Prof. U. Stephan Studiengang BAU 1. Fachsemester Übung 1 TFH Berlin, FB II LV Mathematik Seite 1 von 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prof. U. Stephan Studiengang BAU 1. Fachsemester Übung 1 TFH Berlin, FB II LV Mathematik Seite 1 von 5"

Transkript

1 Pof U Stepan Studiengang BAU Facemete Übung TFH Belin, FB II LV Matematik Seite von Hinweie: Etellen Sie in den Fällen, wo die Aufgabe keine Skizze entält, et eine Skizze Benutzen Sie die in de Aufgabe gegebenen Bezeicnungen Fü felende Bezeicnungen übelegen Sie ic elbt einen Platzalte Längen ind eweil mit Eineiten anzugeben, geecnet auf mm Genauigkeit (wie Sie päte ein olce beecnete Egebni in die Baupaxi übetagen, it Ie Sace) Beecnete Winkel ind auf eine Stelle nac dem Komma zu unden Alle Recnungen weden komplett in volle Genauigkeit augefüt Da Endegebni wid wie gefodet geundet Ic gebe in den Löungen mancmal me Stellen an, damit Sie vegleicen können Aufgabe : a) Ein Abwaeo oll entlang eine ebenen Staße auf eine Stecke 67,28 m mit einem Gefälle von velegt weden Am Anfang liegt da Ro in eine Tiefe von t a,24 m In welce Tiefe t e liegt da Ende de Roe? (Bezeicnen Sie den Zuwac an Tiefe mit t z ) b) Häufig weden Gefälle in de Fom :0, :00, :0 angegeben Beecnen Sie eweil den Winkel gegenübe de Ebene c) Eine Bücke oll einen Kanal in eine Höe von 47,6 m übe Staßenniveau übequeen Die Rampe, die zu Bücke ocfüt, oll eine Steigung von 8 % aben Fagen: Übe welce (ebene) Stecke eteckt ic die Rampe? Wie goß it de Steigungwinkel de Rampe? Wie lang it die Faban de Rampe? Aufgabe 2: a) Auf dem Fit eine Dace oll ein 2,7 m oe Funkmat montiet weden Die Dacobefläce at gegenübe de Ebene eine Neigung von 28 und at eine Audenung a 6,82 m Beecnen Sie den Antand d de Matpitze von de eitlicen Dackante Hinwei: Scließen Sie au und dem ecten Winkel auf weitee Winkel d a b) Von den Elementen eine Kontuktion eien Seiten z 4,97 m und 6,9 m und Winkel g 6,3 bekannt Beecnen Sie den Winkel a: g z Fage: It die Kontuktion mit dieen Elementen eindeutig? Welce Konguenzatz liegt diee Kontuktion zugunde? a

2 Pof U Stepan Studiengang BAU Facemete Übung TFH Belin, FB II LV Matematik Seite 2 von 2 Aufgabe 3: Gegeben eien die Vektoen a 3 und b 4 3 a) Beecnen Sie den Winkel zwicen den beiden Vektoen Geben Sie den Winkel in Gad ( ) und im Bogenmaß b) Beecnen Sie a b und die Länge diee Vekto c) Weien Sie nac, da a b enkect tet owol auf a al auc auf b Aufgabe 4: Gegeben ei eine Vektogleicung A u mit A a) Beecnen Sie det(a), indem Sie die Deteminante nac de 3 Spalte entwickeln Zwicencitte de Recnung ind inzuceiben b) Welce Sclufolgeung zieen Sie au dem Egebni inictlic de Anzal de Löungen de Vektogleicung? Aufgabe : Gegeben eien die Matizen B, C 3 4 6, D Beecnen Sie alle Podukte, die definiet ind Beacten Sie, da e 9 möglice Podukte gibt (nict nu B C und B D, onden auc B B etc)

3 Pof U Stepan Studiengang BAU Facemete Übung TFH Belin, FB II LV Matematik Seite 3 von Löungen: Aufgabe : a) Skizze: t z Ekennen: ectwinklige Deieck, Winkel, Gegen- und Ankatete Anatz: tz tanϕ egibt tz tanϕ,74 m (geundet von,74376 ) t e t a + t z 2,4 m b) Skizze und Ekennen wie bei a) Fü :0 gilt z B 0, t z Anatz: tanϕ egibt ϕ :0 actan, (geundet von,47 ) 0 0 actan 0, ϕ :00 :0 ϕ actan 0, c) Steigung 8% bedeutet: : 8 : 00, alo Ebene Stecke tan 8 00, egibt 00 9,62 m 8 8 ϕ egibt ϕ actan 0,08 4, Pytagoa egibt ,279 ; Kontollecnung (ode altenativ) in ϕ egibt 97,279 inϕ Aufgabe 2: a) Man beecnet zuet Winkel b : C d b a a B A Im ectwinkligen Deieck folgt a 90 - und b 80 - a 80 - ( 90 - ) Übelegung: Im Deieck ABC ind folgende Elemente am Poblem beteiligt: Seiten a, und d; Winkel b d it geuct, die andeen dei Elemente ind gegeben Diee Kontellation it mit dem

4 Pof U Stepan Studiengang BAU Facemete Übung TFH Belin, FB II LV Matematik Seite 4 von Coinu-Satz löba, man beginnt imme mit de geucten Seite (bzw de Seite, die dem Winkel gegenübeliegt): d a + 2acoβ Einetzen de Wete egibt d² 289,28098, d 7,004 m b) Man ekennt zwei Paae (Seite, gegenübeliegende Winkel) Die deutet auf den Sinu-Satz in Bevo man den Sinu-Satz auftellt, mu man ic die Eindeutigkeit de Kontuktion übelegen Gegeben ind zwei Seiten und de de gößeen Seite gegenübeliegende Winkel, alo eine Kontuktion nac Konguenzatz SW Man tellt den Sinu-Satz auf, indem man mit dem unbekannten Element beginnt: inα inγ z z inγ und α acin 4,94 Multiplikation de Gleicung mit z egibt z inγ inα (Ic wiedeole meinen einfüenden Hinwei: E it natülic Blödinn, auf dem Bau einen Winkel auf Stellen nac dem Komma anzugeben Die weiteen Stellen ollen Inen den Vegleic mit Ien Beecnungen emöglicen) 2 Aufgabe 3: Gegeben eien die Vektoen a 3 und b 4 3 a) Fü den Winkel zwicen zwei Vektoen benutzen man die Definition de Skalapodukt: () ab i a b coϕ mit ϕ ( ab, ) Al ete beecnet man ab i ( 2) + ( 3) + 43 (Anmekung: wäe diee Egebni gleic 0, wäe man fetig, de Winkel 90 - dealb beecnet man dieen Teil de Aufgabe zuet) Dann beecnet man a² , alo a 26 und b² , alo b 38 ab i Gleicung () aufgelöt nac coϕ egibt coϕ 0,907 a b und ϕ 99, bzw x ϕ, b) (Siee Fomelammlung): a b 2 a b , alo a b 963 c) Zum Nacwei de ecten Winkel zwicen zwei Vektoen (die beide nict de Nullvekto ind) benutzt man da Skalapodukt:

5 Pof U Stepan Studiengang BAU Facemete Übung TFH Belin, FB II LV Matematik Seite von 29 ( a b) ia 3 i (alo: enkect) ( a b) ib i (alo: enkect) 3 Aufgabe 4: a) det( A) b) Da die Deteminante de Sytemmatix A gleic Null it, gibt e keine eindeutige Löung, d die Anzal de Löungen it nict Alo gibt e entwede keine Löung ode unendlic viele Löungen Aufgabe : a) Podukte de Fom B X : 9 B² B B 3 28 b) Podukte de Fom C X : C B it nict definiet B C 4 26 C C it nict definiet B D it nict definiet 34 3 C D 4 43 c) Podukte de Fom D X : D B D C D D it nict definiet Beabeitungtand: 32008

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan SS Klausur am 11. Juli Folgendes bitte deutlich schreiben:

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan SS Klausur am 11. Juli Folgendes bitte deutlich schreiben: Facoccule Aalen Studiengang Witcaftingenieuween Pyik II D. Haan SS 005 Klauu a. uli 005 Folgende bitte deutlic ceiben Nae Vonae Gebuttag Matikelnue Sie aben fü die Klauu 90 Minuten Zeit. Löungen zälen

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

x = d größer 0 entschieden. Dieses bleibt nun fest,

x = d größer 0 entschieden. Dieses bleibt nun fest, Stützkus Matematik WIW Üungen Tag 5 Datum: 7.. ****** Temen: Etemwetpoleme, Aleitung de Umkefunktion, Genzwete, Stetigkeit und Diffeenzieakeit Umfang: Hilfsmittel: Aufgaen Sind keine notwendig. Eine Fomelsammlung

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt.

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt. Kraftwandler Die Energie al Eraltunggröße Ein Kraftwandler it eine mecanice Anordnung, die eine Kraft wirken lät, welce größer it al die Kraft, die aufgewendet wird (oder umgekert). Beipiel: lacenzug Aufgewendete

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert: Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A,

Mehr

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose.

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose. Excel at bäenstäke Wekzeuge. So kann man z.b. den Solve nutzen um ptimieungen vozunemen. Hie am Beispiel eine Blecdose. B C Anfangswete 4 Radius 4,50 cm 4,5 5 Höe 10,00 cm 10 4,50 cm 6 Fomeln: 7 Zylindeobefläce

Mehr

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen.

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen. 7. Die Skizze tellt den Velauf de Siene eine Loopingban da. I Punkt at de Wagen die Gewindigkeit 6,1 /. I Punkt C oll e eine Zentifugalkaft vo 1,5faen Betag eine Gewitkaft augeetzt ein. De Punkt C befindet

Mehr

Aufgaben zum Impuls. 1. Zwei Kugeln mit den Massen m 1

Aufgaben zum Impuls. 1. Zwei Kugeln mit den Massen m 1 Aufaben zu Ipul. Zwei Kueln it den Maen 5,0 k und 0 k toßen it den Gecwindikeiten 5,0 / und 8,0 / erade eeneinander. Wie cnell ind die Kueln nac de Stoß, wenn dieer a) elatic b) unelatic it? c) Wieiel

Mehr

Das Ski-Rental-Problem

Das Ski-Rental-Problem Da Ski-Rental-Poblem (Voläufige Veion, 15. Mai 212) Pof. D. Hanno Lefmann Fakultät fü Infomatik, TU Chemnitz, D-917 Chemnitz, Gemany lefmann@infomatik.tu-chemnitz.de 1 Da Ski-Rental-Poblem Bei dem Ski-Rental-Poblem

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung.

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung. Neufaung de Studienodnung (Satzung) fü den Bachelo- und den konekutiven Mate-Studiengang de Witchaftinfomatik am Fachbeeich Witchaft de Fachhochchule Kiel Aufgund de 86 Ab. 7 de Hochchulgeetze (HSG) in

Mehr

Lösung: Variante 1: Sinussatz α = = 119 β = 35 γ = = 26 c = 5,8 sm

Lösung: Variante 1: Sinussatz α = = 119 β = 35 γ = = 26 c = 5,8 sm Aufgabe 1: Leuctturm Der Kapitän eine Sciffe mu laut einen Karten beim Paieren einer Landzunge einen betimmten Abtand zum Fetland einalten, um nict auf ein Riff aufzulaufen. Dazu peilt er den Leuctturm

Mehr

Körper II. 1 Ziehe in jedem Bild die Kegelform mit einem Farbstift nach. 2 Kreuze die richtigen Aussagen an. Hinweis: Betrachte die Zeichnung.

Körper II. 1 Ziehe in jedem Bild die Kegelform mit einem Farbstift nach. 2 Kreuze die richtigen Aussagen an. Hinweis: Betrachte die Zeichnung. I Köpe II 6. Volumen und Obefläce eines Dekegels 1 Ziee in jedem Bild die Kegelfom mit einem Fabstift nac. 2 Keuze die ictigen Aussagen an. Hinweis: Betacte die Zeicnung. Spitze Mantel Höe Mantelstecke

Mehr

Versuchsumdruck. Impulse auf Leitungen Simulation der Messergebnisse mit PSpice

Versuchsumdruck. Impulse auf Leitungen Simulation der Messergebnisse mit PSpice Hocscule STUDIENGANG ELEKTRO-UND INFORMATIONSTECHNIK Blatt von 3 Ascaffenbug Pof. D.-Ing. U. Boctle, Dipl.-Ing. Hans Hitzinge, Amin Hut Vesuc 4/5 Paktikum Scaltungstecnik I Vesion.0 vom 7.0.003 Vesucsumduck

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

KtMMC923.doc (Word97-Format) Modul 4: Sicherung des Basiswissens durch Übung von Sachaufgaben

KtMMC923.doc (Word97-Format) Modul 4: Sicherung des Basiswissens durch Übung von Sachaufgaben Datei: KtMMC923doc (Word97-Format) Scule: Marie-Curie-Mittelcule Dona E-Mail: croetercuriem@-t-onlinede utor/ nprecpartner: Marlie Scönerr Quelle/Literaturinweie: eigene Entwicklungen Sytematice Einordnung:

Mehr

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE Übungsbeispiele Deiecke Mg. Toms Höffee ufgben DREIECKE Fläce von Deiecken: D 1. Gegeben sin ie ei Seiten eines llgemeinen Deiecks. estimme ie Fläce un ie ei Höen e einzelnen Deiecke. b c b c.) 1 1 15

Mehr

stößt mit der Geschwindigkeit v 1 gegen einen ruhenden Körper mit der Masse m 2

stößt mit der Geschwindigkeit v 1 gegen einen ruhenden Körper mit der Masse m 2 Afaben z Ipleraltnatz 95. in Güterwaon der Mae 5 t rollt ein 5 lane, nter een die Horizontale eneite Glei inab nd tößt dann af einen dort abetellten, renden Güterwaon der Mae M 8 t. Bei Antoßen kppeln

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Hauptprüfung 2009 Aufgabe 4

Hauptprüfung 2009 Aufgabe 4 Haptpüfng 9 Afgabe 4 Gegeben ind die Geaden g: x nd h: x mit, 4. Beechnen Sie die Koodinaten de Schnittpnkte de Geaden g nd h. Beechnen Sie den Schnittwinkel δ de Geaden g nd h. Becheiben Sie die beondee

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Energieformeln. Mechanische Energieformen (Kurzüberblick) Energie. Energieformen (auch nicht-mechanische) Energieumwandlung

Energieformeln. Mechanische Energieformen (Kurzüberblick) Energie. Energieformen (auch nicht-mechanische) Energieumwandlung Mecanice nergieforen (Kurzüberblick) nergie it augeprocen cwierig, den Begriff nergie in allgeeiner For zu erklären. Tatäclic it e ein Kuntbegriff, den ic die Pyiker augedact aben, u ein Syte in die unübercaubare

Mehr

Diagramm 1 Diagramm 2

Diagramm 1 Diagramm 2 Zweijärige zur Prüfung der Facsculreife fürende Berufsfacscule (BFS) Matematik (9) Hauptprüfung 008 Aufgaben Aufgabe 1 A. 1. Bestimmen Sie die Gleicungen der Geraden g und.. Geben Sie die Koordinaten der

Mehr

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8 Der einface Dapfproze Clauiu Rankine Proze Seite von 8 darin ind e die Exergie, b die Anergie und U die Ugebungteperatur Wie vergleicen zunäct den Carnot cen η C Prozewirkunggrad it de Clauiu-Rankine Prozewirkunggrad

Mehr

PHYSIK Gekoppelte Bewegungen 2

PHYSIK Gekoppelte Bewegungen 2 PHYSIK Gekoppelte Bewegungen Gekoppelte Bewegungen auf chiefer Ebene Datei Nr. 93 Friedrich W. Buckel ktober 00 Internatgynaiu Schloß Torgelow Inhalt Grundwien Bewegung ohne äußeren Antrieb (Beipiel )

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

3 Gesetze von Newton und ihre Anwendungen

3 Gesetze von Newton und ihre Anwendungen 3 eetze von Newton und ire Anwendungen 3. Der Trägeitatz U die ecwindigkeit oder die Rictung eine Körper zu ändern it der Einflu einer Kraft nötig. Überlät an einen Körper, der ic it der ecwindigkeit v

Mehr

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen:

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen: Aufgaben zur gleicförigen Bewegung Aufgaben. Ein Radfarer are u 7.00 Ur in Leipzig und fär i der ileren Gecwindigkei 0 / nac Berlin. U 9.00 Ur fär ein Auo on deelben Punk in dieelbe Ricung ab. E beiz die

Mehr

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei 859. Zwei Auo faren mi erciedenen Gecwindigkeien 1 = 160 / bzw. 2 = 125 / dieelbe Srecke on 200 Länge. Beide Wagen aren gleiczeiig in derelben Ricung. Der arer de cnelleren Wagen mac nac 45min arzei 15min

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

( ) = ( ) ( ) ( ) ( )

( ) = ( ) ( ) ( ) ( ) R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Löungen Grundaufgaben für lineare und quadratiche Funktionen I e: E e f( x) = x+ Py 0 f( x) = x+ Px 0 E E E E E6 E7 E8 E9 E0 f x = mx + b mit m = und P(

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22 Elemente der Geometrie 9 Anang 9.1 Verältnisgleicungen Verältnisgleicungen sind spezielle Formen von Gleicungen. Es a werden zwei Quotienten gleic gesetzt. Die Gleicung! b = c d kann man auc screiben als!a:b

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

2.Bauelemente im Beschleunigerbau Ablenkmagnete, Multipole

2.Bauelemente im Beschleunigerbau Ablenkmagnete, Multipole .aueeente i eceunigebau Abenkagnete, Mutipoe. Inat. Dipoagnete.3 Fokuieung duc ein Soenoided.4 Qudupoagnete GSI RF-Goup, P. üann, ai: P.ueann@gi.de, Pone: 49 659 7 66 . aueeente i eceunigebau.dipoagnete

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

4.1 Zufallsexperimente

4.1 Zufallsexperimente 4.1 Zufallexpeimente 4.1 Zufallexpeimente 4.1.1 Ein-undmehtufigeZufallexpeimente Datellung duchbaumdiagamme EgebniundEgebnimenge Expeimenteindun au dem Phyikunteicht bekannt undbezeichnen Vogänge, die

Mehr

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung.

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung. Steigung 4 6 Arbeitseft+ Teste dic selbst Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berecne die Steigung. a a a Keil Keil 2 Keil 3 Keil Keil 2 Keil 3 Horizontale

Mehr

Vom Strahlensatz zum Pythagoras

Vom Strahlensatz zum Pythagoras Vom Stahlensatz zum Pythagoas Maio Spengle 28.05.2008 Zusammenfassung Eine mögliche Unteichtseihe, um die Satzguppe des Pythagoas unte Umgehung de Ähnlichkeitsabbildungen diekt aus den Stahlensätzen hezuleiten.

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzieung Studiengang B.A. Business Administation Pof. D. Raine Stachuletz Hochschule fü Witschaft und Recht Belin Belin School of Economics and Law Somme 2012 slide no.: 1 Handlungsfelde

Mehr

über das Volumen V. Integration mehrfach nacheinander entsprechend bekannter Regeln mehrfache Berechnung bestimmter Integrale

über das Volumen V. Integration mehrfach nacheinander entsprechend bekannter Regeln mehrfache Berechnung bestimmter Integrale Mefacntegale Mae ene Quade: M wenn de Quade nomogen t: (,, ) M (,, ) M N M N N (,, ) M lm (,, ) (,, ) dd d N Integal de Funkton (,, ) üe da olumen. Mefacntegale mt kontanten Integatongenen Integaton mefac

Mehr

Greensche Funktion. Frank Essenberger FU Berlin. 30.September Nomenklatur 1. 2 Greensche Theoreme 1. 3 Anwendung in der Elektrostatik 2

Greensche Funktion. Frank Essenberger FU Berlin. 30.September Nomenklatur 1. 2 Greensche Theoreme 1. 3 Anwendung in der Elektrostatik 2 Greenche Funktion Frank Eenberger FU Berlin 30.September 2006 Inhalterzeichni Nomenklatur 2 Greenche Theoreme 3 Anwendung in der Elektrotatik 2 4 Anpaung an Randbedingungen 3 5 Eindeutigkeit der Löung

Mehr

Aufgaben zur Physikschulaufgabe ==================================================================

Aufgaben zur Physikschulaufgabe ================================================================== Aufgaben zur Pyikculaufgabe ================================================================== 1. Ein LKW-Farer bremt von 108 km gleicmäßig über eine Entfernung von 10m auf Null erunter. a) Berecne die

Mehr

= 150 kmh -1. Wie groß ist die Beschleunigung und der zurückgelegte Weg, wenn die Geschwindigkeitserhöhung in der Zeit von 10 Sekunden erfolgt?

= 150 kmh -1. Wie groß ist die Beschleunigung und der zurückgelegte Weg, wenn die Geschwindigkeitserhöhung in der Zeit von 10 Sekunden erfolgt? Aufgaben zur gleicäßig becleunigen Bewegung. Ein Auo eiger eine Gecwindigkei gleicäßig on = 0 k - auf = 50 k -. Wie groß i die Becleunigung und der zurückgelege Weg, wenn die Gecwindigkeieröung in der

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

V Welche Leistung bringt ein Mensch beim Fahrrad Fahren? Einleitung (Hier wird erklärt, warum der Versuch durchgeführt wird)

V Welche Leistung bringt ein Mensch beim Fahrrad Fahren? Einleitung (Hier wird erklärt, warum der Versuch durchgeführt wird) AB Energie Leiung Scüler, Seie 1 V Welce Leiung bring ein Menc bei arrad aren? Einleiung (Hier wird erklär, waru der Veruc durcgefür wird) Mecanice Energie E wird dann auf einen Körper überragen, wenn

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

4.8. Aufgaben zu trigonometrischen Funktionen

4.8. Aufgaben zu trigonometrischen Funktionen 4.8. Aufen zu trionometrien Funktionen Aufe : Dreiekerenun Berene die felenden Größen im retwinklien Dreiek. Alle Länen eien in m neeen. Teil ) ) ) d) e) f) ) ) i) j) k) l) 4 6 4,5,5 8,6 5.9 7, 7,, 7,

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Analytische Geometrie

Analytische Geometrie Anlytiche eometie Intention: Eeitung eine Vefhen, mit deen Hilfe mn jede geometiche Aufge duch echnung löen knn. I Vektoen und Vektoäume Pfeile und Vektoen Vektoen ind geichtete ößen. Phyik: Kft, echwindigkeit,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

2 Formeln richtig und schnell umstellen

2 Formeln richtig und schnell umstellen Formeln ricig und cnell umellen 17 Aufgabe 1 Peer i mi einer Scweer Criina in Konanz unerweg. Er oll ie bei irer Freundin abezen. Die beiden faren gerade in einer engen Einbanraße mi Parkbucen und Bürgereig

Mehr

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F =

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F = Aufgabe : a Die Effektivvezinsung eine Nullkuponanleihe lässt sich anhand de folgenden Gleichung emitteln: Hie gilt P( c( aktuelle Maktpeis de Anleihe Nennwet de Anleihe 4 und folglich i P( / c( c( i c(

Mehr

Beobachten und Messen mit dem Mikroskop

Beobachten und Messen mit dem Mikroskop Phyikaliche Grundpraktikum Veruch 006 Veruchprotokolle Beobachten und een mit dem ikrokop Aufgaben 1. Betimmen de ildungmaßtabe der vorhandenen ektive mit Hilfe eine echraubenokular. Vergleich mit den

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10 Mthemtik I für E-Techniker C. Erdmnn WS /, Univerität Rotock,. Vorleungwoche Zutzmteril zur Mthemtik I für E-Techniker Übung Uneigentliche Integrle Die Funktion f ei für x definiert und in jedem Intervll

Mehr

Aufgaben zum Impuls

Aufgaben zum Impuls Aufgaben zu Ipul 593. Ein Wagen (Mae 4kg) prallt it einer Gechwindigkeit, / auf einen zweiten ( 5 kg), der ich in gleicher Richtung it der Gechwindigkeit 0,6 / bewegt. a) Wie groß ind die Gechwindigkeiten

Mehr

4. Krummlinige orthogonale Koordinaten

4. Krummlinige orthogonale Koordinaten 4 Kummlnge othogonale Koodnaten ückblck Zu uanttatven Efassung äumlche (und etlche) Beüge denen Koodnatensysteme Bshe haben w Katessche Koodnaten betachtet: { } { } { } Bass: e,,, Koodnaten:,,,, y, Vektoen:

Mehr

Kinematik. Einführung. Größen und ihre Einheiten. Anfangsposition. Basiswissen > Grundlagen > Kinematik. Lernvideos PLUS.

Kinematik. Einführung. Größen und ihre Einheiten. Anfangsposition.  Basiswissen > Grundlagen > Kinematik. Lernvideos PLUS. www.scullv.de Baiwien > Grundlagen > Kineatik Kineatik Skript PLUS Lernvideo PLUS Einfürung Die Kineatik it ein Teilgebiet der Mecanik und it die Lere der Bewegung von Punkten und Körpern i Rau. Die Bezeicnung

Mehr

Anhang 1: Gradient, Divergenz, Rotation

Anhang 1: Gradient, Divergenz, Rotation Anhang : Gadient, ivegen, Rotation Felde Anhang : Gadient, ivegen, Rotation Wid jedem Punkt im Raum eine skalae Göße U ugeodnet (.. Tempeatu, elektisches Potential,...), so spicht man von einem skalaen

Mehr

oder In den USA werden Geschwindigkeiten in miles per hour (mph) angegeben, 1 Meile = 1'609.34 m. 1 ist um 3.6% grösser. Strecke s v = 120/3.

oder In den USA werden Geschwindigkeiten in miles per hour (mph) angegeben, 1 Meile = 1'609.34 m. 1 ist um 3.6% grösser. Strecke s v = 120/3. Teorie Kineatik Kineatik (griec.: κíνεω (kineo) bewegen ; [Kino bewegte Bilder]) Lere on den Bewegungen. Die Kineatik becränkt ic auf die geoetrice Becreibung der Bewegungabläufe durc die Angabe on Ort,

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Aufgaben zu den Würfen. Aufgaben

Aufgaben zu den Würfen. Aufgaben Aufaben zu den Würfen Aufaben. Ein Körper wird i der Gecwindikei 8 - nac oben eworfen. Vo Lufwiderand ee an ab. Berecnen Sie die Wurföe und die Zei bi zu Erreicen de öcen Punke der Ban. Berecnen Sie die

Mehr

Die Definitionen des Rauminhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.

Die Definitionen des Rauminhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt. Rauminalt 1 Rauminalt 2 Volumenfunktion Kapitel 2: Räumlice Köpe und Rauminalt De Rauminalt eines Köpes soll etwas übe dessen Göße aussagen, de Rauminaltsbegiff ist intuitiv igendwie kla, ab de Gundscule

Mehr

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. Lehrbrief Nr. 2: Perzeptron

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. Lehrbrief Nr. 2: Perzeptron Neuonale Netze, Fuzz Contol, Genetische Algoithmen Pof. Jügen Saue Lehbief N. : Pezepton Pecepton - Das Pezepton ist das einfachste Modell fü Neuonale Netze. Dieses Modell gehöt zu Klasse de sog. Musteassoziatoen.

Mehr

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 )

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 ) Aufgabe: Scwigug A eie Stalfede wid eie Kugel it de Mae 500g geägt. Fedekaft: F -b (b 50 N/) Gaitatikaft: F g (g 9,8 / ) 500g F a F( ) d ki b ( t + ϕ ) Ac( ω + ) ( t) Ac t ϕ. U wie iel det ic die Fede

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Hinweise zur Berechnung und Auswahl des richtigen Dämpfers

Hinweise zur Berechnung und Auswahl des richtigen Dämpfers Däpfungtecnik Auwal und erecnung U den rictigen Däpfer au de DICTATOR Däpfungprogra für Iren Anwendungfall erauzufinden, it e vollkoen aureicend, wenn Sie un bei den Endlagen- und etontage- Öldäpfern einen

Mehr

2. METHODE NACH ARCHIMEDES

2. METHODE NACH ARCHIMEDES . METHODE NACH ARCHIMEDES Dem Recer gleic, der eie Kräfte ammelt, um eie Krei zu mee, ud ict fidet, ud auf de Leratz it, der ötig wäre,... 0 Date Aligieri Arcimede vo Syraku Mit dem eierzeit größte griecice

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Übungen für die 1. Physikprüfung - mit Lösungen

Übungen für die 1. Physikprüfung - mit Lösungen Übungen für die. Pyikprüfung - i Löungen One vhvon obenl : =H 0 L + v 0 + ÅÅÅÅ a One Hvon obenl : v = v 0 + a One a : =H 0 L + ÅÅÅÅ Hv + v 0L One : v = è!!!!!!!!!!!!!!!!!!!!!!! v 0 + a Zenerpoenzen Screiben

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Komplexe Zahlen - Rechenregeln

Komplexe Zahlen - Rechenregeln Technische Univesität Desden Fakutät Maschinenwesen / IFKM Pofessu fü Dynamik und D. C. Wadewitz Kompexe Zahen - Rechenegen Rechenegen Kompexe Zahen ϕ x + iy e e i cosϕ + i sinϕ x ϕ e i cosϕ isinϕ iy e

Mehr

Weg von 150 m zurück. Mit welcher Geschwindigkeit bewegt sich das Wasser in dem Fluss?

Weg von 150 m zurück. Mit welcher Geschwindigkeit bewegt sich das Wasser in dem Fluss? Aufgaben zur gleicförigen Bewegung 533. Eine Wepe caff al Höcgecwindigkei 6,5 k/. Gib die Gecwindigkei in / an. Wie wei flieg da Tier i dieer Gecwindigkei in einer alben Minue? 534. ibellen ind in der

Mehr

3 Ebene elektromagnetische Wellen

3 Ebene elektromagnetische Wellen 3 bene elekomagneisce Wellen nscaulice Besceibung 6 3 bene elekomagneisce Wellen In diesem bscni weden ebene elekomagneisce Wellen in omogenen Medien beandel. Dabei sollen die fü die Besceibung elekomagneisce

Mehr

( ) ( ) ( ) 2. Bestimmung der Brennweite. Abbildungsgleichung. f b = + = + b g

( ) ( ) ( ) 2. Bestimmung der Brennweite. Abbildungsgleichung. f b = + = + b g 3..00 Volesun - Bestimmun de Bennweite B G F F Aildunsleichun f ; f wid fest ewählt; wid so lane eändet, is Bild schaf auf Mattscheie escheint. ( ) ( ) ( ) ( ) f f. Methode ( ) ( ) f ± Die folenden Folien

Mehr

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet Analytische Geometie Übungsaufgaben Gesamtes Stoffgebiet Pflichtteil (ohne Fomelsammlung und ohne GTR): P: a) Püfe, ob das Deieck ABC gleichschenklig ist: A(/7/), B(-//), C(//) b) Püfe, ob das Deieck ABC

Mehr

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen Sympoium EME 2005 5. - 7. Septembe 2005 d Titel de Beitage: Namen de Autoen: Name de Votagenden Fima, Dienttelle: Anchift: Emailadee: Numeiche Feldbeechnung im VCC EME - aktuelle Sachtand und zukünftige

Mehr

Studiengang Biomedizinische Technik Sommersemester

Studiengang Biomedizinische Technik Sommersemester Klauur Phyik I Studiengang Biomediziniche Technik Sommeremeter 9 6.8.9 Für alle Berechnungen gilt: die Erdbechleunigung beträgt g 9,8 m/!. (7 Punkte) Ein rechtwinklig zur Fahrtrichtung unter einem Winkel

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr