Kompetenzraster Geometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kompetenzraster Geometrie"

Transkript

1 Mathebox 6 I Themenbereich 3 Kompetenzraster Geometrie Eigenschaften von Vierecken und Dreiecken finden Einfachen Anwendungsaufgaben Vierecken lösen unterscheiden Symmetrieachsen in Vierecken und Dreiecken finden und einzeichnen Anspruchsvolle Anwendungsaufgaben Vierecken und Dreiecken lösen Massstab Verhältnis von Vergrösserungen und Verkleinerungen Vorgegebene Figuren vergrössern und verkleinern Strecken im Massstab umrechnen Einfache Anwendungsaufgaben Massstab lösen Grosse Massstäbe umrechnen Pläne lesen und im Massstab umrechnen Umfang und Fläche Aussagen zu Flächenmassen beurteilen Flächen berechnen Flächeninhalte schätzen Flächeninhalt und Umfang berechnen Flächeninhalt und Umfang von einfachen und zusammengesetzten Rechtecken berechnen Anspruchsvolle Anwendungsaufgaben Flächeninhalten und Umfang lösen Parallele Linien Voraussetzung: Geraden Geodreieck und Massstab parallel verschieben können Parallelen und Senkrechte einzeichnen und beschriften Parallelen in Körpern Parallelen gleichem Abstand einzeichnen Geraden, Parallelen und Senkrechte beschriften und protokollieren Figuren parallel verschieben Einfache Anwendungsaufgaben Parallelen und Senkrechten lösen In anspruchsvollen Anwendungsaufgaben Geraden, Parallelen und Senkrechte konstruieren

2 37 Umfang und Fläche berechnen Berechne den Umfang und den Flächeninhalt der Figuren. 3 m 35 cm 20 mm 1 km 40 cm 45 mm 4 km 6 m 2 10 m 4 m 5m 6 km 24 km 18 km 45 m

3 38 Lösung Umfang und Fläche berechnen Berechne den Umfang und den Flächeninhalt der Figuren. 3 m 35 cm 20 mm 1 km 40 cm 45 mm 4 km 6 m 2 10 m cm cm 900 mm 2 1m 4 km 2 10 km 4 m 5m 6 km 24 km 18 km 17 m 2 24 m 912 cm cm 45 m 504 km km m mm

4 39 Zum Knobeln Löse das Arbeitsblatt. Bestimme bei den nächsten 4 Aufgaben die Längen-, Breitenseite sowie den Umfang und die Fläche. 6cm 2 cm Beim ursprünglichen Rechteck wird die Breitenseite halbiert. Beim ursprünglichen Rechteck wird die Längenseite verdoppelt. Beim ursprünglichen Rechteck wird die Breitenseite um ½ vergrössert und die Längenseite um ½ halbiert. Beim ursprünglichen Rechteck werden die Längen- und Breitenseite um 3 cm verlängert. b = l = b = l = b = l = b = l = Die nächsten Aufgaben haben keinen Bezug zum obigen Rechteck! Ein Rechteck hat einen Umfang von 110 cm. Es ist 4-mal so lang wie breit. Wie gross ist die Fläche? Ein Quadrat hat eine Fläche von 16 km 2. Wie viel mal kleiner ist die Fläche, wenn die Seitenlänge halbiert wird? Ein Quadrat hat die Fläche von 169 cm 2. Berechne die Länge und Breite für ein flächengleiches Rechteck dem grösstmöglichen Umfang. Ein Rechteck hat einen Umfang von 84 m. Bestimme die Breite des Rechtecks. Der Flächeninhalt sollte so klein wie möglich sein. Gegebenen ist ein Rechteck der Länge 40 km. Verdopple ich die Breite, beträgt die Fläche km 2. Wie gross ist der Umfang des ursprünglichen Rechtecks?

5 40 Lösung Zum Knobeln Löse das Arbeitsblatt. Bestimme bei den nächsten 4 Aufgaben die Längen-, Breitenseite sowie den Umfang und die Fläche. 6cm 2 cm Beim ursprünglichen Rechteck wird die Breitenseite halbiert. Beim ursprünglichen Rechteck wird die Längenseite verdoppelt. Beim ursprünglichen Rechteck wird die Breitenseite um ½ vergrössert und die Längenseite um ½ halbiert. Beim ursprünglichen Rechteck werden die Längen- und Breitenseite um 3 cm verlängert. b = 1 cm 6 cm 2 l = 6 cm 14 cm b = 2 cm 24 cm 2 l = 12 cm 2 b = 3 cm 9 cm 2 l = 3 cm 12 cm b = 5 cm 45 cm 2 l = 9 cm 2 Die nächsten Aufgaben haben keinen Bezug zum obigen Rechteck! Ein Rechteck hat einen Umfang von 110 cm. Es ist 4-mal so lang wie breit. Wie gross ist die Fläche? 484 cm 2 11 cm 44 cm Ein Quadrat hat eine Fläche von 16 km 2. Wie viel mal kleiner ist die Fläche, wenn die Seitenlänge halbiert wird? Ein Quadrat hat die Fläche von 169 cm 2. Berechne die Länge und Breite für ein flächengleiches Rechteck dem grösstmöglichen Umfang. viermal kleiner Breite 1 cm Länge 169 cm Ein Rechteck hat einen Umfang von 84 m. Bestimme die Breite des Rechtecks. Der Flächeninhalt sollte so klein wie möglich sein. Breite Länge 4 Gegebenen ist ein Rechteck der Länge 40 km. Verdopple ich die Breite, beträgt die Fläche km 2. Wie gross ist der Umfang des ursprünglichen Rechtecks? 1

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 4x4-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

8 Flächeninhalt berechnen

8 Flächeninhalt berechnen 8 Flächeninhalt berechnen Auftaktseiten Seiten 196, 197 Seite 196 1 Das große Quadrat hat eine Seitenlänge von 1 cm. 2 Beim Zusammenlegen hilft das Material im Schnittpunkt-Code: Dort befinden sich die

Mehr

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler Nr. 1 des s (1. Halbjahr) Thema: Zahlen Zahl der Unterrichtsstunden: 5 Wochen stellen im Bereich Arithmetik/Algebra natürliche Zahlen dar (Zifferndarstellung, Stellenwerttafel, Wortform, Zahlenstrahl),

Mehr

Download. Mathematik üben Klasse 8 Fläche und Umfang. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Fläche und Umfang. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Fläche und Umfang Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Fläche und

Mehr

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung?

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? 1 Finde möglichst viele Gemeinsamkeiten und Unterschiede der folgenden Abbildungen.

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Zentrische Streckung. Station 4. Aufgabe (R) Name: Ähnlichkeit, Strahlensätze. Führe eine zentrische Streckung durch. Beachte den Streckungsfaktor k.

Zentrische Streckung. Station 4. Aufgabe (R) Name: Ähnlichkeit, Strahlensätze. Führe eine zentrische Streckung durch. Beachte den Streckungsfaktor k. Ähnlichkeit, Strahlensätze Station 4 Zentrische Streckung Aufgabe (R) Führe eine zentrische Streckung durch. Beachte den Streckungsfaktor k. a) k = 1,5 Z b) k = 0,5 Z c) k = 2,1 Z 12 Station 5 Aufgabe

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Konstruiere ein Rechteck mit den gegebenen Seitenlängen! Zeichne die beiden Diagonalen ein und miss ihre Länge! a = 84 mm, b = 35 mm.

Konstruiere ein Rechteck mit den gegebenen Seitenlängen! Zeichne die beiden Diagonalen ein und miss ihre Länge! a = 84 mm, b = 35 mm. 1 Rechteck und Quadrat Eigenschaften und Bezeichnungen Die Ecken werden gegen den Uhrzeigersinn beschriftet Gegenüberliegende Seiten sind gleich lang und parallel Benachbarte Seiten stehen normal aufeinander.

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2.

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2. 3.6 m 1.69 m 6 m 1.69 m Seiten 9 / 10 / 11 1 Vorbemerkung: Alle abgebildeten Dreiecke sind ähnlich (weil sie lauter gleiche Winkel haben). Also gilt jeweils: 2 kurze Seite Dreieck 1 kurze Seite Dreieck

Mehr

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat Mathematik 1. Klasse EBENE UND RAUM Gegenstandsmengen zählen, vergleichen und Ich orientiere und positioniere mich im Raum (links, rechts, oben, unten) und bewege mich zielorientiert. Zahlenraum 20/30

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Umfang des Parallelogramms. Flächeninhalt des Parallelogramms

Umfang des Parallelogramms. Flächeninhalt des Parallelogramms Parallelogramm Umfang des Parallelogramms Gegeben ist ein Parallelogramm mit den Seitenlängen a und b. Um den Umfang (u P ) zu berechnen, wird folgende Formel verwendet: u P = 2a + 2b a b a = 6 cm; b =

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

VORSCHAU. zur Vollversion. Umfänge messen und berechnen. Die Länge der Randlinie nennt man Umfang.

VORSCHAU. zur Vollversion. Umfänge messen und berechnen. Die Länge der Randlinie nennt man Umfang. 1 Umfänge messen und berechnen 1. Aus wie vielen Streichhölzern besteht der Umfang? Zähle sie. 2. Wie viele cm beträgt der Umfang der Figuren? Zähle oder miss nach. cm cm cm 3. Nehmt eine Handvoll Büroklammern.

Mehr

Modulare Förderung Mathematik

Modulare Förderung Mathematik 1) 1 Umfang und Fläche begrifflich verstehen Welche Aussagen stimmen? Kreuze an. Der Umfang einer Figur ist immer größer als sein Flächeninhalt. Der Flächeninhalt wird kleiner, wenn ich eine Fläche zerschneide

Mehr

DOWNLOAD. Geometrie 7./8. Klasse: Das Viereck. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Geometrie 7./8. Klasse: Das Viereck. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler. Downloadauszug aus dem Originaltitel: DOWNLOAD Brigitte Penzenstadler 7./8. Klasse: Das Viereck Mathetraining in 3 Kompetenzstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht.

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Sicheres Wissen und Können zu Vierecken und Vielecken 1

Sicheres Wissen und Können zu Vierecken und Vielecken 1 Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Ebene Geometrie. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Ebene Geometrie. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundwissen Ebene Geometrie Das komplette Material finden Sie hier: School-Scout.de Michael Körner Grundwissen Ebene Geometrie 5.

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Sicheres Wissen und Können zum Kreis 1

Sicheres Wissen und Können zum Kreis 1 Sicheres Wissen und Können zum Kreis 1 Die Schüler können Figuren als Kreise erkennen und Kreise nach gegebenen Maßen mit dem Zirkel zeichnen. Die Schüler beherrschen folgende Bezeichnungen: Mittelpunkt

Mehr

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen

Mehr

1. Löse die folgenden Gleichungen! Gib jede Äquivalenzumformung an! c = λ f (e) F 1 l 1 = F 2 l 2 (f) ω 2 = 1 LC

1. Löse die folgenden Gleichungen! Gib jede Äquivalenzumformung an! c = λ f (e) F 1 l 1 = F 2 l 2 (f) ω 2 = 1 LC Gleichungen 1. Löse die folgenden Gleichungen! Gib jede Äquivalenzumformung an! (a) + 6 = 1 (b) 10v = v + 9 v = 1 + z = 1 (f) w = w c = c (g) m ( + m) = m (4 m) y + 4(y ) = y (y 1) (i) ( 4) + 6 = ( 7)

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Kompetenztest. Wiederholung aus der 1. Klasse. Kompetenztest. Testen und Fördern. Wiederholung aus der 1. Klasse. Name: Klasse: Datum:

Kompetenztest. Wiederholung aus der 1. Klasse. Kompetenztest. Testen und Fördern. Wiederholung aus der 1. Klasse. Name: Klasse: Datum: Name: Klasse: Datum: 1) Grundrechenoperationen. Berechne und wähle das richtige Ergebnis aus. a) 2,6 + 7,9 = 105 1,05 10,5 b) 20,1 8,7 = 1,14 11,4 11,04 c) 1,38 5 = 6,9 6,09 69 d) 14,8 : 5 = 29,6 0,296

Mehr

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten.

Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN. Algebra 1.) Darstellen natürlicher Zahlen: Vor- und Nachteile der Darstellungsformen erarbeiten. Kernlernplan Jahrgangsstufe 5 5 NATÜRLICHE ZAHLEN 1.) Darstellen natürlicher Zahlen: Stochastik Funktionen Zahl als Ziffern- und Wortform Große Zahlen Darstellung am Zahlenstrahl; Darstellung im Zehnersystem

Mehr

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Parallelogramme Rechtecke Quadrate

Parallelogramme Rechtecke Quadrate Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3

Mehr

Amt für Volksschule März 2011

Amt für Volksschule März 2011 Amt für Volksschule März 2011 Lehrplan Grobziele im Überblick (LP Seiten 78 + 79) Grobziele /Symbole Möglichkeiten und Hinweise Eas Schwerpunkt Kl. 4 5 6 1 Die Schüler und Schüle- eben, waagrecht, horizontal,

Mehr

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

Geometrie. Grundkonstruktionen. Grundkonstruktionen

Geometrie. Grundkonstruktionen. Grundkonstruktionen Geometrie Grundkonstruktionen Sehr oft wird am Ende der Gymiprüfung eine Geometrieaufgabe gestellt. Diese kombiniert alle Techniken, die du in der Primarschule gelernt hast: Kreise zeichnen, parallel verschieben,

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm

Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm Kreise und Kreisteile 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) r 2,45 m d 8,6 cm A 26,3 cm² U 149 cm 2. Aufgabe: Berechne bei den folgenden Kreisbögen die fehlenden

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Leitidee Zahl Variable Operation [3.1.1.]

Leitidee Zahl Variable Operation [3.1.1.] Fach: Mathematik Fachleitung: Lehmann Klasse: R Wochenstunden R: 4 Stand: Juni 2016 Insgesamt: 144 Wochenstunden (108 K + 36 S) : - Eckige Klammern [ ] verweisen auf die entsprechende Kapitel und Absätze

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse su» I MATUR Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: Bearbeitungsdauer: 60

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte 3.C Gruppe A 1. Schularbeit Name: Mo 27.10.97 / Schw 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) 3 + 2 ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 2) Gib die Elemente der Menge A = { x Z / x < 3 } und B = { y Z / -5

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Zentrische Streckung Mündliche Aufgaben

Zentrische Streckung Mündliche Aufgaben Zentrische Streckung Mündliche Aufgaben Aufgabe 1 Was ist eine zentrische Streckung mit Zentrum Z und Streckungsfaktor k? Aufgabe 1 Was ist eine zentrische Streckung mit Zentrum Z und Streckungsfaktor

Mehr

Übungsaufgaben Klassenarbeit

Übungsaufgaben Klassenarbeit Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,

Mehr

Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium

Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium Für einen effektiven Mathematikunterricht ist es unerlässlich, dass Schüler auf grundlegende Kenntnisse und Fertigkeiten zurückgreifen

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

Flächen 1 Zahlenbuch 6

Flächen 1 Zahlenbuch 6 Flächen 1 Zahlenbuch 6 Berechne die fehlenden Angaben. Länge Breite Fläche Umfang 3 cm 25 cm 12 m 64 m 15 mm 8 mm 9 m 126 m 2 28 cm 86,4 cm Flächen 2 Zahlenbuch 6 Berechne die fehlenden Angaben. Länge

Mehr

DOWNLOAD Geometrie: Umfang und Flächeninhalt

DOWNLOAD Geometrie: Umfang und Flächeninhalt DOWNLOAD Sabine Gutjahr Geometrie: Umfang und Flächeninhalt Differenzierte Übungsmaterialien Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht.

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen Schulcurriculum Mathematik Hauptschule Klassse 8 Hauptschule Lehrwerk: Maßstab Band 8 Verlag: Schrödel ISBN: 3-507-84304-8 Inhalte Medien e gemäß Kerncurriculum Thema 1 LB S. 8-21 Zahlen und Größen Addition

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck 1 Stern Berechnungen am Dreieck Ein fünfzackiger Stern, wie abgebildet, soll völlig symmetrisch sein (alle fünf Linien sind gleich lang und alle gleichartigen Innenwinkel gleich groß) Die Gesamtlänge der

Mehr

Schulcurriculum Mathematik

Schulcurriculum Mathematik Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 5 Lehrwerk: Fundamente der Mathematik 5, Schroedel-Verlag, ISBN 978-3-06-040348-6 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Sächsisches Staatsministerium Geltungsbereich: für Klassenstufe 9 an. Hauptschulabschluss und qualifizierender Hauptschulabschluss.

Sächsisches Staatsministerium Geltungsbereich: für Klassenstufe 9 an. Hauptschulabschluss und qualifizierender Hauptschulabschluss. Sächsisches Staatsministerium Geltungsbereich: für Klassenstufe 9 an für Kultus - Mittelschulen Schuljahr 2006/2007 - Förderschulen - Abendmittelschulen Hauptschulabschluss und qualifizierender Hauptschulabschluss

Mehr

KGS Curriculum Mathematik Hauptschule Klasse 5

KGS Curriculum Mathematik Hauptschule Klasse 5 KGS Curriculum Mathematik Hauptschule Klasse 5 Lehrwerk: Maßstab Band 5 Verlag: Schrödel Inhalte Kapitel 1 Zahlen und Daten - Fragebogen auswerten, Strichlisten, Tabellen und Diagramme anlegen - Zahlen

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5 Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln

Mehr

2. Berechnungen mit Pythagoras

2. Berechnungen mit Pythagoras 2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L { 1; 0; 1} b) L {... ; 1; 0; 1; 2} c) L {2; 3; 4}, denn: x 4 0 oder falls x 4 > 0 dann x + 3 5 oder falls x 4 < 0 dann x + 3

Mehr

Die 11 Eigenschaften der Standardvierecke

Die 11 Eigenschaften der Standardvierecke Die 11 Eigenschaften der Standardvierecke Die 11 Eigenschaften der 6 Familien der Standardvierecke 3 Aussagen 1. Die Diagonalen sind gleich lang. 2. Die Diagonalen halbieren sich. 3. Die Diagonalen sind

Mehr

3e 1. Schularbeit/ A

3e 1. Schularbeit/ A 3e 1. Schularbeit/ A 27.10.1997 1) Löse folgende Gleichung: 5 + 4 x = 7 ( 4 P ) 10 2) Berechne und kürze das Ergebnis so weit es geht: 2 1 11 : 3 3 + 1 1 * 2 2 = ( 9 P ) 16 12 4 24 15 3 a) Konstruiere

Mehr

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2 1.10 Geometrie Inhaltsverzeichnis 1 Die zentrische Streckung 2 1.1 Einführung und Definition der zentrischen Streckung..................... 2 1.2 Flächeninhalte bei zentrischer Streckung............................

Mehr

Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth

Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Fülle die Tabelle aus Vorgänger 898989 Zahl 115 1519900 Nachfolger 9000 Schreibe ohne Klammern und berechne dann: a) 43 77 = b) 64 35 = Einen Linienzug erhält

Mehr

Duden Schülerhilfen. Flächen und ihre Berechnung 1 Dreiecke und Vierecke. Dudenverlag Mannheim Leipzig Wien Zürich

Duden Schülerhilfen. Flächen und ihre Berechnung 1 Dreiecke und Vierecke. Dudenverlag Mannheim Leipzig Wien Zürich Duden Schülerhilfen Flächen und ihre Berechnung 1 Dreiecke und Vierecke von Hans Borucki mit Illustrationen von Detlef Surrey 4., aktualisierte Auflage 5. bis 8. Klasse Dudenverlag Mannheim Leipzig Wien

Mehr

MATHE - CHECKER. 5. Klasse. by W. Rasch

MATHE - CHECKER. 5. Klasse. by W. Rasch MATHE - CHECKER 5. Klasse by W. Rasch 1. Aufgabe Gegeben ist die Zahl 5 909 999. Wie heißt ihr Nachfolger? A: 5909000 B: 5909100 C: 5910000 D: 6000000 2. Aufgabe Gegeben ist der Term 41 555 + 4 927-8 062.

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

Jahresarbeitsplan denkstark 1 ( )

Jahresarbeitsplan denkstark 1 ( ) Jahresarbeitsplan denkstark 1 (978-3-507-84815-3) Schulwoche Zeitraum Leitidee Projekte und Inhalt denkstark 1 (978-3-507-84815-3) Kompetenzen Denkstark 1 1-2 2 Wochen Raum und Form Projekt: Kunst und

Mehr

2. Strahlensätze Die Strahlensatzfiguren

2. Strahlensätze Die Strahlensatzfiguren 2. Strahlensätze 2.1. Die Strahlensatzfiguren 1) Beispiel Die nebenstehende Figur zeigt eine zentrische Streckung mit Zentrum Z. Man kennt einige Streckenlängen. a) Wie gross ist der Streckungsfaktor k?

Mehr

Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und

Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und Zeitraum Rahmenplan Klasse 5 und 6 Schnittpunkt 5 Klassenarbeit Darstellen und Ordnen natürlicher Zahlen, große Zahlen Runden, Schätzen und Überschlagen Kapitel 1 Natürliche Zahlen Unsere neue Klasse 1

Mehr

Mathematik - Jahrgangsstufe 5

Mathematik - Jahrgangsstufe 5 Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

KGS Curriculum Mathematik Hauptschule Klasse 5. Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene Bemerkungen Kapitel 1 Zahlen und Daten

KGS Curriculum Mathematik Hauptschule Klasse 5. Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene Bemerkungen Kapitel 1 Zahlen und Daten Cornelsen: Schlüssel zur Mathematik Klasse 5 Differenzierende Ausgabe Niedersachsen ISBN: 978-3-06-006720-6 KGS Curriculum Mathematik Hauptschule Klasse 5 Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Flächeninhaltsberechnung von Vielecken. Marco Bettner/Erik Dinges

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Flächeninhaltsberechnung von Vielecken. Marco Bettner/Erik Dinges DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 19 8. Klasse: Flächeninhaltsberechnung von Vielecken auszug aus dem Originaltitel: Flächeninhalt Parallelogramm 1 Erstelle eine Formel zur

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:

Mehr

Ähnlichkeit, Strahlensatz

Ähnlichkeit, Strahlensatz Ähnlichkeit, Strahlensatz Aufgabe 1 Berechne die Strecken x und y. a) links b) rechts Aufgabe 2 Einem Dreieck wurde die Spitze abgeschnitten. Das Reststück in Form eines Trapezes hat Parallelen von 15

Mehr