2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zwischen Mengen 2.4 Mengenoperationen

Save this PDF as:
Größe: px
Ab Seite anzeigen:

Download "2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zwischen Mengen 2.4 Mengenoperationen"

Transkript

1 2. Mengen 2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zischen Mengen 2.4 Mengenoperationen 2. Mengen GM 2-1

2 Wozu Mengen? In der Mathematik Au dem Mengenbegri kann man die gesamte Mathematik aubauen: Mengen, Relationen, Abbildungen, In der Inormatik Deinition: Ein Alphabet ist eine endliche, nichtleere Menge von Symbolen. Deinition: Ein endlicher Automat ist ein System A = (Σ, S, δ, s 0, F). Dabei ist Σ das Eingabealphabet und S die Zustandsmenge von A, s 0 S ist der Startzustand, F S die Menge der Endzustände und die Abbildung δ:s Σ S die Zustandsüberührungsunktion von A. 2. Mengen GM 2-2

3 Beispiele ür Mengen - Die Menge der Studierenden der Hochschule Trier - Die Menge der natürlichen Zahlen zischen 5 und 10: {6, 7, 8, 9} - Die Menge mit den Elementen Liebe, Gesetz und Schornsteineger - Die Menge der Symbole eines Alphabets - Die Menge der Zustände eines Automaten - Die Menge der Endzustände eines Automaten - Die Menge aller Polsterarben, die sich mit der Lackarbe Tieseeblau kombinieren lassen Lackarbe Kaskadenblau Floraviolett Glutrot Oasengrün Schneeeiß Vulkanrot Tieseeblau Dschungelgrün Meteorgrau Mondsilber 2. Mengen Polsterarbe Schieergrau Blauviolett Petrol Ziegelrot " " " " " " " " GM 2-3

4 Cantorsche Deinition einer Menge Unter einer Menge verstehen ir jede Zusammenassung M von bestimmten ohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (elche Elemente von M genannt erden) zu einem Ganzen. 2. Mengen GM 2-4

5 2.1 Beschreibung von Mengen Beschreibung durch Auzählung ihrer Elemente: M = { 5, 3, 11, 14 } N = { Liebe, Gesetz, Schornsteineger } O = { 1, blau, 2 } { 1, 3, 8 } = { 3, 8, 1 } 11 { 5, 3, 11, 14 } 12 { 5, 3, 11, 14 } Beschreibung durch eine charakteristische Eigenschat: M = { x x hat die Eigenschat E } x M genau dann, enn x die Eigenschat E hat. Beispiele: M = { x x =3 oder x=5 } (es gilt dann M = { 3, 5 } M = { x x IN und x>8 } IN = { 0, 1, 2, 3, } bezeichnet die Menge der natürlichen Zahlen. Statt M = { x x IN und x>8 } schreiben ir auch einacher M = { x IN x>8 } 2.1 Beschreibung von Mengen GM 2-5

6 Deinition 2.1.1: Leere Menge Ø = { x x x } heißt die leere Menge. Mengen können auch Mengen als Element enthalten: A = { 0, 1} B = { 1, 2, 3 } C = { A, B } D = { A, Ø, 5 } 2.1 Beschreibung von Mengen GM 2-6

7 Russelsche Antinomie M = { x x x } Dann ist x M genau dann, enn x x. Gilt M M? D.h. ist x=m auch in M als Element enthalten? Dann äre M M genau dann, enn M M. 2.1 Beschreibung von Mengen GM 2-7

8 Wen rasiert der Dorbarbier? Barbier: Ich rasiere alle die Leute im Dor, die sich nicht selber rasieren. Mathematiker: Rasieren Sie sich selbst? Barbier: Ja. Mathematiker: Das kann nicht sein, denn Sie rasieren nur die, die sich nicht selber rasieren. Barbier: Also nein. Mathematiker: Das kann auch nicht sein, denn Sie rasieren alle Beohner des Dores, die sich nicht selber rasieren. 2.1 Beschreibung von Mengen GM 2-8

9 2.2 Formale Logik Wahrheitserte Logische Verknüpungen Tautologien Quantoren 2.2 Formale Logik GM 2-9

10 Mehrdeutigkeiten bei und und oder Heiner ist krank und es regnet. Heiner urde krank und der Arzt verordnete eine Medizin. Der Arzt verordnete eine Medizin und Heiner urde krank. Hände hoch, oder ich schieße! Die Ausuhr von Gold oder Edelsteinen ist verboten. Welche Polsterarben lassen sich mit der Lackarbe Tieseeblau oder Dschungelgrün kombinieren? Lackarbe Kaskadenblau Floraviolett Glutrot Oasengrün Schneeeiß Vulkanrot Tieseeblau Dschungelgrün Meteorgrau Mondsilber 2.2 Formale Logik Polsterarbe Schieergrau Blauviolett Petrol Ziegelrot " " " " " " " " GM 2-10

11 Anendung ormaler Logik Wissensbasierte Systeme Wissensbasis Inerenzmaschine Benutzungsschnittstelle Shell 2.2 Formale Logik GM 2-11

12 Deinition 2.2.1: Logische Verknüpungen Aussagen können die Wahrheitserte (ahr) oder (alsch) annehmen. Durch olgende Wahrheitstaeln deinieren ir Verknüpungen von Aussagen P und Q: Negation (nicht P) Konjunktion (P und Q) Disjunktion (P oder Q) P P P Q P Q P Q P Q Übungsaugabe Implikation (enn P, dann Q) Äquivalenz (Q genau dann, enn P) P Q P Q P Q P Q 2.2 Formale Logik GM 2-12

13 Deinition 2.2.2: Tautologie Eine aussagenlogische Formel mit den Aussagenvariablen P, Q, R,... heißt allgemeingültig (oder Tautologie), enn bei jeder Zuordnung (Belegung) von Wahrheitserten zu P, Q, R,... die Formel den Wahrheitsert annimmt. 2.2 Formale Logik GM 2-13

14 Satz 2.2.1: Tautologien Es seien P, Q und R Aussagenvariablen. Dann sind die olgenden aussagenlogische Formeln allgemeingültig: a) P (P Q) b) (P Q) P c) ((P Q) (Q R)) (P R) (modus barbara) d) (P (P Q)) Q (modus ponens) e) ((P Q) Q) P (modus tollens) ) ((P Q) ) (P Q) (indirekter Beeis) Übungsaugabe Formale Logik GM 2-14

15 Deinition 2.2.3: Äquivalenz von Formeln Zei aussagenlogische Formeln mit den Aussagenvariablen P, Q, R,... heißen äquivalent, enn bei jeder Zuordnung (Belegung) von Wahrheitserten zu P, Q, R,... beide Formeln den gleichen Wahrheitsert haben. Wir drücken dies durch das Zeichen aus. 2.2 Formale Logik GM 2-15

16 Satz 2.2.2: Gesetze der Aussagenlogik Es gelten olgende Äquivalenzen aussagenlogischer Formeln: P Q Q P P Q Q P P (Q R) (P Q) (P R) P (Q R) (P Q) (P R) P P P P P P P P Kommutativität Distributivität neutrale Elemente Komplement Übungsaugabe Formale Logik GM 2-16

17 Satz 2.2.3: eitere Gesetze der Aussagenlogik Es gelten olgende Äquvalenzen aussagenlogischer Formeln: P P P P P P P P P (P Q) P P (P Q) P P (Q R) (P Q) R P (Q R) (P Q) R (P Q) P Q (P Q) P Q ( P) P Idempotenz Absorption Assoziativität De Morgansche Gesetze 2.2 Formale Logik GM 2-17

18 Deinition 2.2.4: Aussageorm und Quantoren Ersetzt man in einer Aussage P irgendeine Konstante durch eine Variable x, so entsteht eine Aussageorm P(x). Die Aussage Für alle x M gilt P(x) ist ahr genau dann, enn P(x) ür alle x M ahr ist. Abkürzend schreibt man ür diese Aussage x M: P(x) Die Aussage Es gibt ein x M, sodass P(x) ist ahr genau dann, enn P(x) ür mindestens ein x M ahr ist. Abkürzend schreibt man ür diese Aussage x M: P(x) 2.2 Formale Logik GM 2-18

19 Satz 2.2.4: Rechenregeln ür Quantoren Für Ausageormen P(x) und Q(x) gelten olgende Äquvalenzen: x: P(x) x: P(x) x: P(x) x: P(x) ( x: P(x) x: Q(x)) x: P(x) Q(x) ( x: P(x) x: Q(x)) x: P(x) Q(x) Übungsaugabe Formale Logik GM 2-19

20 Beschreibung der Eigenschaten einer Menge Mit den Verknüpungen der Formalen Logik können ir die Eigenschaten der Elemente einer Menge präziser ormulieren: Beispiele: M = { x x=3 x=5 }= { 3, 5 } M = { x x IN x>8 } = { 9, 10, 11, 12, } M = { x IN x<8 (x=5) } = { 0, 1, 2, 3, 4, 6, 7 } M = { x IN y IN: x=3y } = { 0, 3, 6, 9, } Übungsaugaben bis Formale Logik GM 2-20

21 2.3 Beziehungen zischen Mengen Teilmengen Gleichheit von Mengen Potenzmengen 2.3 Beziehungen zischen Mengen GM 2-21

22 Deinition 2.3.1: Teilmenge Es seien A und B Mengen. A heißt Teilmenge von B, geschrieben A B, alls ür alle x gilt: x A x B. B x A Übungsaugabe Beziehungen zischen Mengen GM 2-22

23 Deinition 2.3.2: Gleichheit von Mengen Es seien A und B Mengen. A und B sind gleich, geschrieben A=B, alls A B und B A. Für (A=B) schreiben ir ie üblich A B. Übungsaugabe Beziehungen zischen Mengen GM 2-23

24 Deinition 2.3.3: Echte Teilmenge Es seien A und B Mengen. A heißt echte Teilmenge von B, geschrieben A B, alls A B und A B. Übungsaugaben und Beziehungen zischen Mengen GM 2-24

25 Deinition 2.3.4: Potenzmenge Es sei M eine Menge. P (M) = { A A M } heißt Potenzmenge von M. Übungsaugabe Beziehungen zischen Mengen GM 2-25

26 2.4 Mengenoperationen Vereinigung Durchschnitt Dierenz Komplement 2.4 Mengenoperationen GM 2-26

27 Deinition 2.4.1: Vereinigung Seien A und B Mengen. A B = { x x A x B } heißt Vereinigung von A und B. A B A B 2.4 Mengenoperationen GM 2-27

28 Satz 2.4.1: Gesetze der Vereinigung Seien A und B Mengen. Dann gilt: a) A B = B A (Kommutativität) b) A Ø = A c) A A B d) A B A B = B Übungsaugabe Mengenoperationen GM 2-28

29 Deinition 2.4.2: Durchschnitt Seien A und B Mengen. A B = { x l x A x B } heißt Durchschnitt von A und B. A A B B 2.4 Mengenoperationen GM 2-29

30 Satz 2.4.2: Gesetze des Durchschnitts Seien A und B Mengen. Dann gilt: a) A B = B A (Kommutativität) b) A Ø = Ø c) A B A d) A B A B = A Übungsaugaben und Mengenoperationen GM 2-30

31 Satz 2.4.3: Distributivgesetze Seien A, B und C Mengen. Dann gilt: a) A (B C) = (A B) (A C) b) A (B C) = (A B) (A C) Übungsaugabe Mengenoperationen GM 2-31

32 Deinition 2.4.3: Dierenz Seien A und B Mengen. A\B = { x l x A x B } heißt Dierenz von A und B oder auch A ohne B. A B A\B Übungsaugabe Mengenoperationen GM 2-32

33 Deinition 2.4.4: Komplement Sei A Teilmenge der Grundmenge G. A = G \ A heißt Komplement von A bezüglich G. G A A 2.4 Mengenoperationen GM 2-33

34 Satz 2.4.4: Komplement Sei A Teilmenge der Grundmenge G. Dann gilt: a) A A = Ø b) A A = G Übungsaugabe Mengenoperationen GM 2-34

35 Satz 2.4.5: Gesetze der Mengenoperationen Es seien A, B und C Teilmengen der Grundmenge G. Dann gilt: A B = B A A B = B A A (B C) = (A B) (A C) A (B C) = (A B) (A C) A G = A A Ø = A A A = Ø A A = G Kommutativität Distributivität neutrale Elemente Komplement 2.4 Mengenoperationen GM 2-35

36 Satz 2.4.6: eitere Gesetze der Mengenoperationen Es seien A, B und C Teilmengen der Grundmenge G. Dann gilt: A A = A A A = A A Ø = Ø A G = G A (A B) = A A (A B) = A A (B C) = (A B) C A (B C) = (A B) C A B = A B A B = A B Idempotenz Absorption Assoziativität De Morgansche Gesetze A = A Ø = G G = Ø 2.4 Mengenoperationen GM 2-36

In der Mathematik. In der Informatik. 2. Mengen. Wozu Mengen?

In der Mathematik. In der Informatik. 2. Mengen. Wozu Mengen? 2. Mengen Wozu Mengen? 2.3 Beziehungen zischen Mengen In der Mathematik u dem Mengenbegri kann man die gesamte Mathematik aubauen: Mengen, Relationen, bbildungen, In der Inormatik Deinition: Ein lphabet

Mehr

4 Logik 4.1 Aussagenlogik

4 Logik 4.1 Aussagenlogik 4 Logik 4.1 Aussagenlogik Mod - 4.1 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder alsch angesehen erden können. z. B.: Es regnet.,

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP2 Slide 1 Grundlagen der Programmierung Vorlesung 2 Sebastian Ianoski FH Wedel GdP2 Slide 2 Beispiel ür eine Programmveriikation Gegeben sei olgender Algorithmus: i (x>0) ((y+x) 0) then z := x y else

Mehr

4 Logik 4.1 Aussagenlogik

4 Logik 4.1 Aussagenlogik 4 Logik 4.1 Aussagenlogik Mod - 4.1 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder alsch angesehen erden können. z. B.: Es regnet.,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie 1 Grundlagen der Theoretischen Inormatik Sebastian Ianoski FH Wedel Kap. 2: Logik, Teil 2.1: Aussagenlogik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie

Mehr

4. Abbildungen. Was ist eine Abbildung? Eigenschaften: injektiv surjektiv bijektiv Umkehrabbildung. Rolf Linn. 4. Abbildungen GM 4-1

4. Abbildungen. Was ist eine Abbildung? Eigenschaften: injektiv surjektiv bijektiv Umkehrabbildung. Rolf Linn. 4. Abbildungen GM 4-1 4. bbildungen Was ist eine bbildung? Eigenschaften: injektiv surjektiv bijektiv Umkehrabbildung 4. bbildungen GM 4-1 Wozu bbildungen? In der Mathematik In fast allen Gebieten der Mathematik spielen bbildungen

Mehr

Logische Äquivalenz. Definition Beispiel 2.23

Logische Äquivalenz. Definition Beispiel 2.23 Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt

Mehr

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge Mengenlehre Grundbegriff ist die Menge Definition (Naive Mengenlehre). Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung

Mehr

5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren

5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren 5. Algebra 5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren 5. Algebra GM 5-1 Black Box Allgemein ist eine Black Box ein Objekt, dessen innerer Aufbau und

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 1: Grundlagen der Mathematik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 1: Grundlagen der Mathematik. Referenzen zum Nacharbeiten: FH Wedel Pro. Dr. Sebastian Ianoski DM1 Folie 1 Diskrete Mathematik Sebastian Ianoski FH Wedel Kapitel 1: Grundlagen der Mathematik Reerenzen zum Nacharbeiten: Lang 1, 2.1 Meinel 1 Dean 3, 4 Hachenberger

Mehr

Grundbegriffe aus Logik und Mengenlehre

Grundbegriffe aus Logik und Mengenlehre Prof. Dr. B. Niethammer Dr. C. Seis, R. Schubert Institut fr Angewandte Mathematik Universitt Bonn Grundbegriffe aus Logik und Mengenlehre Wir wollen im Folgenden eine kurze Einführung in die Grundbegriffe

Mehr

Diskrete Mathematik Referenzen zum Nacharbeiten:

Diskrete Mathematik Referenzen zum Nacharbeiten: DM1 Slide 1 Diskrete Mathematik Sebastian Ianoski FH Wedel Kapitel 1: Grundlagen der Mathematik Reerenzen zum Nacharbeiten: Lang 1, 2.1 Meinel 1 DM1 Slide 2 Inhaltlicher Umang dieser Vorlesung Inhaltliche

Mehr

3. Logik 3.1 Aussagenlogik

3. Logik 3.1 Aussagenlogik 3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es

Mehr

Informationsgewinnung

Informationsgewinnung Agenda ür heute, 9. Januar 27 ETH-Bibliothek Logische Verknüpungen als Grundlage ür die Inormationsgeinnung Vortrag von rau E. Benninger Grösste Bibliothek der Scheiz Scherpunkte im Bereich des elektronischen

Mehr

Diskrete Strukturen. Vorlesung 3: Naive Mengenlehre. 30. Oktober 2018

Diskrete Strukturen. Vorlesung 3: Naive Mengenlehre. 30. Oktober 2018 Diskrete Strukturen Vorlesung 3: Naive Mengenlehre 30. Oktober 2018 2 Organisation Prüfung: vorauss. am Freitag, den 22. Februar 2019 von 10 11 Uhr im AudiMax, HS 3, HS 9 Abmeldungen noch bis zum 12. Januar

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Aufgabe 1. n b i i i i i 1 i 1. log( a ) b log a, a 0. n b b b b. log( a ) log a a... a. i 1 2 n. i 1 2 n. log( a ) log a log a...

Aufgabe 1. n b i i i i i 1 i 1. log( a ) b log a, a 0. n b b b b. log( a ) log a a... a. i 1 2 n. i 1 2 n. log( a ) log a log a... Augabe 1 n n b i i i i i 1 i 1 i log( a ) b log a, a 0 n i 1 b b b b i 1 n log( a ) log a a... a n i 1 n b b b b i 1 n log( a ) log a log a... log a i 1 n i 1 n i log( a ) b log a b log a... b log a i

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

5. AUSSAGENLOGIK: SEMANTIK

5. AUSSAGENLOGIK: SEMANTIK 5. AUSSAGENLOGIK: SEMANTIK 5.1 Charakteristische Wahrheitstaeln 5.2 Wahrheitsertzuordnung I 5.3 Die Konstruktion von Wahrheitstaeln 5.4 Wahrheit und Falschheit unter einer Wahrheitsertzuordnung 5.5 Wahrheitsbedingungen

Mehr

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =? Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3.

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3. 3. Relationen 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen 3. Relationen GM 3-1 Wozu Relationen? Mathematik Theoretische Informatik Kryptographie

Mehr

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000 Gliederung Mengen und operationen Relationen Funktionen Kardinalität von Mengen Mengen, Relationen, Funktionen 1 Mengen Definition (Naive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Ronja Düffel WS2018/19 01. Oktober 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis der

Mehr

Was bisher geschah Klassische Aussagenlogik zur Modellierung von Aussagen Syntax: Formeln

Was bisher geschah Klassische Aussagenlogik zur Modellierung von Aussagen Syntax: Formeln Was bisher geschah Klassische Aussagenlogik zur Modellierung von Aussagen Syntax: Formeln induktive Definition der Menge AL(P) (Baumstruktur) strukturelle Induktion (Funktionen, Nachweise) syntaktische

Mehr

Was bisher geschah. Klassische Prädikatenlogik (der ersten Stufe): Syntax Modellierungsbeispiele

Was bisher geschah. Klassische Prädikatenlogik (der ersten Stufe): Syntax Modellierungsbeispiele Was bisher geschah Klassische Aussagenlogik zur Modellierung von Aussagen Syntax: induktive Definition der Menge AL(P) (Baumstruktur) strukturelle Induktion (Funktionen, Nachweise) Semantik: Belegungen

Mehr

Vorlesung 3: Logik und Mengenlehre

Vorlesung 3: Logik und Mengenlehre 28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung

Mehr

Aussagen Interpretation Verknüpfen von Aussagen Tautologie und Widerspruch Äquivalenz

Aussagen Interpretation Verknüpfen von Aussagen Tautologie und Widerspruch Äquivalenz Aussagenlogik Aussagen Interpretation Verknüpen von Aussagen Tautologie und Widerspruch Äquivalenz Aussagen Aussagen Eine Aussage ist ein Satz, dem sich ein eindeutiger Wahrheitsert ahr (kurz bz. 1) oder

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Aussagen Begriff Aussage: Ausdruck, welcher entweder wahr oder falsch ist e Die RWTH Aachen hat

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M.

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M. Mengenlehre Eine Menge ist eine Zusammenfassung bestimmter und unterschiedlicher Objekte. Für jedes Objekt lässt sich eindeutig sagen, ob es zu der Menge gehört. Die Objekte heißen Elemente der Menge.

Mehr

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus: Karlhorst Meyer Formallogik Die Umgangssprache ist für mathematische Bedürfnisse nicht exakt genug. Zwei Beispiele: In Folge können u. U. Beweise, die in Umgangssprache geschrieben werden, nicht vollständig,

Mehr

Brückenkurs Mathematik 2018

Brückenkurs Mathematik 2018 Mathematik 2018 1. Vorlesung Logik, Mengen und Funktionen Prof. Dr. 24. September 2018 Ich behaupte aber, dass in jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könne,

Mehr

Grundbegriffe Mengenlehre und Logik

Grundbegriffe Mengenlehre und Logik Grundbegriffe Mengenlehre und Logik Analysis für Informatiker und Lehramt Mathematik MS/GS/FS WS 2016/2017 Agnes Radl Mengen Georg Cantor (1895) Unter einer Menge verstehen wir jede Zusammenfassung M von

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

Einführung in die Semantik, 5. Sitzung Aussagenlogik

Einführung in die Semantik, 5. Sitzung Aussagenlogik Einführung in die, 5. Sitzung Aussagenlogik Göttingen 9. November 2006 Aussagenlogik Warum die formalen Sprachen der Logik? formale Sprachen haben wie jede Sprache ein Vokabular, eine und eine. Die Relation

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker 1 2 Mengen, Relationen, Funktionen 2.1 Mengen Definition 2.1 [Georg Cantor 1895] Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

Analyis I - Grundlagen

Analyis I - Grundlagen Elementare Aussagenlogik October 23, 2008 Elementare Aussagenlogik Definition Eine Aussage im Sinne der Aussagenlogik ist eine sprachliche Aussage, bei der klar entschieden werden kann, ob sie wahr oder

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches

Mehr

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein Mengen 1.2 9 1.2 Mengen 7 Der Begriff der Menge wurde am Ende des 19. Jahrhunderts von Georg Cantor wie folgt eingeführt. Definition (Cantor 1895) Eine Menge ist eine Zusammenfassung M von bestimmten,

Mehr

falsch zugelassen. Als typische Bezeichnungen für Aussagen verwenden wir Buchstaben A, B, C,..., für die Wahrheitswerte wahr und f für falsch.

falsch zugelassen. Als typische Bezeichnungen für Aussagen verwenden wir Buchstaben A, B, C,..., für die Wahrheitswerte wahr und f für falsch. 1 Elementare Logik 1. Aussagenlogik Unter einer Aussage verstehen ir einen grammatikalisch korrekten Satz, dem ein Wahrheitsert zugeiesen erden kann. Als Wahrheitserte sind dabei ausschließlich ahr und

Mehr

2.3 Deduktiver Aufbau der Aussagenlogik

2.3 Deduktiver Aufbau der Aussagenlogik 2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte

Mehr

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1 5 Logik, Teil 1 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 5: Logik, Teil 1 1 Aussagenlogik Rechnen mit Wahrheitswerten: true und false Kap. 5: Logik, Teil 1 2 Aussagenlogik Rechnen

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil III) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Vereinigung und Durchschnitt über Mengenfamilien Gesetze 1 Gesetze für Operationen

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

Mathematische Grundlagen der Computerlinguistik I. Mengen und Mengenoperationen (Teil 1)

Mathematische Grundlagen der Computerlinguistik I. Mengen und Mengenoperationen (Teil 1) Mathematische Grundlagen der Computerlinguistik I Mengen und Mengenoperationen (Teil 1) Exzerpt aus dem Skript von Prof. Dr. Klaus U. Schulz Michaela Geierhos M.A. Centrum für Informations- und Sprachverarbeitung

Mehr

Der Kalkül der Mengen. Die Sprache der Mathematik 1 / 68

Der Kalkül der Mengen. Die Sprache der Mathematik 1 / 68 Der Kalkül der Mengen Die Sprache der Mathematik 1 / 68 Präzise beschreiben und argumentieren: Aber wie? In welcher Sprache sollten wir versuchen, komplexe Sachverhalte vollständig und eindeutig zu beschreiben?

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau 2. Vorlesung Roland Gunesch Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 1 / 21 Themen heute 1

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Grundlagen der theoretischen Informatik

Grundlagen der theoretischen Informatik Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 09.04.2013 Inhalt der Vorlesung Teil I: Automaten und formale Sprachen (Kurt Sieber)

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 14. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 14. Dezember 2016 Die formale Sprache der Prädikatenlogik: Zeichen Benutzt werden

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 5. September 2011 Definition (Menge) Wir verstehen unter einer Menge eine Zusammenfassung von unterscheidbaren Objekten zu einem

Mehr

Vereinbarte Schreibweisen in der Mathematik am Kranich-Gymnasium

Vereinbarte Schreibweisen in der Mathematik am Kranich-Gymnasium Gt: Vereinbarte mathematische Schreibweisen laut Fachkonerenzbeschlüssen Stand:..6 Vereinbarte Schreibweisen in der Mathematik am Kranich-Gymnasium Mengen Kurz und knapp Mengen Will man ausdrücken, dass

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016.

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016. Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Mengen, Logik. Jörn Loviscach. Versionsstand: 17. Oktober 2009, 17:42

Mengen, Logik. Jörn Loviscach. Versionsstand: 17. Oktober 2009, 17:42 Mengen, Logik Jörn Loviscach Versionsstand: 17. Oktober 2009, 17:42 1 Naive Mengenlehre Mengen sind die Grundlage fast aller mathematischen Objekte. Ob die Zahl 7, ein Kreis in der Ebene, die Relation

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

1 Einführung Aussagenlogik

1 Einführung Aussagenlogik 1 Einführung Aussagenlogik Denition 1. Eine Aussage ist ein Aussagesatz, der entweder wahr oder falsch ist. Welche der folgenden Sätze ist eine Aussage? 3+4=7 2*3=9 Angela Merkel ist Kanzlerin Stillgestanden!

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B

Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B Zusammenfassung der letzten LVA Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Fakt Korrektheit dieser Schlussfigur ist unabhängig von den konkreten Aussagen Einführung

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK Rückblick: Logelei Wir kehren zurück auf das Inselreich mit Menschen von Typ W (Wahrheitssager) und Typ L (Lügner). THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen

Mehr

Diskrete Strukturen WS 2018/19. Gerhard Hiß RWTH Aachen

Diskrete Strukturen WS 2018/19. Gerhard Hiß RWTH Aachen Diskrete Strukturen WS 2018/19 Gerhard Hiß RWTH Aachen Erster Teil: Grundlagen Kapitel 1, Mathematische Grundbegriffe 1.1 Aussagen Begriff (Aussage) Sprachlicher Ausdruck, welcher entweder wahr oder falsch

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 2: Logik 1 Prädikatenlogik (Einleitung) 2 Aussagenlogik Motivation Grundlagen Eigenschaften Eigenschaften Normalformen

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 1

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 1 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr