Abschlussprüfung an Fachoberschulen in Bayern Mathematik 2002, Stochastik S I Nichttechnische Ausbildungsrichtung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abschlussprüfung an Fachoberschulen in Bayern Mathematik 2002, Stochastik S I Nichttechnische Ausbildungsrichtung"

Transkript

1 Alexandra Steiner A_NT_S_AS_Loes.mcd Abschlussprüfung an Fachoberschulen in Bayern Mathematik 00, Stochastik S I Nichttechnische Ausbildungsrichtung AUFGABENSTELLUNG:.0 Die Post eines kleineren Landes gibt den Druck einer neuen Sonderbriefmarke in Auftrag. Beim ersten Probedruck einer größeren Menge dieser Marken werden noch Fehler bei der Zähnung, beim Farbton sowie bei der Grafik festgestellt. Es kann davon ausgegangen werden, dass diese Fehlerarten unabhängig voneinander auftreten und dass die Wahrscheinlichkeit ihres Auftretens während des Probedrucks konstant bleiben. Folgende Bezeichnungen seien vorgegeben: Z: Bei einer zufällig ausgewählten Marke ist die Zähnung in Ordnung. F: Bei einer zufällig ausgewählten Marke ist die Farbe in Ordnung. G: Bei einer zufällig ausgewählten Marke ist die Grafik in Ordnung. _ Die Wahrscheinlichkeit für einen Farbfehler beträgt P({ F })= 0.3, _ diejenige für einen Fehler bei der Zähnung P({ Z })=0.5.. Eine zufällig ausgewählte Briefmarke wird hinsichtlich der Merkmale Z, F und G untersucht. Veranschaulichen Sie alle möglichen Ergebnisse dieser Untersuchung mithilfe eines Baumdiagramms. Begründen Sie, dass die Wahrscheinlichkeit für einen Fehler in der Grafik P({ G }) = 0. beträgt, wenn bekannt ist, dass eine fehlerfreie Briefmarke mit der Wahrscheinlichkeit P({ ZFG }) = 0.8 auftritt. Bestimmen Sie anschließend die Wahrscheinlichkeiten aller acht Elementarereignisse.. Nun werden folgende Ereignisse betrachtet: E : "Eine zufällig ausgewählte Marke hat mindestens zwei Fehler oder einen Zähnungsfehler." E : "Eine zufällig ausgewählte Marke hat genau einen Fehler." Überprüfen Sie rechnerisch, ob die Ereignisse E und E stochastisch unabhängig sind. (8 BE) (5 BE).0 Die Druckmaschine wird korrigiert. Die Zufallsgröße X gibt die Anzahl der Fehlerarten an, die bei einer zufällig ausgewählten Briefmarke des neuen Drucks auftreten. Die Wahrscheinlichkeitsverteilung der Zufallsgröße X kann mithilfe eines geeigneten Parameters a R so dargestellt werden: x 0 3 P(X = x) 0.4a 0.05a Berechnen Sie den Parameter a. (4 BE) Für die Teilaufgaben. bis.4 gilt: a =. Berechnen Sie die Wahrscheinlichkeit dafür, dass der Wert der Zufallsgröße innerhalb der zweifachen Standardabweichung um den Erwartungswert liegt. (4 BE)

2 .3 Bestimmen Sie die Wahrscheinlichkeit dafür, dass von 00 zufällig ausgewählten Briefmarken des neuen Drucks mindestens 50 und höchstens 70 fehlerfei sind..4 Geben Sie die Wertetabelle der zugehörigen kumulativen Verteilungsfunktion F an und zeichnen Sie deren Graph farbig in ein geeignetes Koordinatensystem. Bestimmen Sie ferner den Wert k = - F(.3) und interpretieren Sie ihn im Sinne der vorliegenden Thematik. ( BE) (4 BE) 3.0 Durch weitere Verbesserungen an der Druckmaschine ist es gelungen, die Anzahl der fehlerhaften Briefmarken weiter zu verringern. Bei den nachfolgenden Untersuchungen kann aufgrund der großen Stückzahlen davon ausgegangen werden, dass die Anzahl der fehlerhaften Briefmarken einer Druckreihe binominal verteilt ist. Bei einer Druckreihe von Sondermarken wird eine Standardabweichung von σ = 90 festgestellt. 3. Berechnen Sie, für welche Werte der Wahrscheinlichkeit p eine zufällig herausgegriffene Marke dieser Druckreihe fehlerhaft ist. Welcher dieser Werte trifft zu, wenn insgesamt mehr fehlerfreie als fehlerhafte Briefmarken gedruckt werden? (Mögliches Zwischenergebnis: 00p -00p + 9 =0) (5 BE) 3. Mit wie vielen fehlerhaften Marken ist in dieser Druckreihe zu rechnen, wenn die Wahrscheinlichkeit für einen Fehler 0. beträgt? ( BE) 4 Vor Beginn des endgültigen Drucks behauptet die Post gegenüber der Druckerei, dass der Anteil fehlerhafter Briefmarken immer noch mehr als 5% beträgt (Gegenhypothese). Eine Prüfkommission führt daher einen Signifikanztest mit 00 zufällig ausgewählten Briefmarken des letzten großen Druckes durch. Geben Sie die Testgröße, die Art des Tests sowie die Nullhypothese an und ermitteln Sie den größtmöglichen Ablehnungsbereich der Nullhypothese auf dem %-Niveau. (6 BE) (40 BE)

3 LÖSUNG:. Es gilt: P({ZFG})= 0.8 P({ F }) = 0.3 => P({ F }) = 0.3 = 0.7 P({ Z }) = 0.5 => P({ Z }) = 0.5 = 0.5 P({ZFG}) = P({Z }) * P({F }) * P({G }) => 0.8 = 0.5 * 0.7 * P({G}) => P( G) 0.8 := P( G) = 0.8 Bitte beachten, dass "P({G })" => P({ G }) = 0.8. P({ G }) = 0. ( ω i ) P( ω i ) in diesem Fall, zur besseren Darstellung in Mathcad als "P(G)" bezeichnet wird. 0.5 * 0.7 * 0.8 = * 0.7 * 0. = * 0.3 * 0.8 = * 0.3 * 0. = * 0.7 * 0.8 = * 0.7 * 0. = * 0.3 * 0.8 = * 0.3 * 0. = Aus der Angabe: E = { Z FG, Z FG Z F, G, ZF G, ZFG } E = { Z F G, Z F G, Z FG } E E = { Z FG } Mit Wahrscheinlichkeiten: P(E ) = P({ ZFG }) + P({ ZFG }) + P({ ZFG }) + P({ ZFG }) + P({ ZFG }) P(E ) = P(E ) = 0.53 _ P(E ) = P({ ZFG }) + P({ ZFG }) + P({ ZFG }) P(E ) = P(E ) = 0.47

4 P (E E ) = P({ Z F G }) P (E E ) = P({ 0.8 }) P(E ) * P(E ) = 0.53 * 0.47 = ( ) P d.h. P(E ) * P E (E E ) Daraus lässt sich schließen, dass E und E stochastisch abhängig sind.. Es muss gelten: 0.4a a = 0.05a + 0.4a 0.9 = 0 vereinfachen => a := a D := vereinfachen 5 a 9 + = > a = 4 > 0 a := 5 4 vereinfachen 8 ---> a = 8 40 Mit a = - 8 wäre P(X = 0) = 0.4 ( 8) = 7. < 0 Also kommt a nicht in Frage.. Für a = ist die Wahrscheinlichkeitsverteilung der Zufallsgröße X: x 0 3 P(X = x) Erwartungswert µ = E(X): µ := Varianz Var(X): σ = Var(X) = E(X ) - (E(X)) σ = Var( X) := Standardabweichung: σ = = 0.79 Aus Formelsammlung: X µ < σ X 0.35 < 0.79 X 0.35 < < X 0.35 <.58.3 < X <.93 => P( X µ < σ) = P(X = 0) + P(X = ) => P( X µ < σ) = ( ) = 0.9

5 .3 Binominalverteilte Zufallsgröße, n = 00, p = 0.8 P(E) = P( 50 X 70) Durch das Tafelwerk: P(E) = F (70) - F (49) P( E) := P( E) Zugehörige kumulative Verteilungsfunktion x ] -oo ; 0[ [ 0 ;[ [ ; [ [ ; 3[ [ 3 ; +oo[ F(x) Details zur Zeichnung my py qy mx, px, qx Gegeben: k = - F(.3) Aus der Wertetabelle:.3 [;3[ => F(.3) = 0.95 => k := 0.95 k = 0.05 F(.3) ist die Wahrscheinlichkeit für höchstens Fehler, also ist k die Wahrscheinlichkeit für 3 Fehler

6 3. Für eine binomialverteilte Zufallsgröße gilt: Var( X) = n p q = n p ( p) = σ Gegeben σ = 90 und n = : 90 = p( p) ( ) 800 = p p 00p 00p + 9 = 0 D := ( 00) > => p := vereinfachen ---> p 00 0 = p := vereinfachen ---> p 00 0 = 0.9 Da mehr fehlerfreie Briefmarken gedruckt werden kommt nur p = 0. in Frage. 3. Für eine binomialverteilte Zufallsgröße gilt: E( X) = µ = n p Gegeben: n := und p := 0. => E( X) = = 9000 Man muss mit fehlerhaften Marken rechnen. 4 Testgröße T: Die Anzahl der fehlerhaften Briefmarken bei 00 zufällig ausgewählten. n = 00 p = 0.05 α = 0.0 Teststart: Einseitiger (rechtsseitiger) Signifikanztest Nullhypothese: H 0 : p = 0.05 Annahmebereich von H 0 : A = {0; ; ;...; k} k N 0 Gegenhypothese: H : p > 0.05 Ablehnungsbereich von H 0 : A = {k+;...; 00} k N 0 H 0 wird verworfen, falls P( A) α = 0.0 ( ) P A Auszug aus dem Tafelwerk: k := k P A = ( ) 0.0 => P( A) 0.0 = 0.99 = SPBin_h( 00, 0.05, k) = <--- ab k = 8 ist P > 0.99 Der größtmögliche Ablehnungsbereich von H 0 ist also: A = {9; 0; ;...; 00} Literaturverzeichnis: FOS/BOS, 005 FOS/BOS, "Abschluss-Prüfungsaufgaben mit Lösungen..." 005 Mathematik, Ausbildungsrichtung Nichttechnik, Bayern STARK Verlag, 5. ergänzte Auflage 004, S bis 00-

7 Fachreferat von Alexandra Steiner, Klasse Sb, Schuljahr 004/005 Binomialkoeffizient: Wahrscheinlichkeit nach Bernoulli: n: Anzahl der Versuche p: Wahrscheinlichkeit für einen Treffer k: Anzahl der Treffer Summenwahrscheinlichkeit, höchstens z Treffer: n bk( n, k) := wennk <,, k bk( n, k ) PBinver( n, p, k) := bk( n, k) p k ( p) n k Bsp.: PBinver( 5, 0.4, 9) = SPBin_h( n, p, z) := k = 0 Bsp.: SPBin_h( 5, 0.4, 9) = z Bsp.: bk( 0, 3) = 0 PBinver( n, p, k) Summenwahrscheinlichkeit, mindestens z Treffer: SPBin_m( n, p, z) := k = z Bsp.: SPBin_m( 5, 0.4, 9) = SPBin_h( 5, 0.4, 8) = n PBinver( n, p, k) F(n,p) in Tabellenform, für große n : SPBinTabelle( n, p) := k 0 b ( p) n m 0 b while s 0 for k < n k k + b p ( n k + ) b ( p) k m k b k 0.. n s s + m k m k s m n m

Abschlussprüfung Mathematik 12 Nichttechnik S I - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik S I - Lösung GS.06.0 - m_nt-s_lsg_gs_pdf Abschlussprüfung 0 - Mathematik Nichttechnik S I - Lösung Im Folgenden werden relative Häufgkeiten als Wahrscheinlichkeiten interpretiert. Teilaufgabe.0 Bei einer Casting-Show

Mehr

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen BOS 12 NT 98 Seite 1 Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen Mathematik (nichttechnische Ausbildungsrichtungen) (Arbeitszeit für eine A- und eine S-Aufgabe insgesamt

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2012 Mathematik 13 Technik - Aufgabe B I - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2012 Mathematik 13 Technik - Aufgabe B I - Lösung Abiturprüfung Berufliche Oberschule 2012 Mathematik 13 Technik - Aufgabe B I - Lösung Während der Fußballweltmeisterschaft 2010 in Südafrika gelangte der Krake Paul aus dem Aquarium in Oberhausen zu großer

Mehr

M A T H E M A T I K. Fachabiturprüfung 2016 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen

M A T H E M A T I K. Fachabiturprüfung 2016 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen Fachabiturprüfung 2016 an Fachoberschulen und Berufsoberschulen M A T H E M A T I K Nichttechnische Ausbildungsrichtungen Dienstag, 31. Mai 2016, 9.00 12.00 Uhr Die Schülerinnen und Schüler haben je eine

Mehr

Teilaufgabe 1.0 In einem Karton befinden sich 50 Bauteile, von denen genau vier fehlerhaft sind.

Teilaufgabe 1.0 In einem Karton befinden sich 50 Bauteile, von denen genau vier fehlerhaft sind. Abiturprüfung Berufliche Oberschule 2008 Mathematik 13 Technik - B I - Lösung Ein Autoteilezulieferer stellt für eine Autofirma ein aufwändiges elektronisches Bauteil her. Langfristig stellt man fest,

Mehr

Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2

Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2 Abiturprüfung Berufliche Oberschule 003 Mathematik 13 Technik - B I - Lösung Teilaufgabe 1.0 Eine Kfz-Werkstatt für Autoelektronik baut in Fahrzeuge Alarmanlagen ein. Die Werkstatt verfügt über 11 Stellplätze,

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

MATHEMATIK. Fachabiturprüfung 2012 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen

MATHEMATIK. Fachabiturprüfung 2012 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen Fachabiturprüfung 2012 an Fachoberschulen und Berufsoberschulen MATHEMATIK Nichttechnische Ausbildungsrichtungen Freitag, 25. Mai 2012, 9.00-12.00 Uhr Die Schülerinnen und Schüler haben je eine Aufgabe

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 9 Unterlagen für die Lehrkraft Abiturprüfung 2010 Mathematik, Leistungskurs 1. Aufgabenart Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest) 2. Aufgabenstellung siehe Prüfungsaufgabe

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 14 Wahlteil B www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 14 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Testen von Hypothesen bei gegebenem Annahmebereich - Übungen

Testen von Hypothesen bei gegebenem Annahmebereich - Übungen Mathias Russ, MK 19.04.2007 Hypothesentest_Ueb_Ber.mcd Testen von Hypothesen bei gegebenem Annahmebereich - Übungen (1) Schulschwänzer Von einem Schüler wird behauptet, dass er (mindestens) 40% der Unterrichtstage

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

MATHEMATIK. Fachabiturprüfung 2009 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen

MATHEMATIK. Fachabiturprüfung 2009 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen Fachabiturprüfung 2009 an Fachoberschulen und Berufsoberschulen MATHEMATIK Nichttechnische Ausbildungsrichtungen Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler haben je eine Aufgabe

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 27.09.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 Ein international tätiges Unternehmen mit mehreren Niederlassungen in Deutschland und dem übrigen Europa hat seine überfälligen Forderungen

Mehr

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2

Stochastik: Hypothesentest Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J1/J2 Stochastik Testen von Hypothesen (einseitiger Test) allgemein bildende Gymnasien J/J2 Alexander Schwarz www.mathe-aufgaben.com Oktober 25 Hinweis: Für die Aufgaben darf der GTR benutzt werden. Aufgabe

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 10 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Mathematik 12. Jahrgangsstufe - Hausaufgaben

Mathematik 12. Jahrgangsstufe - Hausaufgaben Mathematik 2. Jahrgangsstufe - Hausaufgaben Inhaltsverzeichnis Wahrscheinlichkeitsrechnung 2. Wahrscheinlichkeitsrechnung.......................... 2.. Binomialkoeffizienten Berechnen....................

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2000 Mathematik 13 Technik - B I - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2000 Mathematik 13 Technik - B I - Lösung Abiturprüfung Berufliche Oberschule Mathemati Techni - B I - Lösung Teilaufgabe (7 BE) Aus einem gut gemischten Kartenspiel mit Karten erhält ein Spieler Karten. Als Treffer gelten die drei Karten Pi As,

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise

Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise Hypothesentest Ein Biologe vermutet, dass neugeborene Küken schon Körner erkennen können und dies nicht erst durch Erfahrung lernen müssen. Er möchte seine Vermutung wissenschaftlich beweisen. Der Biologe

Mehr

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli BOS 98 S I Im ahmen einer statistischen Erhebung wurden 5 repräsentative Haushalte ausgewählt und im Hinblick auf ihre Ausstattung mit Fernsehern, adiorecordern sowie Homecomputern untersucht. Dabei gaben

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2005 Mathematik 13 Technik - B I - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2005 Mathematik 13 Technik - B I - Lösung biturprüfung Berufliche Oberschule 0 Mathematik 3 Technik - B I - ösung Die Firma Schraubfix hat sich auf den Vertrieb von Schrauben spezialisiert. Für eine utofirma liefert sie zwei rten von Schrauben,

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

2) Ihr Chef schlägt vor, dass die Firma nicht Lieferant werden soll, wenn

2) Ihr Chef schlägt vor, dass die Firma nicht Lieferant werden soll, wenn Aufgabe Stochastik Mathe Grundkurs Signifikanztests Ein Hersteller von Schrauben behauptet, dass mindestens 90% seiner Schrauben rostfrei sind, wenn sie fünf Jahre lang im Außenbereich eingesetzt werden.

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 003 Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten L 1, L und L 3 zur Bearbeitung aus.

Mehr

Box. Mathematik ZU DEN KERNCURRICULUM-LERNBEREICHEN:

Box. Mathematik ZU DEN KERNCURRICULUM-LERNBEREICHEN: Box Mathematik Schülerarbeitsbuch P (μ o- X μ + o-) 68,3 % s rel. E P (X = k) f g h A t μ o- μ μ + o- k Niedersachsen Wachstumsmodelle und Wahrscheinlichkeitsrechnung ZU DEN KERNCURRICULUM-LERNBEREICHEN:

Mehr

Abiturvorbereitung Mathematik Stochastik. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Stochastik. Copyright 2013 Ralph Werner biturvorbereitung Mathematik Stochastik Copyright 2013 Ralph Werner Zufallsexperiment in Zufallsexperiment ist ein Vorgang, dessen usgang ungewiss ist das beliebig oft wiederholt werden kann dessen Wiederholungen

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Länderübergreifende gemeinsame nteile in den Abiturprüfungen der Länder Bayern, Hamburg, Mecklenburg-Vorpommern, Niedersachsen, Schleswig-Holstein und Sachsen Musteraufgaben für das Fach Mathematik Die

Mehr

Schleswig-Holstein Kernfach Mathematik

Schleswig-Holstein Kernfach Mathematik Aufgabe 5: Stochastik Der Schokoladenhersteller Nikolaus Hase produziert für namhafte Discounter Ostereier. Auf Grund langjähriger Erfahrungen ist davon auszugehen, dass 95 % der Produktion der Norm entsprechen

Mehr

Grundwissen Stochastik Grundkurs 23. Januar 2008

Grundwissen Stochastik Grundkurs 23. Januar 2008 GYMNSIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium WILHELM-VON-HUMBOLDT-STRSSE 7 91257 PEGNITZ FERNRUF 09241/48333 FX 09241/2564 Grundwissen Stochastik Grundkurs 23. Januar 2008 1.

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

ABITURPRÜFUNG AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK. Ausbildungsrichtung Technik

ABITURPRÜFUNG AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK. Ausbildungsrichtung Technik ABITURPRÜFUNG 0 11 AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK Ausbildungsrichtung Technik Mittwoch, den 1. Juni 011, 9.00 Uhr bis 1.00 Uhr Die Schülerinnen

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. XV. Testen von Hypothesen ================================================================== 15.1 Alternativtest ------------------------------------------------------------------------------------------------------------------

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 26 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Grundwissen zur Stochastik

Grundwissen zur Stochastik Grundwissen zur Stochastik Inhalt: ABHÄNGIGE EREIGNISSE...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON ERGEBNISSEN...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON MERKMALEN IN VIERFELDERTAFELN...2 ABSOLUTE HÄUFIGKEIT...2

Mehr

Müsli-Aufgabe Bayern GK 2009

Müsli-Aufgabe Bayern GK 2009 Müsli-Aufgabe Bayern GK 2009 1 Anlässlich einer Studie wurden 2000 Jugendliche im Alter von 18 Jahren zu ihren Ernährungsgewohnheiten befragt Von den Befragten gaben 740 an, am Morgen nicht zu frühstücken

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

: p= 1 6 ; allgemein schreibt man hierfür H : p = p. wird Gegenhypothese genannt und mit H 1 bezeichnet.

: p= 1 6 ; allgemein schreibt man hierfür H : p = p. wird Gegenhypothese genannt und mit H 1 bezeichnet. Einseitiger Signifikanztest Allgemein heißt die Hypothese, dass eine vorgelegte unbekannte Wahrscheinlichkeitsverteilung mit einer angenommenen Verteilung übereinstimmt, Nullhypothese und wird mit H 0

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten SCHRIFTLICHE ABITURPRÜFUNG 004 KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 004 Mathematik (Grundkurs) Arbeitszeit: 0 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G,

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 003 Mathematik (Grundkurs) Arbeitszeit: 0 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G, G und G 3 zur Bearbeitung aus. Gewählte

Mehr

Würfelspiel. Heinz Klaus Strick. Beispiele zum Einsatz des TI-30X Plus MultiView :

Würfelspiel. Heinz Klaus Strick. Beispiele zum Einsatz des TI-30X Plus MultiView : Beispiele zum Einsatz des TI-30X Plus MultiView : Würfelspiel Für den schulartübergreifenden Einsatz Stochastik Grundkurs Besonders passend für Baden-Württemberg und Bayern Bei einem Würfelspiel hat ein

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π 53 Allgemein gilt der folgende Satz. Satz 6.1 (Lokaler Grenzwertsatz von de Moivre und Laplace) Die Wahrscheinlichkeit P n (k) einer Binomialverteilung (mit der Erfolgswahrscheinlichkeit p im Einzelexperiment)

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi 1. Susi und Fritzi bereiten ein Faschingsfest vor, dazu gehört natürlich ein Faschingsmenü. Ideen haben sie genug, aber sie möchten nicht zu viel Zeit fürs Kochen aufwenden. In einer Zeitschrift fanden

Mehr

Überblick Hypothesentests bei Binomialverteilungen (Ac)

Überblick Hypothesentests bei Binomialverteilungen (Ac) Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung

Mehr

Stochastik Q11 und Q12

Stochastik Q11 und Q12 Skripten für die Oberstufe Stochastik Q11 und Q12 P(X = 2) = B(20; 0,4; 2) 0,3 0,25 0,2 0,15 0,1 0,05 11. 0 0 1 2 3 4 5 6 7 8 9 10 H. Drothler 2012 www.drothler.net Stochastik Oberstufe Seite 1 Inhalt

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Prüfungsteil 2, Aufgabe 8 Stochastik

Prüfungsteil 2, Aufgabe 8 Stochastik Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 7: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 GK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( )

Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( ) R. Brinkmann http://brinkmann-du.de Seite 7.09.0 Lösungen Stochastik vermischt II Ergebnisse: E E E E4 E E6 Ergebnis Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz betragen. Ergebnisse

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Prüfungsteil 2, Aufgabe 8 Stochastik

Prüfungsteil 2, Aufgabe 8 Stochastik Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 8: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 LK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 7.9. Lösungen zum Hypothesentest II Ausführliche Lösungen: A A Aufgabe Die Firma Schlemmerland behauptet, dass ihre Konkurrenzfirma Billigfood die Gewichtsangabe,

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

a. P(t) = t P(8.5) = 11.55

a. P(t) = t P(8.5) = 11.55 .S. a. Die Wohnungspreise für gut ausgestattete Wohnungen in Graz-Stadt (Mittlere Monatsmieten in Euro/Quadratmeter) erhöhen sich im Schnitt jedes Jahr um 30 -Cent. Mit. Jänner 2000 lag der Preis bei 9.

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Der Graph der Funktion f in einem kartesischen Koordinatensystem wird mit G f bezeichnet.

Der Graph der Funktion f in einem kartesischen Koordinatensystem wird mit G f bezeichnet. . Schulaufgabe aus der Mathematik 0. Januar 0 Wb erlaubte Hilfsmittel: TR, MH Arbeitszeit: 5 Minuten. Gegeben ist die reelle Funktion f : x x x + x + mit x R. Der Graph der Funktion f in einem kartesischen

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Kinga Szűcs

Kinga Szűcs Kinga Szűcs 28.10.2014 Warum wird Stochastik in der Schule unterrichtet? Welche Vorteile kann der Stochastikunterricht in den MU bringen? Welche Nachteile kann der Stochastikunterricht haben? Welche Ziele

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung aus.

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr