10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr)"

Transkript

1 10. Klasse der Haupt-/Mittelschule bschlussprüfung zum Erwerb des Mittleren Schulabschlusses 011 (0. Juni 011 von 8:0 bis 11:00 Uhr) M T H E M T I K ei der bschlussprüfung zum Erwerb des Mittleren Schulabschlusses im Fach Mathematik ist der elektronische Taschenrechner nach KMS vom 17. November 1997 Nr. IV/-S 70/-/15 95 zugelassen. Eine für den Gebrauch an Haupt-/Mittelschule genehmigte Formelsammlung ist zugelassen. Ergebnisse können nur dann bewertet werden, wenn sowohl der Lösungsweg als auch die Teilergebnisse aus dem Lösungsblatt ersichtlich sind. Jeder Schüler muss e i n e von der Prüfungskommission ausgewählte u f g a b e n g r u p p e bearbeiten.

2 ufgabengruppe I 1. Gegeben sind die (5 1), ( 5 7), ( 0) und D (0 ) sowie die Gerade g mit der Gleichung y = 0. a) Ermitteln Sie rechnerisch die Funktionsgleichung der Geraden g 1, die durch die und verläuft. b) erechnen Sie die Koordinaten des Schnittpunktes N der Geraden g 1 mit der -chse. Hinweis: Rechnen Sie mit g 1 : y = 0,8 +. c) Überprüfen Sie mit Hilfe einer Rechnung, ob die Geraden g 1 und g zueinander parallel verlaufen. d) Ermitteln Sie rechnerisch die Funktionsgleichung der Geraden g, die senkrecht auf g 1 steht und durch den Punkt verläuft. e) Überprüfen Sie durch Rechnung, ob der Punkt D auf g liegt. Hinweis: Rechnen Sie mit g : y = 1,5,5. f) Zeichnen Sie g 1, g und g in ein Koordinatensystem mit der Längeneinheit 1 cm. 7. Eine Firma bezieht 6 T-Shirts und Poloshirts zum Einkaufspreis von insgesamt 1 11 Euro. eim Verkauf wird je T-Shirt ein Gewinn von 0 % und je Poloshirt ein Gewinn von 5 % erzielt. Der Gesamtgewinn liegt bei 5,05 Euro. erechnen Sie jeweils den Einkaufspreis eines Poloshirts und eines T-Shirts.. Das Dreieck D entsteht durch zentrische Streckung mit dem Faktor k und dem Streckungszentrum aus dem Dreieck E (siehe Skizze). Schreiben Sie die drei richtigen ussagen auf Ihr Lösungsblatt. α E D β β' ussagen zur abgebildeten Figur: (a) sin β D = E (e) E : ED = E : D (b) α + β = 90 (f) D : k = E (c) : = ED : D (g) E = E ED (d) Dreieck E k = Dreieck D (h) cos α = D

3 . Die ( 0,5 6) und (5,5) liegen auf einer nach oben geöffneten Normalparabel p 1. a) Ermitteln Sie rechnerisch die Funktionsgleichung von p 1 in der Normalform. b) erechnen Sie die Koordinaten des Scheitelpunkts S 1 von p 1. Hinweis: Rechnen Sie mit p 1 : y = ² 6 +,75. c) estimmen Sie rechnerisch die Koordinaten der Schnittpunkte N 1 und N von p 1 mit der -chse. d) Eine Normalparabel p hat die Funktionsgleichung y = ² ,5. erechnen Sie die Koordinaten des Scheitelpunkts S von p. e) Die Normalparabeln p 1 und p schneiden sich in den n P und Q. erechnen Sie deren Koordinaten. f) Zeichnen Sie p 1 und p in ein Koordinatensystem mit der Längeneinheit 1 cm erechnen Sie den Flächeninhalt des abgebildeten Trapezes D in cm². Hinweis: Runden Sie alle Ergebnisse auf zwei Dezimalstellen. D Maße in cm H 0 F 5 6. Ersetzen Sie die runden Platzhalter durch Rechenzeichen und die eckigen durch Terme. Schreiben Sie die vollständigen Gleichungen dann auf Ihr Lösungsblatt. a) ( b c³ )² = b c b) 16z² = ( w 8 ) ( w 8 z ) 7. Geben Sie den Definitionsbereich der folgenden ruchgleichung an und bestimmen Sie deren Lösungsmenge rechnerisch

4 8. Von einer radioaktiven Substanz sind nach 0 Tagen 0 % zerfallen. a) erechnen Sie den täglichen Zerfall in Prozent. Hinweis: Runden Sie den Prozentsatz auf eine Dezimalstelle. b) erechnen Sie die Halbwertszeit der Substanz. Hinweis: Runden Sie das Ergebnis auf ganze Tage. c) Von der radioaktiven Substanz sind 00 g vorhanden. erechnen Sie, welche Menge nach 60 Tagen noch übrig ist. Hinweis: Runden Sie das Ergebnis auf ganze Gramm. d) Von welcher usgangsmenge wären nach 90 Tagen noch 15 g vorhanden? Hinweis: Runden Sie das Ergebnis auf ganze Gramm. 9. Die Grundfläche eines Kegels hat den Radius r 1 = cm. Seine Mantellinie s ist 10, cm lang. a) erechnen Sie die Gesamthöhe h K des Kegels in cm. α b) erechnen Sie die Größe des Winkels α in der Kegelspitze. Hinweis: Runden Sie auf ganze Grad. c) Der Kegel passt eakt über einen Zylinder mit dem Grundflächenradius r =,5 cm. Dabei berührt der Kegelmantel den Zylinder (siehe Skizze). Ermitteln Sie rechnerisch die Höhe h Z des Zylinders sowie dessen Mantelfläche. Hinweis: Rechnen Sie mit π =,1. h Z h K r r 1 s Während der Fußball-WM 010 in Südafrika tippte Krake Paul alle acht WM-Spiele der deutschen Mannschaft richtig. Dazu hatte er jeweils die Wahl zwischen gewinnen und verlieren. a) Wie lässt sich die Wahrscheinlichkeit dieser acht richtigen Tipps in Folge berechnen? Schreiben Sie die beiden richtigen ussagen auf Ihr Lösungsblatt. () 8 0,5 () 0,5 8 () 8! (D) 8 - (E) -8 (F) 8 b) Wie viele Möglichkeiten haben elf Fußballspieler, sich nebeneinander in verschiedener Reihenfolge aufzustellen?

5 5 ufgabengruppe II 1. Die P 1 (1 1) und P (8 1) liegen auf der Geraden g 1. a) erechnen Sie die Funktionsgleichung der Geraden g 1. b) erechnen Sie die Koordinaten des Schnittpunktes N von g 1 mit der -chse. Hinweis: Rechnen Sie mit g 1 : y =. c) Die Gerade g steht senkrecht auf g 1 und schneidet die -chse im Punkt Q (8 0). estimmen Sie die Funktionsgleichung der Geraden g. d) Überprüfen Sie rechnerisch, ob der Punkt (1,5) auf einer der beiden Geraden liegt. Hinweis: Rechnen Sie mit g : y = 0,5 +. e) erechnen Sie die Koordinaten des Schnittpunktes P der Geraden g 1 und g. f) Zeichnen Sie die beiden Geraden in ein Koordinatensystem mit der Längeneinheit 1 cm. 7. In einen Teppich, der,50 m lang und,50 m breit ist, sind farbige Streifen mit der reite eingearbeitet (siehe Skizze). Diese Streifen nehmen 0 % der gesamten Teppichfläche ein. erechnen Sie die reite. Hinweis: Runden Sie das Ergebnis auf ganze Zentimeter.,50 m,50 m 5. In Deutschland werden seit Jahren immer weniger Kinder geboren. Laut einer Untersuchung nimmt die Zahl der Menschen in der ltersgruppe von 0 bis 6 Jahren von 50 Millionen im Jahr 010 auf,5 Millionen im Jahr 00 ab. a) erechnen Sie die jährliche prozentuale bnahme dieser evölkerungsgruppe im genannten Zeitraum. Hinweis: Runden Sie den Prozentsatz auf eine Dezimalstelle. b) Um wie viel Prozent nimmt die Zahl der 0- bis 6-Jährigen von 010 bis 00 insgesamt ab? c) Die Zahl der unter 0-Jährigen betrug im Jahr , Millionen. Nach wie vielen Jahren wird ihre Zahl auf 1,9 Millionen gesunken sein, wenn man von einer jährlichen bnahme von 0,5 % ausgeht? Hinweis: Runden Sie das Ergebnis auf ganze Jahre.

6 6. Die Dreiecke und sind zueinander ähnlich. Der Streckungsfaktor k beträgt 1,5. 5 cm 50 cm 80 cm a) erechnen Sie den Umfang des Dreiecks. b) Das Originaldreieck hat einen Flächeninhalt von 1 7 cm². erechnen Sie den Flächeninhalt des ilddreiecks. 5. Die nach oben geöffnete Normalparabel p 1 hat den Scheitelpunkt S 1 ( ). a) Ermitteln Sie die Funktionsgleichung von p 1 in der Normalform. b) erechnen Sie die Koordinaten der Schnittpunkte N 1 und N der Parabel p 1 mit der -chse. Hinweis: Rechnen Sie mit p 1 : y = ² c) Die P (1 ) und Q ( 0) liegen auf der nach unten geöffneten Normalparabel p. Ermitteln Sie rechnerisch die Funktionsgleichung von p in der Normalform. d) erechnen Sie den Scheitelpunkt S der Parabel p. Hinweis: Rechnen Sie mit p : y = ² 6 8. e) erechnen Sie die Koordinaten der Schnittpunkte T 1 und T der Parabeln p 1 und p. f) Zeichnen Sie beide Parabeln p 1 und p in ein Koordinatensystem mit der Längeneinheit 1 cm Ein Rechteck und ein Dreieck (siehe Skizzen) haben jeweils einen Umfang von 17 cm. erechnen Sie die Seitenlängen und y des Rechtecks. + 1 y y +

7 7 7. Geben Sie den Definitionsbereich der folgenden ruchgleichung an und lösen Sie diese. 8 (1 05) ( 10) 5 10 ( 18) 8. Im rechtwinkligen Dreieck (siehe Skizze) stehen die Längen der Hypotenusenabschnitte D zu D im Verhältnis :. erechnen Sie die Größe des Winkels. Hinweis: Runden Sie Längen auf eine Dezimalstelle und Winkel auf ganze Grad. D 6 cm 9. Walter würfelt mit Würfeln gleichzeitig. Wie hoch ist die Wahrscheinlichkeit, dass beide Würfel die gleiche Zahl anzeigen? Übertragen Sie die beiden richtigen ussagen auf Ihr rbeitsblatt. () 6 1 () 6 1 () 6 1 (D) 6! (E) 16 % (F) Ein Kegel mit dem Grundflächenradius r = 1 cm und der Höhe h K = 0 cm wird zu einer Kugel umgeschmolzen. a) erechnen Sie den Radius r 1 dieser Kugel. Hinweis: Rechnen Sie mit =,1. Runden Sie das Ergebnis auf ganze Zentimeter. b) Eine andere Kugel mit dem Radius r hat einen Oberflächeninhalt von 5, cm². In welchem ganzzahligen Verhältnis stehen die Radien r 1 und r zueinander? Hinweis: Rechnen Sie mit =,1. Runden Sie das Ergebnis auf ganze Zentimeter.

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (24. Juni 2009 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (24. Juni 2009 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule bschlussprüfung zum Erwerb des Mittleren Schulabschlusses 009 (. Juni 009 von 8:0 bis 11:00 Uhr) M T H E M T I K ei der bschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK 10. KLSSE DER MITTELSHULE BSHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SHULBSHLUSSES 2012 MTHEMTIK am 20. Juni 2012 von 8:30 Uhr bis 11:00 Uhr Jeder Schüler muss e i n e von der Prüfungskommission ausgewählte

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK 22. Juni 2016 8:0 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses 0. Klasse der Haupt-/Mittelschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 0 Hinweise zur Auswahl, Korrektur und Bewertung der Prüfungsaufgaben Mathematik Nicht für den Prüfling bestimmt!

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2017 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2017 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 017 MATHEMATIK. Juni 017 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Nicht für den Prüfling bestimmt!

Nicht für den Prüfling bestimmt! 0. KLASSE DER MITTELSCHULE ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 0 MATHEMATIK 0. Juni 0 80 Uhr 00 Uhr Hinweise zu. Auswahl. Korrektur und Bewertung. Lösung der Prüfungsaufgaben Nicht

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 010 (3. Juni 010 von :30 bis 11:00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2017 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2017 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 07 MATHEMATIK. Juni 07 8:0 Uhr :00 Uhr Hinweise zur Durchführung, Korrektur und Bewertung (gemäß 9 MSO) Seite Allgemeiner Hinweis Auswahl der Aufgabengruppe

Mehr

10. Klasse der Hauptschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses

10. Klasse der Hauptschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses 0. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 009 Hinweise zur Auswahl, Korrektur und Bewertung der Prüfungsaufgaben Mathematik Nicht für den Prüfling bestimmt! Hinweise

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2, Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 0 MATHEMATIK. Juni 0 8:0 Uhr :00 Uhr Hinweise zur Durchführung, Korrektur und Bewertung (gemäß MSO) Seite Allgemeine Hinweise Auswahl der Aufgabengruppen und

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 05 MATHEMATIK. Juni 05 8:30 Uhr :00 Uhr Hinweise zur Durchführung, Korrektur und Bewertung (gemäß 6 MSO) Seite Allgemeine Hinweise Auswahl der Aufgabengruppen

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000 Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM THÜRINGER KULTUSMINISTERIUM Realschulabschluß 1997 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten. Zusätzlich zur Arbeitszeit werden 30 Minuten

Mehr

10. Klasse der Hauptschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses

10. Klasse der Hauptschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses 0. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 008 Hinweise zur Auswahl, Korrektur und Bewertung der Prüfungsaufgaben Mathematik Nicht für den Prüfling bestimmt! Hinweise

Mehr

4 x

4 x Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational

Mehr

Muster für den Schultest. Muster Nr. 1

Muster für den Schultest. Muster Nr. 1 GRUNDELEMENTE DER MATHEMATIK Boris Girnat Wintersemester 2005/06 Technische Universität Braunschweig Institut für Elementarmathematik und Didaktik der Mathematik Muster für den Schultest Dieser Blatt enthält

Mehr

Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7

Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7 Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7 Im Mathematikunterricht der Oberstufe muss man auf mathematisches Handwerkszeug aus der Sekundarstufe I zurückgreifen. Wir wollen deshalb deine

Mehr

Aufgabe W2a/2005 Eine Parabel hat die Gleichung 4 1. Durch den Scheitelpunkt der Parabel und durch den Punkt %6 5 geht die Gerade. Berechnen Sie die G

Aufgabe W2a/2005 Eine Parabel hat die Gleichung 4 1. Durch den Scheitelpunkt der Parabel und durch den Punkt %6 5 geht die Gerade. Berechnen Sie die G Dokument mit 10 Aufgaben Aufgabe W3a/2003 Die Normalparabel hat die Gleichung 4 6. Die Normalparabel ist nach unten geöffnet und hat den Scheitel 0 6. Durch die Schnittpunkte beider Parabeln verläuft die

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

1. Zeichnen Sie die Geraden g, h und k in ein rechtwinkliges Koordinatensystem. 2. Bestimmen Sie die Gleichungen der Geraden g, h und k.

1. Zeichnen Sie die Geraden g, h und k in ein rechtwinkliges Koordinatensystem. 2. Bestimmen Sie die Gleichungen der Geraden g, h und k. Zweijährige zur Prüfung der Fachschulreife führende Berufsfachschule (BFS) Mathematik (9) Hauptprüfung 007 Aufgaben Aufgabe A. Die Geraden g, h und k schneiden sich im Punkt P(,). Der Punkt Q(,) liegt

Mehr

m und schneidet die y-achse im Punkt P(0/3).

m und schneidet die y-achse im Punkt P(0/3). Aufgabe (Pflichtbereich 999) Eine Parabel hat die Gleichung y x 6x, 75. Bestimme rechnerisch die Koordinaten ihres Scheitelpunktes. Berechne die Entfernung des Scheitelpunktes vom Ursprung des Koordinatensystems.

Mehr

Lernrückblick. 1 a) Wenn ich eine Zeichnung maßstabsgerecht vergrößere/verkleinere, achte ich darauf, dass

Lernrückblick. 1 a) Wenn ich eine Zeichnung maßstabsgerecht vergrößere/verkleinere, achte ich darauf, dass Überlege mithilfe des s, ob du alles verstanden hast. 1 a) Wenn ich eine Zeichnung maßstabsgerecht vergrößere/verkleinere, achte ich darauf, dass b)* Wenn ich eine zentrische Streckung durchführe, gehe

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 04 MATHEMATIK 6. Juni 04 8:30 Uhr :00 Uhr Hinweise zur Durchführung, Korrektur und Bewertung (gemäß 64 MSO) Seite Allgemeine Hinweise Auswahl der Aufgabengruppen

Mehr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2017 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 29. Juni Platzziffer (ggf. Name/Klasse): Teil B

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2017 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 29. Juni Platzziffer (ggf. Name/Klasse): Teil B QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2017 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK 29. Juni 2017 Platzziffer (ggf. Name/Klasse): Teil B 9:10 Uhr 10:20 Uhr Die Benutzung von für den Gebrauch an

Mehr

Berufsmaturitätsprüfung 2013 Mathematik

Berufsmaturitätsprüfung 2013 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe 1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2004 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 24. Juni 2004 Prüfungsdauer: 09:00-12:00 Uhr Hilfsmittel:

Mehr

Berufsmaturitätsprüfung Mathematik

Berufsmaturitätsprüfung Mathematik Berufsmaturitätsprüfung 2006 - Mathematik Bedingungen o Die Prüfungsdauer beträgt 240 Minuten (ohne Pause) o Grundsätzlich müssen alle Aufgaben von Hand gelöst werden. Der Taschenrechner darf nur für arithmetische

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2011 MATHEMATIK. Teil B

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2011 MATHEMATIK. Teil B QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2011 BESONDERE LEISTUNGSFESTSTELLUNG AM 06.07.2011 Teil B: 9.10 Uhr bis 10.20 Uhr MATHEMATIK Teil B Bei Teil B der besonderen Leistungsfeststellung zum Erwerb des qualifizierenden

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2011 MATHEMATIK. Teil B

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2011 MATHEMATIK. Teil B QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2011 BESONDERE LEISTUNGSFESTSTELLUNG AM 06.07.2011 Teil B: 9.10 Uhr bis 10.20 Uhr MATHEMATIK Teil B Bei Teil B der besonderen Leistungsfeststellung zum Erwerb des qualifizierenden

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 60 Minuten

Mehr

Aufgaben I zur Vorbereitung der 2. Schulaufgabe

Aufgaben I zur Vorbereitung der 2. Schulaufgabe JT-Lauf 9d ufgaben I zur Vorbereitung der 2 Schulaufgabe 1 erechne jeweils, und z: (a) 8 z = 10 4 (b) 6 4 5 = z (a) = 10, = 4, 5, z = 20 (b) = 7, 5, = 2, z = 4, 5 2 erechne jeweils und : (a) (b) 2 5 4

Mehr

Die nach oben geöffnete Normalparabel verläuft durch die Punkte 1 5 und Die Parabel hat die Gleichung 2. Besitzen die beiden Parabeln

Die nach oben geöffnete Normalparabel verläuft durch die Punkte 1 5 und Die Parabel hat die Gleichung 2. Besitzen die beiden Parabeln Dokument mit 11 Aufgaben Aufgabe W3a/2010 Im Schaubild sind die Geraden und dargestellt. Entnehmen Sie zur Bestimmung ihrer Gleichungen geeignete Werte. Berechnen Sie die Koordinaten des Schnittpunkts

Mehr

BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.

BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen. BMS Mathematik T Abschlussprüfung_ Seite: /7 Abschlussprüfung Mathematik technische BMS Teil Prüfungsdauer 0 Minuten Der Teil der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.

Mehr

Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1

Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1 Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1 Freitag,. Oktober 015 Zeit : 90 Minuten Name :!!! Dokumentieren Sie alle Ansätze und Zwischenrechnungen!!! Teil

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2016/2017 MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2016/2017 MATHEMATIK Prüfungstag: 17. Mai 2017 (HAUPTTERMIN) Prüfungsbeginn: 08:00 Uhr BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2016/2017 MATHEMATIK Hinweise für die Teilnehmerinnen und Teilnehmer Bearbeitungszeit: 180 Minuten

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A1 Die nebenstehende Skizze dient als Vorlage für eine Pflanzschale. Sie zeigt den Axialschnitt ABCDEF eines Rotationskörpers mit der Rotationsachse KL. Es gilt: =1,4

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

Abschlussprüfung Name Klasse MATHEMATIK

Abschlussprüfung Name Klasse MATHEMATIK Gym Oberwil FMS Abteilung Abschlussprüfung 2012 Name Klasse MATHEMATIK Zeit Hilfsmittel 3 h Taschenrechner (nicht graphikfähig), Formelsammlung Verwenden Sie bitte für jede Aufgabe ein neues Blatt und

Mehr

Berechnung der Schnittpunkte durch Gleichsetzung. Bestimmung der Scheitelpunkte von und. Verdeutlichung der Situation durch ein Schaubild.

Berechnung der Schnittpunkte durch Gleichsetzung. Bestimmung der Scheitelpunkte von und. Verdeutlichung der Situation durch ein Schaubild. Lösung W3a/2010 Aufstellung der Geradengleichungen und. Schnittpunktberechnung von durch Gleichsetzung. Aufstellung der Parabelgleichung durch die Punkte und. Umstellung der allgemeinen Parabelgleichung

Mehr

Lösung Aufgabe P1: Abschlusspruefung Realschule Mathematik 2009 Loesung. 1 von Berechnung der Strecke : 2. Berechnung der Strecke :

Lösung Aufgabe P1: Abschlusspruefung Realschule Mathematik 2009 Loesung. 1 von Berechnung der Strecke : 2. Berechnung der Strecke : Lösung Aufgabe P1: 1. Berechnung der Strecke : 2. Berechnung der Strecke : Kosinusfunktion im gelben Dreieck 3. Berechnung der Strecke : 4. Berechnung der Dreiecksgrundseite : 1 von 47 5. Berechnung der

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 27. Juni :30 Uhr 10:20 Uhr. Teil B: 9:10 Uhr 10:20 Uhr.

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 27. Juni :30 Uhr 10:20 Uhr. Teil B: 9:10 Uhr 10:20 Uhr. QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2012 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK 27. Juni 2012 8:30 Uhr 10:20 Uhr Teil B: 9:10 Uhr 10:20 Uhr Teil B Jeder Schüler muss die z w e i von der Feststellungskommission

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:

Mehr

7 Aufgaben im Dokument. Aufgabe P5/2010

7 Aufgaben im Dokument. Aufgabe P5/2010 Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Realschulabschlussprüfung 2000 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle vier Aufgaben zu

Mehr

Mathematik Aufnahmeprüfung Aufgabe Summe Punkte

Mathematik Aufnahmeprüfung Aufgabe Summe Punkte Mathematik ufnahmeprüfung 2018 Lösungen ufgabe 1 2 4 5 6 7 8 9 10 11 12 Summe Punkte 4 4 4 4 4 4 2 4 4 4 ufgabe 1 Löse die Klammern auf und fasse so weit wie möglich zusammen: (a) ( 2) (7x ) =? (b) (x

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe.0 Die Punkte A(-/-5) und B(6/) sind Eckpunkte von Dreiecken ABC n. Die Punkte C n liegen auf der Parabel p mit der Gleichung y = 0,5x +.. Zeichne die Parabel p sowie das Dreieck

Mehr

Mathematik 9. Quadratische Funktionen

Mathematik 9. Quadratische Funktionen Mathematik 9 Funktionen Eine Zuordnung f, die jedem x einer Menge D (Definitionsmenge) genau ein Element y = f(x) einer Menge Z (Zielmenge) zuordnet, heißt Funktion. Dabei heißt y = f(x) Funktionswert

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

PARABELN. 10. Klasse

PARABELN. 10. Klasse PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 HUjmoellerowingen@aol.comU INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE

Mehr

'4% : '4% () trigonometrischer Flächeninhalt '4% 6,868 ()110,46 22,096

'4% : '4% () trigonometrischer Flächeninhalt '4% 6,868 ()110,46 22,096 Aufgabe W1a/2014 Im Rechteck sind gegeben: =6,8 =4,2 =25,0 = Berechnen Sie die Länge. Lösung: =5,8 Tipp: Kosinussatz für. Aufgabe W1b/2014 Gegeben ist das Dreieck. ist der Mittelpunkt von. Weisen Sie ohne

Mehr

Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Aufgabe W1b/2013. Aufgabe W2a/2013 =3 (3+ 3) =3,4

Aufgabe W1b/2013. Aufgabe W2a/2013 =3 (3+ 3) =3,4 Aufgabe W1a/2013 Im rechtwinkligen Dreieck liegt das gleichschenklige Dreieck. Es gilt =6,5 =51,2 = =3,5 Berechnen Sie den Winkel. Berechnen Sie den Umfang des Dreiecks. Tipp Sinussatz für Lösung =32,4

Mehr

Schriftliche Prüfung Schuljahr: 2007/2008 Schulform: Gesamtschule Grundkurs. Mathematik

Schriftliche Prüfung Schuljahr: 2007/2008 Schulform: Gesamtschule Grundkurs. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 007/008 Schulform: Gesamtschule Grundkurs Allgemeine Arbeitshinweise Die Prüfungszeit

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Arbeit A Seite 1 Mecklenburg - Vorpommern Realschulprüfung 1996 im Fach Mathematik Arbeit A Seite 2 Pflichtteil 1. Bei einer Geschwindigkeitskontrolle innerhalb einer Ortschaft durchfuhren die Meßstelle

Mehr

SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013

SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013 SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013 MATHEMATIK 5. März 2013 Prüfungsregion WEST Arbeitszeit:

Mehr

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden! Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:

Mehr

Abschlussprüfung 150 Minuten an den Realschulen in Bayern

Abschlussprüfung 150 Minuten an den Realschulen in Bayern Prüfungsdauer: Abschlussprüfung 150 Minuten an den Realschulen in Bayern 009 Mathematik II Nachtermin Aufgabe A 1 Name: Vorname: Klasse: Platzziffer: Punkte: A 1 Die nebenstehende Skizze zeigt den Axialschnitt

Mehr

Berufsmaturitätsprüfung 2006 Mathematik

Berufsmaturitätsprüfung 2006 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,

Mehr

Analysis 5.

Analysis 5. Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion

Mehr

Download. Hausaufgaben: Quadratische Funktionen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Quadratische Funktionen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Quadratische Funktionen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Quadratische Funktionen Üben in drei Differenzierungsstufen

Mehr

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d Dezember 2006 Quadratische Funktionen

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d Dezember 2006 Quadratische Funktionen Arbeitsblatt Mathematik Klasse 0d Dezember 006. Bestimme zu den vier Parabeln die zugehörigen Funktionsgleichungen.. Beschreibe den Verlauf der folgenden Funktionen. Benutze dabei folgende Begriffe: gestreckt

Mehr

Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2018 im Fach Mathematik. Dienstag, 8.

Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2018 im Fach Mathematik. Dienstag, 8. Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Familie Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 08 im Fach Dienstag,

Mehr

Mathematik Aufnahmeprüfung 2018

Mathematik Aufnahmeprüfung 2018 Mathematik Aufnahmeprüfung 2018 Zeit: 2 Stunden Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate

Mehr

Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion)

Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten

Mehr

Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion)

Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Mathematik, 2. Sekundarschule (Neues Lehrmittel, Erprobungsversion)

Mathematik, 2. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten

Mehr

Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1

Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1 BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1 Mathematik KandidatIn (Name, Vorname): Klasse BMS A 6 Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede vollständig

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

6,5 32,35 4,1165. = 3 : = 3 3,52,5964,116510,2125 Der Winkel ist 32,4 groß, der Umfang des Dreiecks beträgt 10,2 >.

6,5 32,35 4,1165. = 3 : = 3 3,52,5964,116510,2125 Der Winkel ist 32,4 groß, der Umfang des Dreiecks beträgt 10,2 >. Lösung W1a/2013 Berechnung im Dreieck über. Berechnung von im Dreieck über. Das Dreieck ist gleichschenklig, damit ist. Berechnung von über identisch mit ) Berechnung von im Dreieck über den. Berechnung

Mehr

Inhalt der Lösungen zur Prüfung 2005:

Inhalt der Lösungen zur Prüfung 2005: Inhalt der Lösungen zur Prüfung 005: Pflichtteil Wahlteil ufgabe W1 10 Wahlteil ufgabe W 14 Wahlteil ufgabe W3 18 Wahlteil ufgabe W4 3 Wichtige Hinweise zum opyright: Das Werk und seine Teile sind urheberrechtlich

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 08 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Hausaufgaben und Lösungen

Hausaufgaben und Lösungen Hausaufgaben und Lösungen Die folgenden Seiten sind nicht thematisch, sondern chronologisch geordnet. Die Lösungen der Hausaufgaben werden hier erst nach der Besprechung der Hausaufgaben veröffentlicht.

Mehr

Grundwissen 9. Klasse

Grundwissen 9. Klasse Grundwissen 9. Klasse ) Rationale und irrationale Zahlen Quadratwurzel b ist diejenige nichtnegative Zahl, die quadriert b ergibt: b b ( 5 ) 5 Die Zahl b heißt Radikand; b 0 : es gibt keine Quadratwurzel

Mehr

Schritt 1: Skizze anfertigen. Schritt 2: Volumenformel für das Prisma anwenden. M GYM K09 BY 3.KA ML Var1. Aufgabe 1

Schritt 1: Skizze anfertigen. Schritt 2: Volumenformel für das Prisma anwenden. M GYM K09 BY 3.KA ML Var1. Aufgabe 1 Aufgabe 1 Schritt 1: Skizze anfertigen Um dir besser vorstellen zu können, wie der Getränkekarton aussehen soll und wie die Abmessungen zusammenhängen, solltest du dir als allererstes eine saubere Skizze

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2017 im Fach Mathematik. Dienstag, 9.

Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2017 im Fach Mathematik. Dienstag, 9. Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Familie Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2017 im Fach

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für ildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 2002/2003 Schulform: llgemeine rbeitshinweise Von den folgenden ufgaben haben

Mehr

Aufgabenpool zur Quereinstiegsvorbereitung Q1

Aufgabenpool zur Quereinstiegsvorbereitung Q1 Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a

Mehr

Mecklenburg-Vorpommern

Mecklenburg-Vorpommern Mecklenburg-Vorpommern Schriftliche Prüfung 2006 Jahrgangsstufe 10 Gymnasium/Gesamtschule Mathematik Aufgaben Schriftliche Prüfung im Fach Mathematik 2006, Jahrgangsstufe 10, Gymnasium/Gesamtschule Seite

Mehr

und schneidet die -Achse im Punkt 0 3. Berechnen Sie die Koordinaten der Schnittpunkte von und. Lösung: 4 1;2 4

und schneidet die -Achse im Punkt 0 3. Berechnen Sie die Koordinaten der Schnittpunkte von und. Lösung: 4 1;2 4 7 Aufgaben im Dokument Aufgabe P5/2010 Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 204 athematik II usterlösung Prüfungsdauer: 50 inuten iese Lösung wurde erstellt von ornelia Sanzenbacher. Sie ist keine offizielle Lösung des ayerischen Staatsministeriums für Unterricht

Mehr

BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/6

BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/6 Aufgabe : BMS Mathematik T Abschlussprüfung_ Seite: / a) Bestimmen Sie die Funktionsgleichungen der folgenden Graphen..5P b) Bestimmen Sie die Funktionsgleichung der Umkehrfunktion f - () zur Funktion

Mehr

Technische Berufsmaturitätsprüfung Baselland 2008 Mathematik Teil 2 (Mit Hilfsmitteln)

Technische Berufsmaturitätsprüfung Baselland 2008 Mathematik Teil 2 (Mit Hilfsmitteln) NAME DES KANDIDATEN, DER KANDIDATIN: (IN BLOCKSCHRIFT) Prüfungsinformationen Teil 2 Dauer: 120 Minuten Folgende Hilfsmittel sind erlaubt: a) Netzunabhängiger Taschenrechner und Handbuch (kein Laptop).

Mehr

Download VORSCHAU. Hausaufgaben: Quadratische Funktionen. Üben in drei Diferenzierungsstufen. Otto Mayr. zur Vollversion

Download VORSCHAU. Hausaufgaben: Quadratische Funktionen. Üben in drei Diferenzierungsstufen. Otto Mayr. zur Vollversion Download Otto Mar Hausaufgaben: Quadratische Funktionen Üben in drei Diferenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Quadratische Funktionen Üben in drei Differenzierungsstufen

Mehr

Goethe-Gymnasium Bensheim Fachschaft Mathematik Hilde Zirkler Bensheim, im Juni 2007

Goethe-Gymnasium Bensheim Fachschaft Mathematik Hilde Zirkler Bensheim, im Juni 2007 Goethe-Gymnasium Bensheim Fachschaft Mathematik Hilde Zirkler Bensheim, im Juni 2007 Übergang Klasse 10 / Klasse 11 Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik 1. Lineare Funktionen

Mehr

Mathematik II Pflichtteil Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik II Pflichtteil Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 006 50 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Pflichtteil Nachtermin Aufgabe P Name: Vorname: Klasse: Platzziffer: Punkte: 3 P.0 Der Punkt A 3 3 4 liegt

Mehr

Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2

Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Seite http://www.realschulrep.de/ Seite 2 Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Aufgabe B2. Der Punkt A 2 2 ist gemeinsamer Eckpunkt von Rauten A B n C n D n. Die Eckpunkte B n 3 liegen auf

Mehr

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap =

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap = Wirtschaftswissenschaftliche Bücherei für Schule und Prais Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap = Die Verfasser: Kurt Bohner Oberstudienrat Dipl.-Phys. Dr. Peter Ihlenburg Oberstudienrat

Mehr