Vorlesung. Informationsökonomik und die Theorie der Firma

Größe: px
Ab Seite anzeigen:

Download "Vorlesung. Informationsökonomik und die Theorie der Firma"

Transkript

1 Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 3. Vorlesung Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

2 Moral Hazard Literatur: Holmström, B. (1979): Moral Hazard and Observability, Bell Journal of Economics 10, Leistung des Beauftragten (A) ist nicht beobachtbar bzw. nicht verifizierbar. D.h. Vertrag kann keine best. Leistung vorschreiben. Konstanter Lohn A wird die geringstmögliche Leistung e = 0 wählen. Wenn P die Leistung e = 0 implementieren will, ist der optimale Lohn so, dass gilt u(w) = Ū, unabhängig vom Ergebnis. Dies ist der niedrigste Lohn, der garantiert, dass A den Vertrag akzeptiert. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

3 Will P eine andere als die geringstmögliche Leistung implementieren, muss der P den Vertrag so konstruieren, dass die richtigen Anreize gesetzt werden. P risikoneutral, A risikoavers. (Für den Fall, dass P risikoavers und A risikoneutral sind, ist der optimale Vertrag ein Franchise Vertrag: A trägt das gesamte Risiko und zahlt dem P einen konstanten Betrag. In diesem Fall hat A keinen Anreiz, nicht die optimale Leistung zu wählen. Das Anreizproblem existiert dann nicht. ) Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

4 Der P muss berücksichtigen, dass gegeben den Vertrag der A seine Leistung so wählen wird, dass er seinen Nutzen maximiert, d.h. e arg max ê p i (ê)u(w(x i )) v(ê), mit p i (ê) := prob(x = x i ê). Diese Beschränkung heisst die Anreizkompatibilitätsbeschränkung. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

5 Der optimale Vertrag ist die Lösung des folgenden Optimierungsproblems: max e,{w(x i ),...,n } u.d.n. p i (e)[(x i w(x i )] p i (e)u(w(x i )) v(e) Ū, e arg max ê p i (ê)u(w(x i )) v(ê). Die erste Bedingung ist die Teilnahmebedingung, die zweite die Anreizbedingung. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

6 Ein einfaches Beispiel zwei mögliche Leistungen Der A kann nur zwischen zwei Leistungen wählen, e h und e l, mit v(e h ) > v(e l ). Die Ergebnisse x i werden vom schlechtesten zum besten geordnet, x 1 < < x n. Die bedingte Wahrscheinlichkeit des Ergebnisses x i bei der Leistung e j wird durch p j i bezeichnet. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

7 Annahme Es wird angenommen, dass k pi h < k pi l k = 1,... n 1. D.h., schlechte Ergebnisse sind wahrscheinlicher, wenn die geringe Leistung e l gewählt wird. Oder: Das Ergebnis ist mit grösserer Wahrscheinlichkeit grösser als x k, wenn e h gewählt wird. Oder: p h dominiert p l im Sinne der stochastischen Dominanz erster Ordnung. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

8 Wenn der P die Leistung e h implementieren will, muss die Lohnzahlung vom Ergebnis abhängen (denn wenn der Lohn konstant wäre, würde der A immer e l wählen). Die Anreizkompatibilitätsbedingung ist pi h u(w(x i )) v(e h ) pi l u(w(x i)) v(e l ), bzw. [pi h pi l ]u(w(x i)) v(e h ) v(e l ). Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

9 Der optimale Vertrag ist die Lösung des folgenden Problems: L(w(x i ), e, λ, µ) = pi h [x i w(x i )] [ ] +λ pi h u(w(x i )) v(e h ) Ū [ ] +µ [pi h pi l ]u(w(x i)) v(e h ) + v(e l ). Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

10 Die Bedingungen erster Ordung für dieses Problem (bezüglich w i ) sind gegeben durch: p h i + λp h i u (w(x i )) + µ(p h i p l i )u (w(x i )) = 0 (1) i = 1,...,n, [ ] λ pi h u(w(x i )) v(e h ) Ū = 0, λ 0, [ ] 0, (2) i [ ] µ (pi h pi l )u(w(x i)) v(e h ) + v(e l ) = 0, µ 0, [ ] 0. (3) i Aus (1) folgt p h i = λp h i u + µ(p h i p l i )u. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

11 Aus (1) folgt p h i = λp h i u + µ(p h i p l i )u. Division durch u ergibt pi h ( u = λpi h + µ pi h Aufsummieren über i ergibt p l i ) i = 1,...,n. (4) p h i u = λ pi h + µ pi h µ da n ph i = n pl i = 1. Es gilt also pi l = λ, λ = p h i u (w(x i )) > 0. Die Teilnahmebedingung ist bindend. A erhält im Erwartungswert nicht mehr als seinen Reservationsnutzen. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

12 Ist die Anreizbedingung ebenfalls bindend, d.h. ist µ > 0? Um die Eigenschaften des optimalen Vertrages zu analysieren, schreiben wir die Bedingungen erster Ordnung in der folgenden Form, wobei (4) durch pi h dividiert wurde: [ ] 1 u (w(x i )) = λ + µ 1 pl i pi h i = 1,...,n. Daraus folgt µ > 0. Warum? Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

13 [ ] 1 u (w(x i )) = λ + µ 1 pl i pi h i = 1,...,n. Falls µ = 0 wäre, müsste 1/u konstant (gleich λ) sein. Dann wäre der Lohn ebenfalls konstant. In diesem Fall würde aber der A die Leistung e l wählen, ein Widerspruch zu der Annahme, dass der P e h implementieren möchte. Die Teilnahmebedingung und die Anreizkompatibilitätsbedingung sind demnach beide bindend. Aus der Tatsache µ > 0 folgt, dass der optimale Lohn vom Ergebnis abhängen muss. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

14 Likelihood Ratio (LR) p l i /ph i heisst Likelihood Ratio (LR). 1 u = λ + µ[1 LR] Je kleiner die LR, desto grösser ist die rechte Seite, und somit auch die linke Seite. Der Bruch 1/u nimmt mit abnehmender LR zu. Daher nimmt u mit abnehmender LR ab (je kleiner die LR, umso kleiner ist auch u ). Da die Nutzenfunktion streng konkav ist (A ist risikoavers), ist u umso kleiner, je grösser w ist. Das heisst, je kleiner die LR, umso grösser ist der optimale Lohn bei jedem Ergebnis. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

15 Die Abhängigkeit des Lohnes vom Ergebnis wird in den Vertrag aufgenommen, um dem A einen Anreiz zu geben, die Leistung e h zu wählen. Der optimale Vertrag ist eine Kombination aus der Versicherung des A gegenüber Zufallseinflüssen und dem Setzen der richtigen Anreize. Bei nur zwei möglichen Ergebnissen x S und x F mit x S > x F ist also w(x S ) > w(x F ). Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

16 Referenzfall: Vollständige Information A risikoavers, P risikoneutral: 1 u (x i ) = λ, w = w 0 = konstant. Asymmetrische Information: Drei Fälle 1. pi l > pi h : Ergebnis x i ist mit grösserer W. auf Leistung e l zurückzuführen. Bsp: Trotz Regen werden keine Regenschirme verkauft. 1 u (x i ) = λ + µ A wird im Ereignis x i bestraft. [ 1 pl i p h i ] < λ w i < w 0. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

17 2. p l i = p h i : Ergebnis x i lässt keine Rückschlüsse auf Leistung zu, e h und e l sind gleich wahrscheinlich. 1 u (x i ) = λ w i = w pi l < pi h : Ergebnis x i ist mit grösserer W. auf e h zurückzuführen. Bsp: Trotz Sonnenschein wurden viele Regenschirme verkauft. [ ] 1 u (x i ) = λ + µ 1 pl i pi h > λ w i > w 0. A wird im Ereignis x i belohnt. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

18 Frage: Ist es immer der Fall, dass ein besseres Ergebnis einen höheren Lohn impliziert? Antwort: Im allgemeinen nicht! Beispiel Es gibt vier Ergebnisse x 1 < x 2 < x 3 < x 4. Die Wahrscheinlichkeiten sind wie folgt: Die Bedingung x 1 x 2 x 3 x 4 pi l 0, 3 0, 1 0, 2 0, 4 pi h 0, 1 0, 2 0, 1 0, 6 LR i 3 1/2 2 2/3 k pi h < k pi l k = 1,... n 1. ist erfüllt. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

19 Aber: Wenn das zweitschlechteste Ergebnis x 2 beobachtet wird, ist die Wahrscheinlichkeit hoch, dass e h und nicht e l gewählt wurde, da p h 2 > pl 2. Wenn das bessere Ergebnis x 3 beobachtet wird, ist die Wahrscheinlichkeit hoch, dass e l gewählt wurde. Wenn P also die Leistung e h belohnen will, muss er im schlechteren Ergebnis x 2 einen höheren Lohn zahlen als im besseren Ergebnis x 3 : w(x 2 ) > w(x 3 )! Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

20 Gibt es Bedingungen, unter denen der Lohn zunehmend im Ergebnis ist? Ja: Die LR muss im Ergebnis fallend sein: LR = pl i p h i nimmt in i ab: p l i p h i > pl i+1 pi+1 h. Diese Eigenschaft wird als Monotone Likelihood Ratio Property (MLRP) bezeichnet. Je grösser (besser) das Ergebnis x i, umso kleiner die LR, i. e. umso wahrscheinlicher ist es, dass x i durch e h erreicht wurde. Ist die MLRP erfüllt, so nimmt der Lohn im Ergebnis zu. Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 3. Vorlesung / 20

Vorlesung. Informationsökonomik und die Theorie der Firma

Vorlesung. Informationsökonomik und die Theorie der Firma Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 5. Vorlesung 28.11.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 5. Vorlesung 28.11.2007

Mehr

Vorlesung. Informationsökonomik und die Theorie der Firma

Vorlesung. Informationsökonomik und die Theorie der Firma Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 1. Vorlesung 17.10.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 1. Vorlesung 17.10.2007

Mehr

Informationsökonomik

Informationsökonomik Informationsökonomik Tone Arnold Universität des Saarlandes 8. Januar 2008 Tone Arnold (Universität des Saarlandes) Informationsökonomik 8. Januar 2008 1 / 59 Signalisieren privater Information Der Wert

Mehr

Neue Institutionenökonomik, Aufgabe 18 Seite 1

Neue Institutionenökonomik, Aufgabe 18 Seite 1 Neue Institutionenökonomik, Aufgabe 18 Seite 1 Allgemeine Informationen zum Principal-Agent-Modell Es geht hier nun um die Vertragsausgestaltung zwischen dem Eigentümer (Prinzipal) einer Firma und dem

Mehr

Klausur zur Vorlesung Informationsökonomik

Klausur zur Vorlesung Informationsökonomik Dr. Tone Arnold Wintersemester 2003/04 Klausur zur Vorlesung Informationsökonomik Die Klausur besteht aus drei Vorfragen und drei Hauptfragen, von denen jeweils zwei zu beantworten sind. Sie haben für

Mehr

Klausur zur Vorlesung Spieltheorie Musterlösung

Klausur zur Vorlesung Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe Sommersemester 2001 Klausur zur Vorlesung Spieltheorie Musterlösung Die Klausur besteht aus vier Vorfragen, von denen drei zu beantworten sind sowie drei Hauptfragen, von denen

Mehr

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion:

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion: Ist das Arrow-Pratt-Maß der absoluten Risikoaversion bekannt, so lässt sich daraus die Nutzenfunktion bestimmen: Mithilfe der Substitution y := U (w) dy = U (w)dw gilt: und daher U (w) U (w) dw = A a (w)dw

Mehr

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient. Die Riskoprämie ergibt sich also als ein Vielfaches der Varianz der zugrundeliegenden Unsicherheit Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Mehr

Vorlesung 2: Risikopräferenzen im Zustandsraum

Vorlesung 2: Risikopräferenzen im Zustandsraum Vorlesung 2: Risikopräferenzen im Zustandsraum Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie VL 2, FS 12 Risikopräferenzen im Zustandsraum 1/29 2.1 Motivation

Mehr

Übungsaufgaben Asymmetrische Information und Prinzipal Agenten Beziehungen

Übungsaufgaben Asymmetrische Information und Prinzipal Agenten Beziehungen Mikroökonomie I Übungsaufgaben Asymmetrische Information und Prinzipal Agenten Beziehungen 1. Paula besitzt eine Firma, die Gewinnfunktion der Firma lautet Π(x) = R(x) C(x), wobei R(x) die Erlösfunktion

Mehr

Bachelorprüfung für Volkswirte. Mikroökonomie II

Bachelorprüfung für Volkswirte. Mikroökonomie II Seminar für Wirtschaftstheorie Prof. Thorsten Chmura Bachelorprüfung für Volkswirte Mikroökonomie II Die Klausur besteht aus drei Aufgaben auf insgesamt 16 Seiten. Alle drei Aufgaben müssen bearbeitet

Mehr

Kapitel 13: Unvollständige Informationen

Kapitel 13: Unvollständige Informationen Kapitel 13: Unvollständige Informationen Hauptidee: Für das Erreichen einer effizienten Allokation auf Wettbewerbsmärkten ist es notwendig, dass jeder Marktteilnehmer dieselben Informationen hat. Informationsasymmetrie

Mehr

Übung Controlling WS 2015/16

Übung Controlling WS 2015/16 Übung Controlling WS 2015/16 Übung 4: Kontrollsystem und Personalführung Ausgangslage: Vertragsbeziehung zwischen Prinzipal und Agent Anstrengungsniveau bzw. Aktivitäten des Agenten sind für den Prinzipal

Mehr

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit Grundzüge der Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit 1 BESCHREIBUNG VON RISIKO 2 Entscheidung unter Risiko Annahme: Wir kennen alle möglichen (sich gegenseitig ausschliessenden)

Mehr

Zusammenfassung zur Konvergenz von Folgen

Zusammenfassung zur Konvergenz von Folgen Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Informationsökonomik: Anwendung Versicherungsmarkt

Informationsökonomik: Anwendung Versicherungsmarkt Informationsökonomik: Anwendung Versicherungsmarkt Tone Arnold Universität des Saarlandes 13. Dezember 2007 Tone Arnold (Universität des Saarlandes) Informationsökonomik: Anwendung Versicherungsmarkt 13.

Mehr

II. Prinzipal-Agenten-Modell

II. Prinzipal-Agenten-Modell II. Prinzipal-Agenten-Modell Literatur: Richter/Furubotn, Kap. V. Die sogenannte Prinzipal-Agent-Theorie beschäftigt sich mit Problemen, die auftauchen, wenn ein sogenannter Agent im Auftrag eines sogenannten

Mehr

Grundlegendes. Definition Principal-Agent-Modell nach Pratt/Zeckhauser(1985):

Grundlegendes. Definition Principal-Agent-Modell nach Pratt/Zeckhauser(1985): Grundlegendes Definition Principal-Agent-Modell nach Pratt/Zeckhauser(1985): "Whenever one individual depends on the action of another, an agency relationship arises. The individual taking the action is

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Stefan Neuß Sebastian Soika http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_203/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir Kapitel 3: Entropie Motivation Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir log N Bits log p N Bits Die Information steht

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Christoph Lex Dominik Lohmaier http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_04/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

Exkurs: Dualität zwischen Nutzenmaximierung und Ausgabenminimierung

Exkurs: Dualität zwischen Nutzenmaximierung und Ausgabenminimierung Exkurs: Dualität zwischen Nutzenmaximierung und Ausgabenminimierung Tone Arnold Universität des Saarlandes 29 November 2007 29 November 2007 1 / 14 Nutzenmaximierung Beispiel: u(x 1, x 2 ) = x 05 1 x 05

Mehr

Bachelorprüfung für Volkswirte. Mikroökonomie II

Bachelorprüfung für Volkswirte. Mikroökonomie II Seminar für Wirtschaftstheorie Prof. Thorsten Chmura Bachelorprüfung für Volkswirte Mikroökonomie II Die Klausur besteht aus drei Aufgaben, die alle bearbeitet werden müssen. Für jede Aufgabe gibt es maximal

Mehr

9. Asymmetrische Information

9. Asymmetrische Information 85 Definition Asymmetrische Information: Eine Marktseite (Käufer oder Verkäufer) weißmehr als die andere (Käufer oder Verkäufer). Betrifft 1) Qualität/Zustand eines Gutes oder 2) Handlungen, die nur eine

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

3. Betriebswirtschaftliche Entscheidungslehre 3.6 Entscheidung unter Risiko

3. Betriebswirtschaftliche Entscheidungslehre 3.6 Entscheidung unter Risiko Dominanzprinzipien : Absolute Dominanz: Eine Alternative A i dominiert eine Alternative A j absolut, wenn das geringstmögliche Ergebnis von A i nicht kleiner ist als das grösstmögliche Ergebnis von A j,

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Anreiz- und Kontrakttheorie. Prof. Dr. Peter Welzel Dr. Simone Raab

Anreiz- und Kontrakttheorie. Prof. Dr. Peter Welzel Dr. Simone Raab Anreiz- und Kontrakttheorie Prof. Dr. Peter Welzel Dr. Simone Raab Kapitel 0 VORBEMERKUNGEN WS 2013/14 Anreiz- und Kontrakttheorie 2 Herzlich willkommen Die Vorlesung Anreiz- und Kontrakttheorie ist ein

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

VO Grundlagen der Mikroökonomie

VO Grundlagen der Mikroökonomie Institut für Wirtschaftsmathematik Ökonomie VO 105.620 Grundlagen der Mikroökonomie Die individuelle Nachfrage und die Marktnachfrage (Kapitel 4) ZIEL: Die individuelle Nachfrage Einkommens- und Substitutionseffekte

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Marktversagen II: Externalitäten, Informationsasymmetrien und Marktmacht

Marktversagen II: Externalitäten, Informationsasymmetrien und Marktmacht Marktversagen II: Externalitäten, Informationsasymmetrien und Marktmacht Coase, Ronald H., 1960, The Problem of Social Cost, Journal of Law and Economics, 3, 1-44. Åkerlof, George A., 1970, The Market

Mehr

ˆ Die Verluste der einzelnen Perioden sind in den ersten zehn Perioden stochastisch

ˆ Die Verluste der einzelnen Perioden sind in den ersten zehn Perioden stochastisch Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@th-koeln.de Übungen zu QM III (Wirtschaftsstatistik) Binomialverteilung

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }.

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. 1 Grundlagen Entscheidungstheorie: Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. Annahmen: Der Entscheidungsträger ist gezwungen, eine der betrachteten

Mehr

In der VWL-Bibliothek befindet sich ein Mikro III-Ordner:

In der VWL-Bibliothek befindet sich ein Mikro III-Ordner: SS 2003 In der WL-Bibliothek befindet sich ein Mikro III-Ordner: Dort finden sie jeweils 3 Kopiervorlagen von - Literatur Eaton/Eaton, Shy und Bester - Artikel von Coase, Akerlof, Spence - Artikel von

Mehr

Mikroökonomik 4. Vorlesungswoche Fortsetzung

Mikroökonomik 4. Vorlesungswoche Fortsetzung Mikroökonomik 4. Vorlesungswoche Fortsetzung Tone Arnold Universität des Saarlandes 14. November 2007 Tone Arnold (Universität des Saarlandes) 4. Vorlesungswoche Fortsetzung 14. November 2007 1 / 41 Slutzky

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

Mikroökonomik B 5. Informationsökonomik

Mikroökonomik B 5. Informationsökonomik Mikroökonomik B 5. Informationsökonomik Paul Schweinzer 16. Juni 2009. 1 / 11 Literaturangaben Jehle, G. und P. Reny (2001), Kapitel 8.1 Varian, H. (2007), Kapitel 36 Bolton, P. & M. Dewatripont (2005),

Mehr

Klausur Mikroökonomik

Klausur Mikroökonomik Prof. Dr. Ulrich Schwalbe Sommersemester 2004 Klausur Mikroökonomik Bitte bearbeiten Sie alle zehn Aufgaben. Auf dem Klausurbogen befindet sich nach jeder Teilaufgabe ein Kästchen. In dieses Kästchen schreiben

Mehr

Teil 3: Einige generelle Klassen von Spielen und Strategien. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1

Teil 3: Einige generelle Klassen von Spielen und Strategien. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 3: Einige generelle Klassen von Spielen und Strategien Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 3 - Übersicht Kapitel 8: Unsicherheit und Information Kapitel 9: Strategische

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

Kapitel 14: Unvollständige Informationen

Kapitel 14: Unvollständige Informationen Kapitel 14: Unvollständige Informationen Hauptidee: Für das Erreichen einer effizienten Allokation auf Wettbewerbsmärkten ist es notwendig, dass jeder Marktteilnehmer dieselben Informationen hat. Informationsasymmetrie

Mehr

M13 Übungsaufgaben / pl

M13 Übungsaufgaben / pl Die Histogramme von Binomialverteilungen werden bei wachsendem Stichprobenumfang n immer flacher und breiter. Dem Maximum einer solchen Verteilung kommt daher keine allzu große Wahrscheinlichkeit zu. Vielmehr

Mehr

Mechanismus Design Auktionen

Mechanismus Design Auktionen Mechanismus Design Auktionen Universität Hohenheim Alexander Staus Mechanismus Design Universität Hohenheim 1/25 Welche Auktionen kennen Sie? traditionelle Auktionshäuser ebay Immobilien Fahrräder Blumen

Mehr

Vorlesung Anreize vom

Vorlesung Anreize vom Vorlesung Anreize vom 28.10.2008 Annette Kirstein Quelle: Salanié, Bernard (1997); The Economics of Contracts, MIT Press, 1-6, 11-18. Gliederung 1 Einführung 1.2 Historische Entwicklung 1.3 Die Modelle

Mehr

Vorlesung 5: Probleme der Erwartungsnutzentheorie

Vorlesung 5: Probleme der Erwartungsnutzentheorie Vorlesung 5: Probleme der Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 5 (FS 11) Probleme der Erwartungsnutzentheorie 1 / 24 1. Einleitung

Mehr

(a)... ein Spieler eine Entscheidung treffen muss... (b)... der andere Spieler (Experte) über private...

(a)... ein Spieler eine Entscheidung treffen muss... (b)... der andere Spieler (Experte) über private... 1 KAP 19. Expertenberatung Wir betrachten eine Modell, in dem... (a)... ein Spieler eine Entscheidung treffen muss... (b)... der andere Spieler (Experte) über private...... entscheidungsrelevante Information

Mehr

Aufgabenblatt 1: Rechenbeispiel zu Diamond/Dybvig (JPE 1983)

Aufgabenblatt 1: Rechenbeispiel zu Diamond/Dybvig (JPE 1983) Aufgabenblatt 1: Rechenbeispiel zu Diamond/Dybvig (JPE 1983) Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe Betrachten Sie den

Mehr

8 Die Exponentialverteilung

8 Die Exponentialverteilung 8 Die Exponentialverteilung 8.1 Einführung Modelle Zuverlässigkeitsmodelle Lebensdauermodelle Bedienungsmodelle. 277 W.Kössler, Humboldt-Universität zu Berlin Def. 26 (Exponentialverteilung) Sei X eine

Mehr

Präferenzen und Nutzen. Kapitel 3. Präferenzrelationen. Präferenzrelationen. Präferenzen und Nutzen. Darstellung individueller Präferenzen

Präferenzen und Nutzen. Kapitel 3. Präferenzrelationen. Präferenzrelationen. Präferenzen und Nutzen. Darstellung individueller Präferenzen Präferenzen und Nutzen Kapitel 3 Präferenzen und Nutzen Darstellung individueller Präferenzen Ordinale Ordnung vom Besten zum Schlechtesten Charakterisierung von Nutzenfunktionen Kardinale Ordnung, Alternativen

Mehr

5. Vollkommene Konkurrenz und Effizienz. Prof. Dr. Michael Berlemann (HSU) Vorlesung: Einführung in die Volkswirtschaftslehre HT / 193

5. Vollkommene Konkurrenz und Effizienz. Prof. Dr. Michael Berlemann (HSU) Vorlesung: Einführung in die Volkswirtschaftslehre HT / 193 5. Vollkommene Konkurrenz und Effizienz Prof. Dr. Michael Berlemann (HSU) Vorlesung: Einführung in die Volkswirtschaftslehre HT 2009 134 / 193 5.1 Pareto-Effizienz Prof. Dr. Michael Berlemann (HSU) Vorlesung:

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Übung zur Vorlesung Multiagentensysteme

Übung zur Vorlesung Multiagentensysteme Ludwig-Maximilians-Universität München SS 2007 Institut für Informatik Aufgabenblatt 1 Dr. Brandt / Fischer & Harrenstein 23. April 2007 Übung zur Vorlesung Multiagentensysteme Tutorübung: 25. April 2007

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / Prof. Achim Wambach, D.Phil. Versicherungsmärkte WS 2001 / 2002 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

Information und Anreize in Märkten und bei staatlichem Handeln

Information und Anreize in Märkten und bei staatlichem Handeln 1. Information, Anreize und Verträge 2. Theorie der Firma 3. Anreize in Märkten und bei staatlichem Handeln Information und Anreize in Märkten und bei staatlichem Handeln Qualität, Information und Werbung

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Vorlesung 1: Einleitung

Vorlesung 1: Einleitung Vorlesung 1: Einleitung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 1, FS 12 Einleitung 1/17 1.1 Motivation In der Vorlesung Intermediate Microecoomics haben

Mehr

Kapitel 9. Unsicherheit und Information. Einleitung. Teil 3: Einige generelle Klassen von Spielen und Strategien. Teil 3.

Kapitel 9. Unsicherheit und Information. Einleitung. Teil 3: Einige generelle Klassen von Spielen und Strategien. Teil 3. Teil 3 Teil 3: Einige generelle Klassen von Spielen und Strategien : Unsicherheit und Information Kapitel 10: Strategische Aktionen Kapitel 11: Wiederholte Spiele Kapitel 12: Kollektive Wahl Kapitel 13:

Mehr

Unvollständige Verträge

Unvollständige Verträge Unvollständige Verträge Tone Arnold Universität des Saarlandes 29. Januar 2008 Tone Arnold (Universität des Saarlandes) Unvollständige Verträge 29. Januar 2008 1 / 68 Unvollständige Verträge Unvorhergesehene

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 24/25 Universität Karlsruhe 7. März 25 Priv-Doz. Dr. D. Kadelka Klausur zur Vorlesung Stochastik II Dauer: 9 Minuten Name: Vorname: Matrikelnummer: Diese Klausur

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

Studiengang (Zutreffendes bitte ankreuzen):

Studiengang (Zutreffendes bitte ankreuzen): Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur Mikroökonomik Matrikelnummer: Studiengang (Zutreffendes bitte ankreuzen): SozÖk Sozma AÖ WiPäd Wiwi Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur

Mehr

Die rationalen Zahlen. Caterina Montalto Monella

Die rationalen Zahlen. Caterina Montalto Monella Die rationalen Zahlen Caterina Montalto Monella 07.12.2016 1 1 Die Konstruktion der rationalen Zahlen In dieser Ausarbeitung konstruieren wir die rationalen Zahlen aus den ganzen und den natürlichen Zahlen.

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

Lösungsmöglichkeiten u.a. durch anreizkompatible Verträge. Kein entscheidender Anlass für regulierendes Eingreifen

Lösungsmöglichkeiten u.a. durch anreizkompatible Verträge. Kein entscheidender Anlass für regulierendes Eingreifen Asymmetrische Information ex ante: Adverse Selektion Problematik Kreditnehmer hat vor Vertragsabschluss private Information über Sachverhalte, die für den Kredit bedeutsam sind, z.b. Qualität des Investitionsprojekts

Mehr

5. Arbeitslosenversicherung. OECD Länder: I.d.R. staatliche Arbeitslosenversicherung. Kaum private Versicherung. Warum?

5. Arbeitslosenversicherung. OECD Länder: I.d.R. staatliche Arbeitslosenversicherung. Kaum private Versicherung. Warum? 5. Arbeitslosenversicherung Lit. Breyer/Buchholz (2007), Kap. 7 OECD Länder: I.d.R. staatliche Arbeitslosenversicherung. Kaum private Versicherung. Warum? 1. Private Versicherung überüssig, weil staatliche

Mehr

Effizienzgründe für die Existenz einer Sozialversicherung

Effizienzgründe für die Existenz einer Sozialversicherung Soziale Sicherung A.3.1 Effizienzgründe für die Existenz einer Sozialversicherung Erster Hauptsatz der Wohlfahrtsökonomik: In einer Ökonomie mit rein privaten Gütern und einer perfekten Eigentumsordnung

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Kapitel 6 Der Arbeitsmarkt

Kapitel 6 Der Arbeitsmarkt Kapitel 6 Der Arbeitsmarkt Folie 1 6.2 Ein Überblick über den Arbeitsmarkt Die Bevölkerung im erwerbsfähigen Alter bzw. das Arbeitskräftepotenzial, umfasst alle Personen im Alter zwischen 15 und 65 Jahren,

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

2.3 Kriterien der Entscheidungsfindung: Präferenzen

2.3 Kriterien der Entscheidungsfindung: Präferenzen .3 Kriterien der Entscheidungsfindung: Präferenzen Der Einfachheit halber beschränken wir uns auf n = ( zwei Güter). Annahme: Konsumenten können für sich herausfinden, ob sie x = ( x, ) dem Güterbündel

Mehr

Prof. Dr. Gunther Friedl

Prof. Dr. Gunther Friedl CONTROLLING (WS 03/4) Tutorium 3: Kontrollsystem und Personalführung Aufgabe 3.: Vergütungsvertrag zur Anreizsetzung: Das LEN-Modell a) Warum werden in Unternehmen variable Vergütungen gezahlt, deren Höhe

Mehr

Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY

Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY Prüfungsfach/Modul: Allgemeine Volkswirtschaftslehre Volkswirtschaftstheorie Wahlmodul Klausur: Neue Institutionenökonomik (Klausur 60 Min) (200101, 201309,

Mehr

Industrieökonomik I Wintersemester 2007/08 1. Industrieökonomik I. Prof. Dr. Ulrich Schwalbe. Wintersemester 2007/ 2008

Industrieökonomik I Wintersemester 2007/08 1. Industrieökonomik I. Prof. Dr. Ulrich Schwalbe. Wintersemester 2007/ 2008 Industrieökonomik I Wintersemester 2007/08 1 Industrieökonomik I Prof. Dr. Ulrich Schwalbe Wintersemester 2007/ 2008 Industrieökonomik I Wintersemester 2007/08 2 Gliederung 1. Einleitung 2. Grundlagen

Mehr