5 Sphärische Trigonometrie

Größe: px
Ab Seite anzeigen:

Download "5 Sphärische Trigonometrie"

Transkript

1 $Id: sphaere.tex,v /07/09 15:09:47 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten wieder eine Kugel, die wir uns diesmal als die Erdkugel vorstellen. Wir wollen die Punkte auf K durch Koordinaten beschreiben. Eine Gerade durch den ittelpunkt der Kugel sei vorgegeben, im Fall der Erde nimmt man hierfür die Rotationsachse der Erde. Die beiden Schnittpunkte der Achse mit K sind die beiden Pole, einen nennen wir ordpol, den anderen den Südpol S. Die Großkreise durch ord- und Südpol, heißen dann die Längenkreise, oder eridiane. Einer von diesen wird willkürlich als ullmeridian ausgewählt, im Fall der Erde wurde hierfür der durch Greenwich laufende eridian gewählt. Die erste geographische Koordinate λ eines Punktes P ist nun der Längengrad, dies ist der Winkel den der eridian durch P mit dem ullmeridian bildet. Dabei zählen wir die östliche Richtung als positiv, also mit steigenden Längengrad. Die Ebene senkrecht auf der Achse durch schneidet die Kugel K in einem Großkreis der der Äquator genannt wird, die Ebene heißt entsprechend die Äquatorebene. Die zweite Koordinate eines Punktes P ist nun der Breitengrad ϕ, d.h. der Winkel den P mit der Äquatorebene bildet. Die Punkte konstanten Breitengrades bilden einen zum Äquator parallelen Kleinkreis, einen sogenannten Breitenkreis. Für die folgenden Beispiele schauen wir uns zwei Punkte an, der Punkt P 1 ist Kiel mit λ 1 = 10 08, ϕ 1 = 54 20, 23-1

2 und der Punkt P 2 ist Peking mit λ 2 = , ϕ 1 = Die achkommastellen bei solchen geographischen Koordinaten werden traditionell sexagesimal zur Basis 60 dargestellt, d.h. 28 meint 28/60 Grad, weitere achkommastellen werden dann mit mehreren Strichen markiert. In dezimales Gradmaß umgerechnet sind auf vier achkommastellen λ 1 = 10, 1333, ϕ 1 = 54, 3333, λ 2 = 116, 4666, ϕ 2 = 39, 9. Angenommen wir haben zwei Punkte P 1 mit Koordinaten λ 1, ϕ 1 und P 2 mit Koordinaten λ 2, ϕ 2. Um den Abstand dieser beiden Punkte auszurechnen, betrachte des sphärische Dreieck P 1 P 2 mit Seiten wie im obigen Bild markiert. Gesucht ist die Seite c. Setzen wir den eridian durch P 2 bis zum Äquator fort, so entstehen insgesamt 90 und der Teil zwischen P 2 und dem Äquator ist dabei der Breitengrad ϕ 2, also haben wir a = π 2 ϕ 2 und analog b = π 2 ϕ 1. Der Winkel γ ist der Winkel zwischen den eridianen durch P 1 und P 2, und da der Längengrad der Winkel zum ullmeridian ist, folgt γ = λ 2 λ 1. Damit haben wir genug Daten zusammen unser Dreieck zu berechnen. it dem Seitencosinussatz Satz 3 folgt cos c = cos a cos b + sin a sin b cos γ ( π = cos 2 ϕ 2 cos 2 ϕ 1 + sin 2 ϕ 2 sin 2 ϕ 2 cos γ = sin ϕ 1 sin ϕ 2 + cos ϕ 1 cos ϕ 2 cos(λ 2 λ 1. it dieser Formel lassen sich Abstände von in Längengrad und Breitengrad gegebenen Punkten berechnen. In unserem obigen Beispiel Kiel Peking wird cos c 0, also c 1, Dies ist der Winkelabstand, um den metrischen Abstand zu kriegen müssen wir noch mit dem Radius unserer Kugel multiplizieren, also mit dem Erdradius R = 6371, 2km und der Abstand Kiel Peking längs des verbindenden Großkreises wird P 1 P 2 = Rc 7418, 4km. Auch die beiden Winkel α und β in unserem sphärischen Dreieck P 1 P 2 haben eien Bedeutung. Unter dem Kurswinkel einer Kurve auf K in einem Punkt versteht man den Winkel zum durch den Punkt laufenden eridian, dann sind α der Kurswinkel im Startpunkt P 1 der Strecke P 1 P 2 und β der Kurswinkel im Endpunkt P 2, man nennt 23-2

3 α den Abfahrts- und β den Ankunftswinkel. Wir können diese beispielsweise mit dem sphärischen Sinussatz Satz 6 berechnen, es ist sin c/ sin γ 0, und somit sin α = sin a 0, = cos ϕ 2 0, , und der Abfahrtswinkel wird α 53, Für den Ankunftswinkel berechnen wir analog β 37, b γ a β P 2 α P Berechnung der Tageslänge In diesem letzten Abschnitt wollen wir als eine weitere Anwendung der sphärischen Trigonometrie die Berechnung der Tageslänge durchführen. Angenommen wir haben eine Kugel E mit ittelpunkt und Radius R > 0 die von einer Lichtquelle in der Entfernung S beleuchtet wird. Denken wir uns der Einfachheit halber das alle Lichtstrahlen vom ittelpunkt der Quelle ausgehen, so bilden wir einen Kegel mit Spitze in S der tangential an der Kugel anliegt, und der beleuchtete Teil unserer Sphäre ist dann das Innere des Kleinkreises in dem der Kegel die Kugel berührt. Ekliptik R H φ S Äquator F δ 0 Lichtquelle Ekliptik 23-3

4 Dieser Kleinkreis bildet mit S einen Winkel φ und lesen wir den Cosinus von φ im oben links gezeigten rechtwinkligen Dreieck ab, so ergibt sich cos φ = R S. Sind nun E die Erde und unsere Lichtquelle die Sonne, so ist R der Erdradius R = 6371, 2 km und S ist der Abstand zur Sonne. Der genaue Wert von S hängt von der Jahreszeit ab, der kleinste auftretende Wert sind S = km. Für den Winkel φ ergibt sich φ 89, , und für alle praktischen Zwecke sind dies 90. Wir können also davon ausgehen das immer auf einer Hälfte der Erdoberfläche Tag ist. Wenn wir einen einzelnen Tag betrachten, so können wir uns die Sonne als im Raum fixiert denken. Durch die Drehung der Erde um ihre Achse ändert sich die Hälfte der Erde auf der gerade Tag ist. Die Verbindungsstrecke von Erdmittelpunkt und Sonnenmittelpunkt trifft die Erdoberfläche in einem Punkt Q und der Großkreis k der die Grenze zwischen Tag und acht markiert hat Q als einen Pol. Liegt Q auf dem Äquator, so ist die Tag acht Grenze k ein eridian, also wird jeder Breitenkreis von k genau halbiert und damit sind Tag und acht in jedem Punkt der Erdoberfläche gleich lang. Da wir allerdings wissen das die Länge des Tages mit der Jahreszeit variiert kann Q in der Regel nicht auf dem Äquator liegen. Die Bewegung der Erde um die Sonne findet in einer Ebene statt, und diese Ebene nennt man die Ekliptik. Schneiden wir die Ekliptik mit der Erdoberfläche so entsteht ein Großkreis q auf dem sich unser Punkt Q bewegt. Wäre die Drehachse der Erde senkrecht auf der Ekliptik, so wäre q der Äquator und Tag und acht wären immer gleich lang. In der Wirklichkeit sind die beiden aber verschieden, der Großkreis q bildet mit dem Äquator einen Winkel δ 0, und dies führt dazu das sich die Tageslänge mit der Jahreszeit ändert. Den Winkel δ 0 kann man genau messen, er hat auf zwei achkommastellen den Wert δ 0 = 23, 44. Der Großkreis q schneidet den Äquator in zwei diametralen Punkten F und H, in diesen beiden Punkten fällt der Einstrahlpunkt Q auf den Äquator und Tag und acht sind überall auf der Erde gleich lang. an nennt F den Frühlingspunkt und H den Herbstpunkt, diese sind die beiden Äquinoktien oder Tagundnachtgleichen. Wir betrachten nun einen fixierten Tag und an diesem Tag habe die Sonne zum Äquator den Winkel δ, d.h. ist Q der Einstrahlpunkt so hat die Strecke Q zur Äquatorebene den Winkel δ. an nennt δ die Deklination. Ist Q der Frühlingspunkt, so ist δ = 0 und mit fortschreitenden Jahr läuft Q den Großkreis q entlang und δ wird größer. Dies geht bis die Deklination ihren maximalen Wert δ = δ 0 erreicht, dies geschieht wenn die senkrecht auf dem Äquator stehende Ebene durch Q auch senkrecht auf der Ekliptik ist, dann ist die Deklination der Winkel zwischen Äquator und Ekliptik und die sogenannte Sommersonnenwende ist erreicht. Danach wird δ wieder kleiner bis der Herbstpunkt erreicht wird und δ = 0 ist. ach Durchlaufen des Herbstpunktes wird δ negativ, d.h. ab diesem Punkt ist die Südhalbkugel der Sonne zugewandt. Der kleinste Wert der Deklination wird dann bei δ = δ 0 erreicht und dann ist die 23-4

5 Wintersonnenwende erreicht. Anschhließend läuft Q zurück zum Frühlingspunkt, die Deklination steigt also wieder bis δ = 0, und alles geht von vorne los. Wir wollen die Tageslänge in Abhängigkeit von Deklination und Breitengrad berechnen. ehme einmal an das δ 0 ist das also die ordhalbkugel der Sonne zugewandt ist. Ab einem gewissen Breitengrad ϕ ist der Tag dann volle 24 Stunden lang und um ϕ zu berechnen schauen wir uns den unten rechts gezeigten Querschnitt an. H ϕ P Q Q δ ϕ ϕ δ Deklination Querschnitt zu den Polarkreisen S Die Strecke Q bildet mit dem Äquator den Winkel δ, senkrecht zu dieser Strecke ist die Tag acht Grenze k und alle Breitenkreise oberhalb des Schnitts von k mit der Sphäre liegen ganz im beleuchteten Teil der Erde. Die Grenze ϕ ergibt sich damit zu δ + π 2 + ϕ = π, also ϕ = π 2 δ. Im Frühlingspunkt δ = 0 gibt es noch keinen solchen Breitenkreis und zur Sommersonnenwende δ = δ 0 ist nördlich des Breitenkreises π/2 δ 0 = 66, 56 volle 24 Stunden lang Tag. an nennt den Breitenkreis ϕ = π/2 δ 0 den nördlichen Polarkreis. Symmetrisch dazu ist der südliche Polarkreis, südlich des Breitenkreises (π/2 δ ist 24 Stunden lang acht. Wird die Deklination negativ, so ist die Südhalbkugel der Sonne zugewandt und die südlichen Breitenkreise haben permanenten Tag und die nördlichen permanente acht. Für die Breitenkreise ϕ mit ϕ < π/2 δ gibt es dagegen einen Wechsel von Tag und acht und wir betrachten jetzt einen solchen Breitengrad ϕ. Sei P der westliche Schnittpunkt des Breitenkreises zum Breitengrad ϕ mit der Tag acht Grenze k, d.h. im Punkt P haben wir den Sonnenaufgang auf unserem Breitenkreis. Ist der ordpol so bilden wir das oben links gezeigte sphärische Dreieck P Q und sein Winkel H bei heißt der Stundenwinkel, dies ist der Winkel zwischen dem Sonnenaufgang in P und der ittagszeit wenn der eridian durch Q erreicht wird. Insbesondere bildet der Teil des Breitenkreises der von der Sonne beschienen wird mit den Winkel 2H. Der Punkt P ist auf dem Großkreis k mit Pol in Q, also haben P und Q den 23-5

6 Winkelabstand P Q = π 2, es liegt ein sogenannte rechtsseitiges sphärisches Dreieck vor. Da P den Breitengrad ϕ und Q den Breitengrad δ hat, ist P = π 2 ϕ und Q = π 2 δ. Wenden wir in P Q den Seitencosinussatz Satz 3 an, so ergibt sich ( π 0 = cos P Q = cos 2 ϕ cos 2 δ + sin 2 ϕ sin 2 δ cos H also ist sin ϕ sin δ cos H = cos ϕ cos δ = sin ϕ sin δ + cos ϕ cos δ cos H, = tan ϕ tan δ. Wir hatten schon festgehalten das der in der Sonne liegende Teil des Breitenkreises den doppelten Stundenwinkel 2H einnimmt, und da die Drehung der Erde um ihre Achse konstante Winkelgeschwindigkeit hat ist die Tageslänge auf dem Breitengrad ϕ damit gegeben als T 1 = T 1 (ϕ, δ = 2H = arccos( tan ϕ tan δ. 2π π Diese geometrische Tageslänge weicht aber noch recht deutlich von der wirklich beobachteten Tageslänge ab. Dies liegt an zwei Hauptgründen. Zum einen ist die Sonne keine punktförmige Lichtquelle sondern hat eine Ausdehnung und nimmt eine Winkel von etwa 16 ein. Die Sonne ist also schon um den Winkel 16 vor Erreichen des Punktes P sichtbar. Weiter hat die Erde eine Atmosphäre an der sich die eingehenden Lichtstrahlen brechen, und essungen dieses Effekts ergeben einen weiteren Korrekturwinkel 34. Insgesamt kommen wir auf den Korrekturwinkel ( 5 ɛ := = 50 = 0, In unserem Dreieck P Q haben wir bei Sonnenaufgang also tatsächlich P Q = π/2+ɛ und der Seitencosinussatz ergibt ( π sin ɛ = cos 2 + ɛ = sin ϕ sin δ + cos ϕ cos δ cos H und somit cos H = tan ϕ tan δ Als genaueren Wert für die Tageslänge erhalten wir ( tan ϕ tan δ T 2 = 24 π arccos 23-6 sin ɛ cos ϕ cos δ. sin ɛ, cos ϕ cos δ

7 und um diesen Wert mit T 1 zu vergleichen machen wir eine kleine Approximationsüberlegung. Zunächst erinnern wir uns daran das die Differenzierbarkeit einer Funktion f in einem Punkt x bedeutet das für kleine Inkremente h die äherung gilt. Die Ableitung des Arcus Cosinus ist f(x + h f(x + f (xh d dx arccos x = 1 1 x 2, also haben wir arccos(x + h arccos x h 1 x 2. Der Wert sin ɛ/(cos ϕ cos δ ist vergleichsweise klein, also wird T 2 T π 1 tan 2 ϕ tan 2 δ sin ɛ cos ϕ cos δ. Weiter haben wir für kleine Winkel φ die übliche äherung sin φ φ und es wird ( 5 sin ɛ ɛ = = π 180 = π 216, und somit T 2 T cos2 ϕ cos 2 δ sin 2 ϕ sin 2 δ = T cos2 ϕ sin 2 δ. Wir wollen uns dies einmal am Beispiel des durch Kiel laufenden Breitenkreises anschauen, dieser hatte den Breitengrad ϕ = Dies ist südlich des Polarkreises bei 66, 56 also gibt es stets eine Tag und eine achtphase. In der folgenden Tabelle geben wir die Tageslänge in Kiel als Funktion der Deklination δ für einige Werte von δ an δ 0 4, 69 9, 37 14, 06 18, 75 δ 0 = 23, 44 T 1 12 : : : : : : 57 T 2 12 : : : : : : 12 Diese Tabelle gibt uns Werte zwischen dem Frühlingsanfang und der Sommersonnenwende, für andere Werte der Deklination δ lassen sich die Werte durch Symmetrieüberlegungen gewinnen. 23-7

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.25 2017/07/13 11:11:42 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten N N b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.17 016/07/1 16:3:40 hk Exp $ 5 Sphärische Trigonometrie 5.5 Geographische Koordinaten Wir beschäftigen uns gerade mit der Berechnung des Weges zwischen zwei in geographischen Koordinaten

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.18 216/7/15 18:27:28 hk Exp $ 5 Sphärische Trigonometrie 5.6 Berechnung der Tageslänge Wir beschäftigen uns gerade mit der Berechnung der Tageslänge. Wir betrachten momentan einen

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.4 2013/06/24 23:05:24 hk Exp hk $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung Wir behandeln gerade die Berechnung sphärischer Dreiecke und haben zu diesem Zweck bereits

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v.5 03/08/3 7::33 hk Exp $ 5 Sphärische Trigonometrie 5.4 Geographische Koordinaten In der letzten Sitzung hatten wir die geographischen Koordinaten eines Punkts P auf einer Kugel, beziehungsweise

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.15 2016/07/08 13:57:53 hk Exp $ 5 Sphärische Trigonometrie 5.3 Kleinkreise als sphärische Kreise In der letzten Sitzung hatten wir eingesehen das die sphärischen Kreise auf einer Sphäre

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.23 2017/07/10 14:46:08 hk Exp $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung In der letzten Sitzung haben wir begonnen uns mit sphärischer Trigonometrie zu beschäftigen.

Mehr

Klassenarbeit - Die Erde

Klassenarbeit - Die Erde Klassenarbeit - Die Erde 5. Klasse / Geografie Erdrotation; Erdbahn; Kontinente; Gradnetz; Karten; Polartag Aufgabe 1 Wie nennt man a) die Drehung der Erde um sich selbst und b) wie ihre Drehung um die

Mehr

Die Regiomontanus-Sonnenuhr

Die Regiomontanus-Sonnenuhr Die Regiomontanus-Sonnenuhr Von Günther Zivny Die Regiomontanus-Sonnenuhr gehört zur Gruppe der Höhensonnenuhren. Die Sonnenhöhe, also der Winkel zwischen Horizont und Sonne, ändert sich im aufe des Tages.

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.5 2013/08/13 17:21:33 hk Exp $ 5 Sphärische Trigonometrie m Ende der letzten Sitzung hatten wir mit der Untersuchung sphärischer Dreiecke begonnen. Gegeben war eine Sphäre K, oder

Mehr

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $ $Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann

Mehr

SIS Vortragsreihe. Astronomische Koordinatensysteme

SIS Vortragsreihe. Astronomische Koordinatensysteme SIS Vortragsreihe Astronomische Koordinatensysteme Das Himmelsgewölbe Zur Vereinfachung stellen wir uns das Himmelsgewölbe als hohle Kugel vor. Die Fix-Sterne sind an dieser Kugel befestigt oder einfach

Mehr

7 Beziehungen im Raum

7 Beziehungen im Raum Lange Zeit glaubten die Menschen, die Erde sei eine Scheibe. Heute zeigen dir Bilder aus dem Weltall sehr deutlich, dass die Erde die Gestalt einer Kugel hat. 7 Beziehungen im Raum Gradnetz der Erde Längengrade

Mehr

Koordinatensysteme der Erde

Koordinatensysteme der Erde Koordinatensysteme der Erde Es gibt verschiedene Arten, die Position eines Punktes auf der Oberfläche einer Kugel (manchmal auch Sphäre genannt) darzustellen, jede hat ihre Vor-und Nachteile und ist für

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/18 15:11:12 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/18 15:11:12 hk Exp $ Mathematische Probleme, SS 25 Donnerstag 8.6 $Id: quadratisch.tex,v. 25/6/8 5::2 hk Exp $ 4 Kegelschnitte Am Ende der letzten Sitzung haben wir mit der Diskussion der Kegelschnitte begonnen. Gegeben sind

Mehr

x 1 x 2 a) Erläutern Sie den prinzipiellen Weg, wie man den Standort der Person aus den gegebenen Daten berechnen kann.

x 1 x 2 a) Erläutern Sie den prinzipiellen Weg, wie man den Standort der Person aus den gegebenen Daten berechnen kann. Lineare Algebra / Analytische Geometrie Leistungskurs Aufgabe 5: GPS Eine Person bestimmt ihre Position auf der Erdoberfläche mit Hilfe eines GPS-Gerätes. Dieser Vorgang soll in dieser Aufgabe prinzipiell

Mehr

r 1 Abb. 1: Schlinge um Kreis im Abstand 1

r 1 Abb. 1: Schlinge um Kreis im Abstand 1 Hans Walser, [20130119a] Schlinge um Kreis Anregung: R. S., Z. 1 Die Uralt-Aufgabe Um einen Kreis mit Radius r wird eine Schlinge im Abstand 1 gelegt (Abb. 1). Wie lang ist die Schlinge im Vergleich zum

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember 2004 1 Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit

Mehr

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März Unser Sonnensystem Prof. Dr. Christina Birkenhake christina@birkenhake.net http://christina.birkenhake.net 8. März 2010 Heliozentrisches Weltbild des Kopernikus Ellipsen überspringen Ellipsen und Planetenbahnen

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

Berechnung der Zeitgleichung

Berechnung der Zeitgleichung Berechnung der Zeitgleichung Um eine Sonnenuhr berechnen zu können, muss man zu jedem Zeitpunkt den infallswinkel der Sonne relativ zur Äquatorebene (= Deklination δ) sowie den Winkel, um den sich die

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

GPS - Anwendungen. im Zusammenhang mit satellitengestützter Ortung

GPS - Anwendungen. im Zusammenhang mit satellitengestützter Ortung im Zusammenhang mit satellitengestützter Ortung Gestalt der Erde und Darstellungsmöglichkeiten auf Karten : Die Erde hat annähernd Kugelform. Durch die Erdrotation entsteht eine Abplattung an den Polen

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen.

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. 10.1. Ebene Kurven Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. Parameterdarstellungen einer Kurve sind stetige

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge Lösungen der Trainingsaufgaben aus Toolbox Mathematik für MINT-Studiengänge 1 Geometrie mit Sinus, Cosinus und Tangens Version 22. Dezember 2016 Lösung zu Aufgabe 1.1 Gemäß Abbildung 1.1 und der Definition

Mehr

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 06 Klasse: 4g Profil: MN Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne

Mehr

Projekt der Klasse 4l MN Frühlingssemester 2008

Projekt der Klasse 4l MN Frühlingssemester 2008 Projekt der Klasse 4l MN Frühlingssemester 2008 Alexander Mikos Cedric Bergande Dario Goglio Konrad Marthaler Marc Inhelder Olivier Kastenhofer Stefan Kettner Leitung: Jan-Peter Trepp Seite 2 von 13 Inhaltsverzeichnis

Mehr

Orientierung am Himmel

Orientierung am Himmel Astronomie im Chiemgau e.v. www.astronomie-im-chiemgau.de Vortragsreihe Einführung in die Astronomie der VHS Haag i. Obb., Traunreut und Trostberg Orientierung am Himmel Himmelspole, Himmelsäquator und

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $ $Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer

Mehr

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6 $Id: dreieck.tex,v 1.35 017/06/15 13:19:44 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck In diesem Abschnitt wollen wir die sogenannten speziellen Punkte im Dreieck, also den Schwerpunkt, die

Mehr

und einen zugehörigen Winkel beschreiben. Diese Bewegung wird auch kurz ROT[E, Ω ]

und einen zugehörigen Winkel beschreiben. Diese Bewegung wird auch kurz ROT[E, Ω ] EULER-POLE 1. Relativbewegungen von zwei n auf einer Kugel 1.1. Beschreibung der Relativbewegung Jede Bewegung einer sphärischen auf einer Kugel kann als eine Rotation dieser um eine Achse E, die durch

Mehr

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010 Beobachtungen am Himmel Manuel Erdin Gymnasium Liestal, 2010 Grundsätze Alle am Himmel beobachtbaren Objekte befinden sich auf der Innenseite einer Kugel. Wir als Beobachter sind in Ruhe. Die Himmelskugel

Mehr

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $ $Id: dreieck.tex,v 1.61 019/05/07 10:51:36 hk Exp $ 1 Dreiecke 1.7 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Die Kugel. Mathematische Betrachtungen von Peter Franzke

Die Kugel. Mathematische Betrachtungen von Peter Franzke Die Kugel Mathematische Betrachtungen von Die Einheitssphäre S 1. Die Kugel Geometrie: gekrümmte geschlossene Fläche, deren Punkte von einem festen Punkt M (Kugelmittelpunkt) einen festen Abstand r (Kugelradius)

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Ebene Schnitte einer Kugel

Ebene Schnitte einer Kugel Ebene Schnitte einer Kugel Eine Kugel Φ(M,r) und eine Ebene Σschneiden sich in einem Kreis k(σ, M k, r k ), falls der Abstand d des Kugelmittelpunkts von Σ kleiner r ist. Φ Φ k r=r k d M k r k M=M k k

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

Kugeldreieck. (a) München (λ = 11,5 ö. L., φ = 48,1 ) (b) New York (λ = 74,0 w. L., φ = 40,4 ) (c) Moskau (λ = 37,4 ö. L.

Kugeldreieck. (a) München (λ = 11,5 ö. L., φ = 48,1 ) (b) New York (λ = 74,0 w. L., φ = 40,4 ) (c) Moskau (λ = 37,4 ö. L. Kugeldreieck 1. Berechnen Sie die Fläche des vom Äquator, vom Nullmeridian und dem Längenkreis durch den angegebenen Ort begrenzten Kugeldreiecks. Geben Sie den sphärischen Exzeß des Dreiecks im Grad-

Mehr

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mathematische Proleme SS 2017 Donnerstag 1.6 $Id: dreieck.texv 1.31 2017/06/01 11:41:57 hk Exp $ 2 Dreiecke 2.1 Dreieckserechnung mit Seiten und Winkeln Am Ende der letzten Sitzung hatten wir eine weitere

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben

Mehr

Astronomische Koordinatensysteme

Astronomische Koordinatensysteme Übung für LA Physik Astronomische Koordinatensysteme Sergei A.Klioner Lohrmann-Observatorium, Technische Universität Dresden Kartesische und sphärische Koordinaten Kartesisches Koordinatensystem und sphärische

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/29 12:18:47 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: quadratisch.tex,v /06/29 12:18:47 hk Exp $ $Id: quadratisch.tex,v 1.13 15/6/9 1:18:47 hk Ex $ 4 Kegelschnitte 4. Die Parabel Wir sind gerade dabei die Leitgeraden und Brennunkte einer Parabel zu bestimmen. Ist P eine Parabel, so nannten wir ein

Mehr

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt Eine Methode zur Positionsberechnung aus Relativmessungen Von Eckhardt Schön, Erfurt Mit 4 Abbildungen Die Bewegung der Sterne und Planeten vollzieht sich für einen irdischen Beobachter scheinbar an einer

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe

Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie 1 Einleitung U. Backhaus, Universität Duisburg-Essen Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe

Mehr

Unterrichtsprojekte Natur und Technik. Der Globus auf dem Schulhof, der begreifbar macht, warum es Sommer und Winter gibt

Unterrichtsprojekte Natur und Technik. Der Globus auf dem Schulhof, der begreifbar macht, warum es Sommer und Winter gibt Unterrichtsprojekte Natur und Technik Vinnhorster Weg 2 30419 Hannover Telefon: 0511-168-47665/7 Fax: 0511-168-47352 E-mail: schulbiologiezentrum@hannover-stadt.de Internet: www.schulbiologiezentrum-hannover.de

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

Übungsblatt

Übungsblatt Übungsblatt 6..7 ) Zeigen Sie die Gültigkeit der folgenden Sätze durch Verwendung abstrakter Vektoren (ohne Bezug auf konkrete Komponenten), deren Addition bzw. Subtraktion und Multiplikation mit Skalaren:

Mehr

Übungen zur Ingenieur-Mathematik I WS 2017/2018 Blatt Aufgabe 33: Zeigen Sie, dass für die Funktionen

Übungen zur Ingenieur-Mathematik I WS 2017/2018 Blatt Aufgabe 33: Zeigen Sie, dass für die Funktionen Übungen zur Ingenieur-Mathematik I WS 7/8 Blatt 8..7 Aufgabe : Zeigen Sie, dass für die Funktionen a b gilt: cosh x = (ex + e x und sinh x = (ex e x a (cosh x = sinh x, b (sinh x = cosh x, c cosh x sinh

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Klassenarbeit - Die Erde

Klassenarbeit - Die Erde Klassenarbeit - Die Erde Erdrotation; Gradnetz; Erdbahn; Jahreszeiten; Oberflächenformen; Vegetationsgebiete 5. Klasse / Geografie Aufgabe 1 Erläutere die Erdrotation und den damit entstehenden Effekt.

Mehr

Sphärische Geometrie und Trigonometrie

Sphärische Geometrie und Trigonometrie 1 Sphärische Geometrie und Trigonometrie Die Sphärische Trigonometrie befasst sich mit der erechnung von Kugeldreiecken. Sie ist von stronomie und Seefahrern entwickelt worden, um die Lage von Punkten

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

D i e W e l t s t ä d t e r o s e

D i e W e l t s t ä d t e r o s e D i e W e l t s t ä d t e r o s e Eine Besonderheit der APG-Sonnenuhr ist die Weltstädterose. Um den Polos sind in die Bodenplatten kreisförmig Pfeile aus Edelstahl, die Richtung und Entfernung von ausgewählten

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

ist symmetrisch bezüglich der y-achse, da f( x) = f(x) ist. e x + e x = 2 2 (Substitution: a = e x )

ist symmetrisch bezüglich der y-achse, da f( x) = f(x) ist. e x + e x = 2 2 (Substitution: a = e x ) Problemstellung. f() e + e ist symmetrisch bezüglich der y-achse, da f( ) f() ist. Es ist f () e e. Aus f () folgt ; f(). f () e + e vor.

Mehr

Station Trigonometrie des Fußballs - 3. Teil -

Station Trigonometrie des Fußballs - 3. Teil - Station Trigonometrie des Fußballs - 3. Teil - Aufgabenblätter Liebe Schülerinnen und Schüler! In dieser Laborstation werdet ihr die Formeln der Trigonometrie nicht nur anwenden, sondern auch damit spielen

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 2

Grundlagen der Physik 1 Lösung zu Übungsblatt 2 Grundlagen der Physik Lösung zu Übungsblatt 2 Daniel Weiss 23. Oktober 29 Aufgabe Angaben: v F = 4 km h α = 58 β = 95 v W = 54 km h Abbildung : Skizze zu Aufgabe a Wie aus Abbildung leicht ersichtlich

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.22 2017/05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 1999, Typus AB Be/Sw Mathematik Lösungen Sw / 2003

Kantonsschule Reussbühl Maturitätsprüfung 1999, Typus AB Be/Sw Mathematik Lösungen Sw / 2003 Lösung der Aufgabe a) Nullstelle: : = Ableitungen: f () = : - = : = a f (a) = - e < : ist Stelle eines Maimums f () = : = : = a f (a) = e - : ist Wendestelle b) = e unabhängig von a tan = e ; = 69,8...

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie VI

Abitur 2011 G8 Abitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

ASV Astroseminar 2003

ASV Astroseminar 2003 Astronavigation nicht für Prüfungen (C-Schein, SHS) sondern zum Vergnügen. Nichts auswendig lernen, sondern Hintergründe verstehen Nur Verfahren, die auf Sportbooten anwendbar sind Keine HO-Tafeln heutzutage

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

Klassenarbeit - Die Erde

Klassenarbeit - Die Erde Klassenarbeit - Die Erde 5. Klasse / Geografie Gradnetz; Kontinente; Weltbilder; Sonnensystem; Ozeane; Karten Aufgabe 1 Ergänze den Text zum Gradnetz der Erde! Damit wir uns auf der Erde orientieren können,

Mehr

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Von Eckhardt Schön Erfurt Mit 1 Abbildung Die Bewegung der Planeten und Kleinkörper des Sonnensystems verläuft scheinbar zweidimensional

Mehr

Sinus- und Kosinussatz

Sinus- und Kosinussatz Sinus- und Kosinussatz Aufgabe 1 Bestimme für 0 α 360 die zwei Winkel, für die gilt a) sin α = 0,2 b) sin α = -0,74 c) cos α = 0,84 d) cos α = -0,05 e) tan α = 21 f) tan α = -0,51 g) cos α = -0,9 h) tan

Mehr

I. PHYSISCHE GEOGRAPHIE

I. PHYSISCHE GEOGRAPHIE I. PHYSISCHE GEOGRAPHIE 1. Unsere kosmische Umgebung 1. Ordne die Wissenschaftler den wissenschaftlichen Ergebnissen zu! Schreibe die Großbuchstaben an die entsprechende Stelle nach den wissenschaftlichen

Mehr

1.4 Trigonometrie. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 3

1.4 Trigonometrie. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 3 1.4 Trigonometrie Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 3 2.1 Was sind trigonometrischen Funktionen?.......................... 3 2.2 Die

Mehr

Verallgemeinerung von Sin, Cos, Tan mit GeoGebra

Verallgemeinerung von Sin, Cos, Tan mit GeoGebra Verallgemeinerung von Sin, Cos, Tan mit GeoGebra 1. Einheitskreis Es sollen am Einheitskreis Sinnus, Cosinus und Tangens von einem Winkel α [0; 360) dargestellt werden. gehe dazu wie folgt vor! a) Erstelle

Mehr

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter Trigonometrie 3. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. August 2008 Inhaltsverzeichnis 3 Trigonometrie 46 3.1 Warum Trigonometrie........................

Mehr

Astronavigation

Astronavigation Astronavigation 1. Lektion: Nordsternbreite Der Nordstern steht genau über dem Nordpol (stimmt nicht, ich weiß, aber die Differenz ignorieren wir zunächst mal). Mit einem Sextanten misst man den Winkel

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Fit in Mathe. März Klassenstufe 9 n-ecke. = 3,also x=6

Fit in Mathe. März Klassenstufe 9 n-ecke. = 3,also x=6 Thema Musterlösung 1 n-ecke Wie groß ist der Flächeninhalt des nebenstehenden n-ecks? Die Figur lässt sich z.b. aus den folgenden Teilfiguren zusammensetzen: 1. Dreieck (ECD): F 1 = 3 =3. Dreieck (AEF):

Mehr

Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Trigonometrie. Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Trigonometrie Geometrie Kapitel 3 MnProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 29. Januar 2012 Inhaltsverzeichnis 3 Trigonometrie 1 3.1 Warum Trigonometrie........................

Mehr

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung).

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung). 10.4. Raumkurven Kinematik Wir betrachten eine zweimal differenzierbare Parameterdarstellung w( t) x( t ) y( t ) z( t ) einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt

Mehr

Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1

Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1 Jahreszeiten 1 Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1 Bevor die Entstehung der Jahreszeiten und die Umsetzung in der GeoGebra-Simulation beschrieben werden, sind hier zunächst noch

Mehr

(von Punkt A nach Punkt B) gemessen und auch die entsprechenden Zenitwinkel z B

(von Punkt A nach Punkt B) gemessen und auch die entsprechenden Zenitwinkel z B Aufgabe a.1 Verwendet dieses elementare geometrische Verhältnis der Strecken, um die Höhe eines Turmes oder eines sonstigen hohen Gebäudes in eurer Nähe zu bestimmen. Dokumentiert euer Experiment. Wiederholt

Mehr