, ob das Spiel fair ist.

1,00 2,00 3,00 4,00 Bestimme den Gewinnerwartungswert. Entscheide, ob das Spiel fair ist. Level Grundlagen Blatt Dokument mit 3 Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2017

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2017 Prof. Dr. Christoph Karg 10.7.2017 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2017 Name: Unterschrift: Klausurergebnis Aufgabe 1 (10 Punkte) Aufgabe

Mehr

Klausur zur Statistik

Klausur zur Statistik Klausur zur Statistik. Hinweis: Es können 94 Punkte erreicht werden. Zum Bestehen reichen 4 Punkte sicher aus.. Hinweis: Achten Sie darauf das Ihre Rechnungen nachvollziehbar sind und geben Sie alle Schritte

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/16 13.09.01 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe Übungsmaterial 9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe 9. Erwartungswert Fragt man nach dem mittleren Wert einer Zufallsgröÿe X pro Versuch, so berechnet man den Erwartungswert

Mehr

Intransitive Würfel Lösungen

Intransitive Würfel Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Intransitive Würfel Lösungen Hier sind nochmal Efrons Würfel für euch abgebildet: Würfel A Würfel B Würfel C Würfel D Aufgabe (Würfelexperiment

Mehr

Lösungen zu Übungs-Blatt 8 Wahrscheinlichkeitsrechnung

Lösungen zu Übungs-Blatt 8 Wahrscheinlichkeitsrechnung Lösungen zu Übungs-Blatt Wahrscheinlichkeitsrechnung Diskrete Zufallsgrößen Zu Aufgabe ) Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung?

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 112 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Level 1 Grundlagen Blatt 2

Level 1 Grundlagen Blatt 2 Level 1 Grundlagen Blatt 2 Dokument mit 1 Aufgaben Aufgabe A9 Ein Glücksrad besteht aus 3 Feldern, die folgendermaßen beschriftet sind: 1.Feld: 2,00 2. Feld: 5,00 3. Feld: 0,00 Das 1. Feld hat einen Mittelpunktswinkel

Mehr

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung Mathematik für Informatiker III im WS 5/6 Musterlösung zur. Übung erstellt von K. Kriegel Aufgabe : Wir betrachten den Wahrscheinlichkeitsraum der Punkte P =(a, b) aus dem Einheitsquadrat [, ] [, ] mit

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Abitur 2016 Mathematik Stochastik IV

Abitur 2016 Mathematik Stochastik IV Seite 1 http://www.abiturloesung.de/ Seite Abitur 016 Mathematik Stochastik IV Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl (Z) oder zum zweiten Mal Wappen

Mehr

1 Grundlagen Wahrscheinlichkeitsrechung

1 Grundlagen Wahrscheinlichkeitsrechung 1 Grundlagen Wahrscheinlichkeitsrechung 1.1 Grundbegriffe Alle möglichen Ereignisse eines Zufallsexperiments fassen wir in einer Ereignismenge Ω zusammen. Ereignisse sind Teilmengen von Ω. Umfasst das

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Elemente der Stochastik (SoSe 2016) 5. Übungsblatt

Elemente der Stochastik (SoSe 2016) 5. Übungsblatt Dr. M. Weimar 02.05.2016 Elemente der Stochasti (SoSe 2016) 5. Übungsblatt Aufgabe 1 (4 Punte) Beweisen sie, dass die Potenzmenge P(A) einer beliebigen endlichen Menge A genau P(A) 2 A Elemente enthält!

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Einführung: Kaum Theorie, aber viel Training. Mehr Theorie in Zusätzliche Aufgabensammlung in 34021

Einführung: Kaum Theorie, aber viel Training. Mehr Theorie in Zusätzliche Aufgabensammlung in 34021 STOCHASTIK Binomialverteilung Einführung: Kaum Theorie, aber viel Training Mehr Theorie in 3402 Zusätzliche Aufgabensammlung in 3402 Ausführliche Erklärung des Einsatzes dreier Rechner: Grafikrechner:

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Ü b u n g s b l a t t 12

Ü b u n g s b l a t t 12 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 5. 6. 007 Ü b u n g s b l a t t Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Die Binomialverteilung

Die Binomialverteilung Anhand verschiedener Fragen möchten wir heute klären, was man unter der Binomialverteilung versteht: z.b. Wie groß ist die Wahrscheinlichkeit, mit einem Würfel bei 0-maligen Werfen genau -mal eine zu werfen

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Stochastik. Erwartungswert einer Zufallsvariablen. Allg. Gymnasien: Ab Klasse 10 Berufliche Gymnasien: Ab Klasse 11.

Stochastik. Erwartungswert einer Zufallsvariablen. Allg. Gymnasien: Ab Klasse 10 Berufliche Gymnasien: Ab Klasse 11. Stochastik einer Zufallsvariablen Allg. Gymnasien: Ab Klasse 10 Berufliche Gymnasien: Ab Klasse 11 Alexander Schwarz www.mathe-aufgaben.com Juli 2018 1 Aufgabe 1: Ein Glücksrad besteht aus Feldern, die

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Berechnung von W für die Elementarereignisse einer Zufallsgröße

Berechnung von W für die Elementarereignisse einer Zufallsgröße R. Albers, M. Yanik Skript zur Vorlesung Stochastik (lementarmathematik) 5. Zufallsvariablen Bei Zufallsvariablen geht es darum, ein xperiment durchzuführen und dem entstandenen rgebnis eine Zahl zuzuordnen.

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Abitur 2015 Mathematik Stochastik IV

Abitur 2015 Mathematik Stochastik IV Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 201 Mathematik Stochastik IV In einer Urne befinden sich vier rote und sechs blaue Kugeln. Aus dieser wird achtmal eine Kugel zufällig gezogen, die Farbe

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

Stochastik Musterlösung 4

Stochastik Musterlösung 4 ETH Zürich HS 218 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 4 1. Die Zufallsvariable, die die Anzahl eingehender Telefonanrufe in einer Telefonzentrale

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Sabrina Kallus, Eva Lotte Reinartz, André Salé

Sabrina Kallus, Eva Lotte Reinartz, André Salé Sabrina Kallus, Eva Lotte Reinartz, André Salé } Wiederholung (Zufallsvariable) } Erwartungswert Was ist das? } Erwartungswert: diskrete endliche Räume } Erwartungswert: Räume mit Dichten } Eigenschaften

Mehr

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig,

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, wenn für alle (s 1,..., s n ) {0, 1} n gilt, dass wobei A 0 i = Āi und A 1 i = A i. Pr[A s 1 1... Asn n ] = Pr[A

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Stochastische Unabhängigkeit. 01. Dezember 2014

Stochastische Unabhängigkeit. 01. Dezember 2014 Stochastische Unabhängigkeit 0. Dezember 204 Der Begriff der Unabhängigkeit Großbritannien, im November 999. Die Anwältin Sally Clark wird wegen Mordes an ihren Kindern angeklagt. Clark geriet unter Verdacht

Mehr

Ü b u n g s b l a t t 10

Ü b u n g s b l a t t 10 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion 5. Verteilungsfunktion Die Verteilungsfunktion gibt an welche Wahrscheinlichkeit sich bis zu einem bestimmten Wert der Zufallsvarialben X kumuliert Die Verteilungsfunktion F() gibt an, wie groß die die

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, 31.01.2011 Fakultät für Mathematik M. Winkler Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Bearbeitungszeit 90 min. Die Klausur gilt als bestanden, wenn

Mehr

12. Vorlesung. 19. Dezember 2006 Guido Schäfer

12. Vorlesung. 19. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 6. JANUAR 007 Vorlesung: Einführung in die Spieltheorie WS 006/007. Vorlesung 9. Dezember 006 Guido Schäfer 4 Bayesian Games Wir haben bisher immer angenommen, dass jeder Spieler vollständige

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 stheorie: Grundbegriffe Prof. Dr. Achim Klenke http://www.aklenke.de 5. Vorlesung: 25.11.2011 1/33 Inhalt 1 Zufallsvariablen 2 Ereignisse 3 2/33 Zufallsvariablen Eine Zufallsvariable

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

AUSWERTEN. Ein Zufallsexperiment wird ausgewertet, indem man die relativen Häufigkeiten berechnet. Die relative Häufigkeit ist das Verhältnis:

AUSWERTEN. Ein Zufallsexperiment wird ausgewertet, indem man die relativen Häufigkeiten berechnet. Die relative Häufigkeit ist das Verhältnis: Hilfe EIN ZUFALLSEXPERIMENT AUSWERTEN Die Ergebnisse eines Zufallsexperiments werden in der Regel in einer Tabelle aufgeschrieben. Hierzu können während des Experiments Strichlisten geführt oder nach Beendigung

Mehr

Abitur 2010 Mathematik GK Stochastik IV

Abitur 2010 Mathematik GK Stochastik IV Seite http://www.abiturloesung.de/ Seite Abitur 00 Mathematik GK Stochastik IV Das Spiel Gewinn mit Vier besteht aus dem einmaligen Drehen des abgebildeten Laplace- Glücksrades mit gleich großen Sektoren

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie

Zentralübung Diskrete Wahrscheinlichkeitstheorie Zentralübung Diskrete Wahrscheinlichkeitstheorie Christian Ivicevic (christian.ivicevic@tum.de) Technische Universität München 14. Juni 2017 Agenda Disclaimer und wichtige Hinweise Übungsaufgaben Disclaimer

Mehr

Lösungen zur Klausur zur Vorlesung. Mathematik für Informatiker I. (Dr. Frank Hoffmann) Wintersemester 2011/ Februar 2012

Lösungen zur Klausur zur Vorlesung. Mathematik für Informatiker I. (Dr. Frank Hoffmann) Wintersemester 2011/ Februar 2012 Lösungen zur Klausur zur Vorlesung Mathematik für Informatiker I (Dr. Frank Hoffmann) Wintersemester 2011/2012 22. Februar 2012 Aufgabe 1 Logisches und Grundsätzliches /4+4+2 (a) Testen Sie mit dem Resolutionskalkül,

Mehr

Abitur 2013 Mathematik NT Stochastik S II

Abitur 2013 Mathematik NT Stochastik S II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2013 Mathematik NT Stochastik S II Eine Agentur vertreibt Tickets für Sportveranstaltungen ( S ), Konzerte ( K ), Musicals ( M ) und Eventreisen ( E

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Wiederholungsklausur DWT

Wiederholungsklausur DWT LÖSUNG Wiederholungsklausur DWT Sommersemester 2008 Hinweis: Alle Antworten sind zu begründen. Insbesondere sollte bei nicht-trivialen Umformungen kurz angegeben werden, weshalb diese Umformungen erlaubt

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

Pfadwahrscheinlichkeiten

Pfadwahrscheinlichkeiten Pfadwahrscheinlichkeiten Die Wahrscheinlichkeit, beim zweimaligen Würfeln eine Doppelsechs zu erzielen, beträgt 6. Das Ergebnis legt die Vermutung nahe, dass wir lediglich, also die Wahrscheinlichkeit,

Mehr

DEMO für Wahrscheinlichkeitsrechnung Erwartungswert u.a. 1. Erwartungswert INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

DEMO für  Wahrscheinlichkeitsrechnung Erwartungswert u.a. 1. Erwartungswert INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Wahrscheinlichkeitsrechnung Erwartungswert u.a.. Erwartungswert. Varianz und Standardabweichung. Spiele bewerten Datei Nr. Stand. April 0 Friedrich W. Buckel DEMO für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

KOMPETENZHEFT ZUR STOCHASTIK II

KOMPETENZHEFT ZUR STOCHASTIK II KOMPETENZHEFT ZUR STOCHASTIK II Inhaltsverzeichnis 1. Aufgabenstellungen 1 2. Binomialverteilung 4 3. Erwartungswert und Standardabweichung 10 1. Aufgabenstellungen Aufgabe 1.1. Milchverpackungen werden

Mehr

Abitur 2012 Mathematik Stochastik III

Abitur 2012 Mathematik Stochastik III Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2012 Mathematik Stochastik III Für eine Quizshow sucht ein Fernsehsender Abiturientinnen und Abiturienten als Kandidaten. Jeder Bewerber gibt in einem

Mehr

Wahrscheinlichkeiten mit Flächenbildern und Baumdiagrammen bestimmen

Wahrscheinlichkeiten mit Flächenbildern und Baumdiagrammen bestimmen 1 Vertiefen 2 Wahrscheinlichkeiten mit Flächenbildern und Baumdiagrammen bestimmen zu Aufgabe 4 Schulbuch, Seite 141 4 Mit Flächenbildern Wahrscheinlichkeiten bestimmen zu Aufgabe 6 Schulbuch, Seite 142

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Hypothesentests. 5 Regression

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Hypothesentests. 5 Regression 0 Einführung 1 Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests 5 Regression Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Diskrete Strukturen I

Diskrete Strukturen I Universität Kassel Fachbereich 10/1 PD Dr. Sebastian Petersen 14.09.2017 Klausur zur Vorlesung Diskrete Strukturen I Es können maximal 40 Punkte erreicht werden. Version mit Lösungsskizze Zur Notation:

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr