Mathematischer Vorkurs Physik A

Größe: px
Ab Seite anzeigen:

Download "Mathematischer Vorkurs Physik A"

Transkript

1 Winter Semester 05 Mathematischer Vorkurs Physik A :5 3:00 INF 30 ghs Jörg Marks, Physikalisches Institut, INF 6 marks@physi.uni-heidelberg.de Inhalt Mi 7.0. entfällt Kein Raum Zahlen und Zeichen Gleichungen, Physikalische Einheiten Funktionen Differentialrechnung Integralrechnung Vektoren Weitere Infos im Laufe der Veranstaltung unter Homepage der Physik A Vorlesung

2 Ziel der Veranstaltung Ziel Wiederholen der Konzepte der Kursstufenmathematik im Hinblick auf die Rechenfertigkeiten, die zu Beginn der Physikvorlesung benötigt werden. Keine Beweise! Konzepte so erläutern, dass Sie mit den Erklärungen selbständig kleine Aufgaben lösen können. Ein wichtiger Teil der Physik Vorlesung ist das selbstständige Üben des gelernten Stoffes. Das geht aber nur mit einigen rechnerischen Grundfertigkeiten. Diese wollen wir wiederbeleben. Niveau Wir werden auf dem Level unterhalb des Mathe-Kursstufen-Unterrichts einsteigen. Gute Mathe Schüler werden erst bei den Vektoren etwas Neues lernen! Struktur des Kurses 5 min. Vorlesung 0 min. Lösen von Übungsaufgaben (gemeinsam mit Ihrem Nachbarn!) 5 min. Besprechung der Lösungen

3 Programm Zahlen und Zeichen Zahlenmenge und Zeichen definieren Gleichungen Begriffe, Brüche, Kürzen, Ausklammern, Binomische Formeln Rechnen mit Potenzen Quadratische Gleichungen Physikalische Grössen und Einheiten Umrechnen und Eponenten Funktionen Definition, Beispiele häufig verwendeter Funktionen, Eigenschaften Polynome, Potenzfunktionen, Eponentialfunktion, Graphische Darstellung

4 Zahlen, Zeichen und Einheiten Zahlen Uneingeschränkt ausführbare Rechenoperationen + N = f; ; 3; 4; ::::g N0 = f0; ; ; 3; 4; ::::g Z = f0; ; ; 3; ::::g : Q und irrationale Zahlen R (reelle Zahlen) Anordnung der rellen Zahlen Physikalisch kontinuierliche Vorgänge finden in der Regel in R statt.

5 Mathematische Zeichen N Summenzeichen: a a a... a N, N N i i Summen endlicher Folgen: N i N N ungerade Zahlen i N i N N ( N ) gerade Zahlen i N Produktzeichen: a i a a... a N i Fakultät: N N! N i i Potenzen : n a n a a a... a a, n Z a 0, a n i a := Basis Wurzeln: m a n a n m n = Eponent, a R an := Radikant Binomialkoeffizienten: an m = Wurzeleponent µ n n! = ; k k! (n k)! µ Y k n n k+i = k i i= n k ; n! = 3 ::: n

6 Mathematische Zeichen

7 Gleichungen Begriffe Term: mathematischer Ausdruck aus Variablen, Konstanten und Rechenvorschriften (+, - etc.) in mathematisch zulässiger Anordnung. Gleichung: zwei Terme S und T, die durch ein Gleichheitszeichen verbunden sind ( S = T ). Ungleichung: zwei Terme S und T, die durch eines der Relationszeichen >, <,>=, <= oder das Ungleichheitszeichen verbunden sind. Lösung von Gleichungen Rezept: Führe auf beiden Seiten der Gleichung die selben Operationen durch, bis die gesuchte Grösse auf einer Seite isoliert steht. Terme berechnen, Hauptnenner suchen, kürzen, ausklammern, binomische Formeln anwenden,. Beispiel: =a j = a j:a = a Binomische Formeln: allgemein: (a b) = a a b + b a b = (a b) (a + b) n µ X n n k k n (a b) = a b k k=0

8 Rechnen mit Potenzen n, m Z Potenzen gleicher Basis: a m a n a m n Produkt a ::: a} a ::: a} = a {z a {z m am Quotient n a m n Potenzieren a Potenzen mit gleichen Eponenten: m m (a b) a b Produkt n m n (a ) a m Y i= m n a m n = (a) m n = (a) m n =D i= m-te Wurzel aus der n-ten Wurzel von a p q 0, p, q R = a = am+n n Q Lösungen von quadratischen Gleichungen v u p up = u q t4 {z } i= a= m+n Y a m am Quotient ( ) m b b m Die obigen Rechenregel gelten auch für Potenzen mit Beispiel: ³ a n Y D = 0 : Lösung D > 0 : Lösungen D < 0 : keine Lösung in R

9 Physikalische Größen Physikalische Gesetze Die physikalischen Gesetze beschreiben die Zusammenhänge zwischen physikalischen Größen, die durch mathematische Objekte (Zahlen, Vektoren, Funktionen) und Gleichungen zueinander in Beziehung stehen. Das Ziel ist die eperimentelle Erfassung und Beschreibung der Naturvorgänge aufgrund der ihnen zugrunde liegenden Gesetze. Messungen Messungen vergleichen eine physikalische Größe mit einer definierten Einheit oder einer Menge zusammengesetzter Einheiten. Das Resultat einer Messung besteht also aus Messwert, Einheit und Messfehler

10 Internationales Einheitensystem (SI) Nach internationaler Vereinbarung hat man in der Physik sieben Basisgrößen (Grundgrößen) mit den zugehörigen Basiseinheiten eingeführt (954 auf der 0. Generalkonferenz für Maß und Gewicht (CGPM) in Paris). Basisgröße Basiseinheit Einheitenzeichen Länge Meter m Masse Kilogramm kg Zeit Sekunde s Elektrische Stromstärke Ampere A Thermodynamische Temperatur Kelvin K Stoffmenge Mol mol Lichtstärke Candela cd Die. Generalkonferenz für Maß und Gewicht (CGPM) hat 960 zwei ergänzende SI-Einheiten festgelegt: Einheit Einheitenzeichen Ebener Winkel Radiant rad Räumlicher Winkel Steradiant sr Größe Abgeleitete physikalische Einheiten mit besonderen Einheitennamen

11 Einheitenname Zeichen Größe Beziehung Becquerel Bq Aktivität Bq = s- Coulomb C elektr. Ladung C = A s Dioptrie* dpt Brechkraft dpt = m- Farad F elektr. Kapazität F = C V- = A s4 m- kg- Grad Celsius C Celsius-Temperatur C = K *** Gray Gy Energiedosis Gy = J kg- = m s- Henry H Induktivität H = Wb A- = m kg s- A- Hertz Hz Frequenz Hz = s- Joule J Energie, Arbeit, Wärmemenge J = kg m s- Katal kat katalytische Aktivität kat = mol s- Lumen lm Lichtstrom lm = cd sr Lu l Beleuchtungsstärke l = lm m- = cd sr m- Newton N Kraft N = kg m s- Newtonmeter* N m Drehmoment N m = kg m s- Ohm Ω elektr. Widerstand Ω = V A- = kg m A- s-3 Pascal Pa Druck Pa = N m- = kg m- s- Radiant** rad ebener Winkel rad = m m- Siemens S elektr. Leitwert S = A V- = A s3 m- kg- Sievert Sv Äquivalentdosis Sv = J kg- = m s- Steradiant** sr Raumwinkel sr = m m- Tesla T magnet. Flussdichte T = Wb m- = kg A- s- Var* var elektr. Blindleistung var = W = kg m s-3 Volt V elektr. Spannung, elektr. Potential V = J C- = kg m A- s-3 Voltampere* VA elektr. Scheinleistung VA = W = kg m s-3 Watt W Leistung, Energiestrom W = J s- = kg m s-3 Weber Wb magnet. Fluss Wb = V s = kg m A- s-

12 Eponenten Schreibweise

13 Beispiel Die Betrachtung von Einheiten gibt Hinweise, welche Abhängigkeiten eine physikalische Größe haben kann. Fadenpendel: Schwingungsdauer t? [t] = T l [l] = L m g [m] = M L [g] = T t» g m l T» L T M L T» L + T M Durch Koeffizientenvergleich =0 = = g =) t» g l = s l g Die Konsistenz der Einheiten ist auf jeden Fall eine notwendige Bedingung für die Beschreibung eines physikalischen Vorganges.

14 Kleinste Strukturen 7000 Kupferatome Quarks / mm Durchmesser Spiralgalaie NGC 3 Radiogalaien Entferntestes Objekt 30 kpc Große Distanzen 00 kpc Entfernung von MACS0647-JD 40 Millionen Jahre nach Urknall Übungsaufgaben I: Gleichungen und Einheiten

15 Funktionen Einführung Weg s [m] Eperiment: Rollender Ball Messe Weg und Zeit Zeit t Weg s s.0m s 3s 4s 3.9m 6.05m 8.m 5s 9.95m Bestimme aus der Messung s (t ) t Zuordnungsvorschrift Die Zuordnung s=f(t) heißt Funktion. Mathematische Schreibweise: f: R R, t t oder f: y = Zu jeder Funktion eistiert ein Graph Zeit t [s] Zuordnung und Graphische Darstellung Beispiele häufig auftretender Funktionen Konstante Funktion y = constant Lineare Funktion y=m+b Parabel y = a0 + a + a y N Polynom n-ten Grades y ai i i 0

16 Verschiedene Potenzfunktionen Potenzfunktionen a zunehmend f() f() f() = () a zunehmend a f() = ()a a natürliche Zahl gerade ungerade Wurzeln f() Hyperbeln f() f() = ()a f() = ()a a rationale Zahl a < 0 ganze Zahl

17 Funktionen - Eigenschaften Punktsymmetrie Achsensymmetrie f() f() gerade Funktionen ungerade Funktionen f() = f(-) f() = -f(-) Periodische Funktionen f() Gleiche f() wiederholen sich immer wieder: p f(+p) = f()

18 Funktionen - Eigenschaften Skalierung Verschiebungen f() f() f() = (+) +4 f() = () f() = f() = Umkehrfunktionen f() Rezept: Auflösen nach : = f-(y) Vertauschen von mit y: y = f-() f() f()- Graphisch: Umkehrfunktion durch spiegeln an f()= Übungsaufgaben II: Funktionen

19 Verknüpfung von Funktionen Verkettung Df ; Dg µ R f : Df! R; g : Dg! R g(f ) = g ± f : Df ±g! R! g(f ()) Summe, Differenz und Produkt g f : Df g! R! g() f () Quotient g : Df! R g f g()! f ()

20 Eponentialfunktion () Eponentielles Wachstum Das Wachstum einer Bakterienkultur ist durch Folgendes charakerisiert: In gleich langen Zeitintervallen vergrößert sich die Zahl der Bakterien um den gleichen Faktor Zu Beginn besteht die Kultur aus 000 Bakterien. Anzahl der Bakterien Während jeder Stunde verdoppelt sich die Zahl der Bakterien. Anzahl N der Bakterien nach t Stunden N (t) = 000 t N (4) = = Radioaktiver Zerfall Anzahl der Kerne N nach t Stunden N (t) = 000 ( )t Eponentialfunktion Anzahl der Kerne In gleich großen Intervallen ändert sich der Funktionswert um den gleichen Faktor f () = c ab f () = c ab = c (ab ) = c A b > 0 : Wird um den Wert /b erhöht, so ändert sich f um den Faktor a b < 0 : Wird um den Wert /b erhöht, so ändert sich f um den Faktor /a

21 Eponentialfunktion () Eulersche Zahl e ist die einzige Zahl für die gilt: e > + 8 R e = lim ( + n! n ) = : ::: n e wird häufig in der Physik als Basis verwendet, z.b. zur Beschreibung von Zerfallsprozessen: f (t) = f (0) ep( t) = f (0) e t Logarithmus Umkehrfunktion der Eponentialfunktion Logarithmus von b zur Basis a a = b = a log(b) Logarithmus zur Basis 0: Zehner-Logarithmus (lg) Logarithmus zur Basis e: natürlicher Logarithmus (ln) Basen sind nicht eindeutig: Jede Eponentialfunktion kann auf jede Basis c log(b) c bezogen werden a log(a) log(b) = a =c t f (t) = f (0) s! f (t) = f (0) e t = ln s c log(a)

22 Trigonometrische Funktionen Definition: Winkelfunktionen im rechtwinkligen Dreieck a : Ankathete b a cos( ) : sin( ) : b : Gegenkathete c c c c : Hypothenuse b SI Einheit Radian tan( ) Satz des Pythagoras sin ( ) cos ( ) a b c a sin( ) cos( ) Einheitskreis y cos( ) : a sin( ) : b a - b Führe periodische Funktionen ein f : f ( ) sin( ) g : f ( ) cos( ) Illustration: - Wertebereich: 0 < < cos( ) sin( )

23 Formeln für trigonometrische Funktionen sin( y) = sin() cos(y) cos() sin(y) cos( y) = cos() cos(y) sin() sin(y) sin() = sin() cos() cos() = cos () sin () sin( ) = r ( cos()) sin() sin(y) = sin( sin(3) = 3 sin() 4 sin3 () cos(3) = 4 cos3 () 3 cos() cos( ) = r y y ) cos( ) [cos( y) cos( + y)] cos() cos(y) = [cos( y) + cos( + y)] sin() cos(y) = [sin( y) + sin( + y)] sin() sin(y) = ( + cos())

24 Trigonometrische Funktionen in der Physik Fadenpendel: Federpendel: Viele Schwingungsvorgänge in der Natur werden durch komplizierte periodische Funktionen beschrieben, bei denen sich Amplitude und Periode zeitlich ändern können. So zum Beispiel bei gekoppelten oder erzwungenen Schwingungen. Gekoppelte Schwingungen: Erzwungene Schwingungen: Resonanz Katastrophe: Windentfachte Schwingung der Tacoma Bridge Allgemeine Funktion zur Beschreibung einfacher Schwingungsvorgänge: A(t) = A0 sin(! t + Á0 ) A0 : ma. Amplitude Kreisfrequenz Phase hängt vom schwingfähigen System ab, z.b. Fadenlänge, Masse,.. 0 wird durch die Anfangsbedingungen festgelegt

25 Trigonometrische Funktionen Beschreibung einfacher Schwingungsvorgänge s(t) = A sin ( t + 0) Änderung der Amplitude A Änderung der Phase 0 s(t) s(t) t t Änderung der Kreisfrequenz s(t) t Übungsaufgaben III: Funktionen

26 Funktionen - graphische Darstellung Funktionsplotter in Java Mathematische Software Pakete Maima freie Software Maple Mathematica Stehen in den Fakultäten oder im URZ zur Verfügung?? Sehr mächtiges Werkzeug Einführung mit Beispiel notebooks z.b. unter Nützliche und sehr gute Dokumentation. One Minute Demo: Führen Sie dieses File aus mit installiertem mathematica aus

27 mathematica player Erlaubt mathematica online demos anzusehen Ansehen von interactive mathematica documents im web browser Ansehen von mathematica Beispielen und Files mathematica Lizenzen 4 Tage Test Lizenz ist frei (danach 9 Euro / Semester). Bitte ausprobieren!! Links: mathematica Lizenzen fuer Studenten Infos 4 Tage Test Lizenz

28 Online Werkzeug Mathematische Berechnungen Online Wolfram Alpha eine neue Computational Knowledge Machine Ziel: Finde Antworten nicht nur durch Suchen in Datenbanken, sondern auch durch Berechnungen. Merkmale: Dynamisch brechnete Resultate, e.g. teilweise Funktionalität von mathematica Keine strenge Syntabindung Steht als app für tablet und smart phone zur Verfügung. wolfram alpha pro ~ 3 Euro

29 Formelsammlung Trigonometrische Funktionen sin(t ) cos(t ) sin(t ) sin(t ) cos(t ) cos(t ) sin( t ) sin(t ) cos( t ) cos(t ) sin(t ) 0 t m, m ganze Zahl, m ganze Zahl sin( ) sin( ) cos( ) cos( ) sin( ) cos( ) cos( ) cos( ) sin( ) sin( ) cos(t ) 0 t (m )

SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE

SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE (Quelle: EU-Richtlinie 80/181/EWG) 1. SI-Basiseinheiten Größe Name der Einheit Einheitenzeichen Länge Meter m Masse Kilogramm kg Zeit Sekunde s Elektrische

Mehr

Carmen Weber DM4EAX. DARC AJW Referat

Carmen Weber DM4EAX. DARC AJW Referat Carmen Weber DM4EAX In der Physik benötigen wir feste Größen und Einheiten, damit Begriffe eindeutig benannt werden können. Diese sind gesetzlich festgelegt. Am 2. Juli 1969 wurde in Deutschland das Gesetz

Mehr

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Um physikalische Aussagen über das Verhältnis von Messgrößen zu erhalten, ist es notwendig die Größen exakt und nachvollziehbar

Mehr

vom 23. November 1994 (Stand am 1. Januar 2013)

vom 23. November 1994 (Stand am 1. Januar 2013) Einheitenverordnung 1 941.202 vom 23. November 1994 (Stand am 1. Januar 2013) Der Schweizerische Bundesrat, gestützt auf die Artikel 2 Absatz 2 und 3 Absatz 2 des Messgesetzes vom 17. Juni 2011 2, 3 verordnet:

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@m.uni-saarland.de SS 07 Vorlesung 5 MINT Mathkurs SS 07 / 8 Vorlesung 5 (Lecture 5) Reelle Funktionen einer reellen Veränderlichen

Mehr

Einheiten. 2. Richtlinie 80/181/EWG 1

Einheiten. 2. Richtlinie 80/181/EWG 1 Seite 1/5 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Richtlinie 80/181/EWG 1 3. Quellen 5 1. Allgemeines Die Ingenieurwissenschaften sind eine Untermenge der Naturwissenschaften. Die Tragwerksplanung lässt

Mehr

Mathematik- Vorkurs. Übungs- und Arbeitsbuch für Studienanfänger

Mathematik- Vorkurs. Übungs- und Arbeitsbuch für Studienanfänger Mathematik- Vorkurs Übungs- und Arbeitsbuch für Studienanfänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer Oberstudienrat Kurt Georgi und Doz. Dr. rer. nat. habil. Gisela Trippier Unter Mitarbeit

Mehr

= 4 = x + 3. y(x) = x

= 4 = x + 3. y(x) = x Ü Aufgabenblatt Inhalt Brüche. Gleichungen. Summen. Potenzen. Logarithmen. Ebener Winkel (Definition und Einheiten). Trigonometrische Funktionen. Basisgrößen und Basiseinheiten des SI. Bequemes Rechnen

Mehr

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Grundlagen der Elektrotechnik I 17 11.01.01 Einführung eines Einheitensystems.1 Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Physikalische Größen: Meßbare,

Mehr

Physikalische Größen und Einheiten

Physikalische Größen und Einheiten Physikalische Größen und Einheiten Physikalische Größen und deren Messung Der Begriff physikalische Größe ist in DIN 1313 definiert. Eine physikalische Größe kennzeichnet messbare Eigenschaften und Zustände

Mehr

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle. 1 Grundlagen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes,

Mehr

2015, MNZ. Jürgen Schmidt. 3.Tag. Vorkurs. Mathematik FUNKTIONEN WS 2015/16

2015, MNZ. Jürgen Schmidt. 3.Tag. Vorkurs. Mathematik FUNKTIONEN WS 2015/16 Vorkurs Mathematik FUNKTIONEN WS 05/6 3.Tag Funktionen einer Veränderlichen Eine Funktion f einer reellen Variablen Definition 3 ist eine eindeutige Zuordnungsvorschrift zwischen den Zahlen einer nichtleeren

Mehr

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz (3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist

Mehr

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Zusatztutorium PPH #1: Einheiten

Zusatztutorium PPH #1: Einheiten Zusatztutorium PPH #1: Einheiten Alle physikalischen Größen haben eine fest zugeordnete physikalische Einheit, z.b. Weg, Länge, Höhe : Meter (m) Zeit: Sekunde (s) Kraft: Newton (N) Im Allgemeinen werden

Mehr

Vorkurs Mathematik (Allgemein) Übungsaufgaben

Vorkurs Mathematik (Allgemein) Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

Mathematische Methoden I (WS 16/17)

Mathematische Methoden I (WS 16/17) Mathematische Methoden I (WS 16/17) Grundlagen Grundgrößen mit Maßeinheiten (SI-Einheiten ( Système International d Unités )) Grundgröße Einheit Formelzeichen Länge m (Meter) l Zeit s (Sekunde) t (time)

Mehr

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können:

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können: Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet ein negativer Eponent? Wie kann man den Grad einer Wurzel noch darstellen? Wie werden Potenzen potenziert? Was bewirkt

Mehr

Einführung in die Algebra

Einführung in die Algebra 1 Einführung in die Algebra 1.1 Wichtige Formeln Formel Symbol Definition Wert Bedingungen n Fakultät n! k = 1 2 3 n n N Binomialkoeffizient Binomische Formeln Binomischer Lehrsatz Potenzen ( ) n k Definition

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Bogenmaß, Trigonometrie und Vektoren

Bogenmaß, Trigonometrie und Vektoren 20 1 Einführung Bogenmaß: Bogenmaß, Trigonometrie und Vektoren Winkel können in Grad ( ) oder im Bogenmaß (Einheit: 1 Radiant, Abkürzung 1 rad) angegeben werden. Dabei gilt 2 rad 360. Die Einheit 1 rad

Mehr

Definition, Funktionsgraph, erste Beispiele

Definition, Funktionsgraph, erste Beispiele 5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

1. Sem. 60 Lektionen. Profil E 140 Lektionen. Mathematik

1. Sem. 60 Lektionen. Profil E 140 Lektionen. Mathematik 1. Sem. 60 Lektionen Grundlagen / 15L Zahlen, Zahlendarstellung, Gebrauch des Taschenrechners Koordinatensystem, grafische Darstellungen SI-Einheiten Zeitberechnungen Prozente, Promille Taschenrechner

Mehr

Stoffverteilungsplan Mathematik 10 auf der Grundlage des Lehrplans Klettbuch

Stoffverteilungsplan Mathematik 10 auf der Grundlage des Lehrplans Klettbuch mathematischen Objekten und Situationen anwenden, interpretieren und K4: Unterschiedliche Darstellungsformen je nach Situation und Zweck auswählen und zwischen ihnen wechseln K6: Überlegungen, Lösungswege

Mehr

A5 Exponentialfunktion und Logarithmusfunktion

A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

Vorkurs der Ingenieurmathematik

Vorkurs der Ingenieurmathematik Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben

Mehr

1. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f(x) definiert werden.

1. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f(x) definiert werden. Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Elementare Funktionen. Begründen Sie, ob durch folgende Vorschriften reelle Funktionen y = f( definiert werden. { { 2

Mehr

Bildungszentrum Limmattal. Semesterplan Mathematik. Logistik und Technologie Polymechaniker/in, Konstrukteur/in V17.4

Bildungszentrum Limmattal. Semesterplan Mathematik. Logistik und Technologie Polymechaniker/in, Konstrukteur/in V17.4 Bildungszentrum Limmattal Logistik und Technologie Semesterplan Mathematik V17.4 2/5 1. Semester XXF1.1 Grundlagen der Mathematik XXF1.1.1 Zahlen, Zahlendarstellung, Gebrauch des Taschenrechners XXF1.1.2

Mehr

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist:

Nullstellen. Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 15 y 10 5 5 x 10 15 Nullstellen Häufig interessiert man sich für die Werte der unabhängigen Variable einer Funktion, für die der Funktionswert 0 ist: 98 Sei f : R R eine Funktion. Ist x 0 D(f) eine reelle

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Dimension physikalischer Größen p.1/12

Dimension physikalischer Größen p.1/12 Dimension physikalischer Größen Physik 131 Peter Riegler p.riegler@fh-wolfenbuettel.de Fachhochschule Braunschweig/Wolfenbüttel Dimension physikalischer Größen p.1/12 Basisgrößen Alle physikalischen Größen

Mehr

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen:

Folgende Eigenschaft beschreibt eine gewisse Symmetrie des Funktionsgraphen: für alle x [0,2000]. Das Intervall [0,2000] könnte aus ökonomischer Sicht relevant sein, wenn etwa die Maximalauslastung bei 2000 produzierten Waschmaschinen liegt. Folgende Eigenschaft beschreibt eine

Mehr

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden.

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden. R. Brinkmann http://brinkmann-du.de Seite 0.0.008 Einführung: Funktionenklassen Bisher haben wir nur ganzrationale Funktionen kennen gelernt. Sie gehören zu der Klasse der Rationalen Funktionen. In der

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

Thema: Thema 1: Zahlenmengen, Mengen

Thema: Thema 1: Zahlenmengen, Mengen Thema: Inhalt und Handlung Thema 1: Zahlenmengen, Mengen Vernetzung und Anwendung Zahlenbereiche von natürliche Zahlen bis komplexe Zahlen beschreiben und darstellen Rechengesetze formulieren und begründen

Mehr

3.1 Rationale Funktionen

3.1 Rationale Funktionen 3.1 Rationale Funktionen EineFunktionf : R R der Formx P(x) Q(x) mit Polynomen P(x), Q(x) heißt rationale Funktion. Der maximale Definitionsbereich von f = P(x) Q(x) Sei x 0 R mit Q(x 0 ) = 0. Ferner sei

Mehr

Funktionen einer Variablen

Funktionen einer Variablen Kapitel 2. Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000.

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen

Mehr

MESSTECHNIK. Veranstaltung Wasserbauliches Versuchswesen Vertiefungsrichtung Umwelttechnik

MESSTECHNIK. Veranstaltung Wasserbauliches Versuchswesen Vertiefungsrichtung Umwelttechnik MESSTECHNIK Veranstaltung Wasserbauliches Versuchswesen Vertiefungsrichtung Umwelttechnik Dr.-Ing. Mario Oertel Oberingenieur Akademischer Rat Lehr- und Forschungsgebiet Wasserwirtschaft und Wasserbau

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

Brückenkurs Mathematik zum Sommersemester 2015

Brückenkurs Mathematik zum Sommersemester 2015 HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende

Mehr

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson Integrierter Kurs P1a im WiSe 2009/10 Skript Experimentalphysik Prof. Dr. Oliver Benson I. Einleitung 1. Das physikalische Weltbild Die Physik beschäftigt sich mit den Grundbausteinen der wahrnehmbaren

Mehr

Mathematischer Vorkurs MATH

Mathematischer Vorkurs MATH Mathematischer Vorkurs MATH (01.09.2014 19.09.2014) AOR Dr. Andreas Langer WS 2014-2015 Mathematischer Vorkurs TU Dortmund Seite 1 / 254 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2 Inhaltsverzeichnis 1 Translationen 2 2 Skalierungen 4 3 Die

Mehr

Logarithmen und Exponentialgleichungen

Logarithmen und Exponentialgleichungen Logarithmen und Exponentialgleichungen W. Kippels 8. April 2011 Inhaltsverzeichnis 1 Definitionen 4 2 Gesetze 5 3 Logarithmen und Taschenrechner 5 4 Exponentialgleichungen 7 5 Übungsaufgaben zu Exponentialgleichungen

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stichwortverzeichnis. Symbole. Stichwortverzeichnis Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................

Mehr

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem .0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein

Mehr

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3)

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3) - 1-4 Differentialrechnung 4.1 Ableitung einer Funktion Eine Funktion f() ist in einer Umgebung definiert. Abb.: Differenzenquotient Man kann immer einen Quotienten bilden, ( + ) f ( + h) f ( ) f h f +

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

Vorkurs Analysis und lineare Algebra. Teil 4

Vorkurs Analysis und lineare Algebra. Teil 4 Vorkurs Analysis und lineare Algebra Teil 4 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Inhaltsverzeichnis Teil 1 Teil 2 Teil 3 Teil 4 Abbildungen & Funktionen Potenz, Wurzel, Exponential

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....

Mehr

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Physikalische Größen und Einheiten

Physikalische Größen und Einheiten Physikalische Größen und Einheiten 4 März 2010 I Physikalische Größen Alle Gleichungen in den Versuchsanleitungen sind mathematische Verknüpfungen physikalischer Größen (siehe auch DIN 1313) Jede physikalische

Mehr

I Physikalische Größen und Gleichungen

I Physikalische Größen und Gleichungen I Physikalische Größen und Gleichungen 1 I Physikalische Größen und Gleichungen 1. i Physikalische Größen Naturvorgänge werden durch ihre Merkmale (Zustände, Eigenschaften, Vorgänge) beschrieben. Merkmal

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10 RMG Haßfurt Grundwissen Mathematik Jahrgangsstufe 0 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 0 Wissen und Können. Berechnungen am Kreis Bogenmaß Das Bogenmaß ist das zu

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab!

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab! Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab! Aufgabe 1 (Zuordnung reeller Größen zu komplexen Größen) Der Vorteil der komplexen Rechnung gegenüber der reellen besteht darin,

Mehr

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden Von den Rahmenvorgaben des Lehrplans zum Schulcurriculum Anregungen für Mathematik in Hauptschule und Regionaler Schule in Rheinland-Pfalz auf der Grundlage von Maßstab 10 Der Stoffverteilungsplan geht

Mehr

2.3 Elementare Funktionen

2.3 Elementare Funktionen .3 Elementare Funktionen Trigonometrische Funktionen (Winkelfunktionen) Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ

Mehr

Potenzfunktionen Spezialfall 1: Exponent positiv und ganzzahlig

Potenzfunktionen Spezialfall 1: Exponent positiv und ganzzahlig Potenzfunktionen Spezialfall : Eponent positiv und ganzzahlig Funktionsvorschrift: f() = p, wobei p N feste Zahl f() = f() = f() = - - - - 0 - - - f() = - Wertebereich D = R falls p ungerade: W = R falls

Mehr

Physik: Größen und Einheiten

Physik: Größen und Einheiten Physik: Größen und Einheiten Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Größen in der Physik Größen Eine physikalische Größe besteht aus: G = m [E] Maßzahl Die (reelle)

Mehr

Mathematische Einführung

Mathematische Einführung und euklidische Geometrie 13.04.2011 Motivation Warum braucht man eine mathematische Einführung? Die Physik ist in der Sprache der Mathematik formuliert. Mathematische Methoden essentiell zur Lösung von

Mehr

Potenz- & Exponentialfunktionen

Potenz- & Exponentialfunktionen Potenz- & Exponentialfunktionen 4. Kapitel aus meinem ANALYSIS - Lehrgang MNprofil - MIttelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 24. Oktober 2011 Überblick über

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Logarithmen und Exponentialgleichungen

Logarithmen und Exponentialgleichungen Logarithmen und Exponentialgleichungen W. Kippels 27. Oktober 2018 Inhaltsverzeichnis 1 Vorwort 4 2 Definitionen 5 3 Gesetze 6 4 Logarithmen und Taschenrechner 6 5 Exponentialgleichungen 8 6 Übungsaufgaben

Mehr

Naturwissenschaften Teil 1

Naturwissenschaften Teil 1 Naturwissenschaften Teil Auswertung von Messreihen Grafische Darstellung Die nachfolgende Tabelle enthält die Messwerte zur Aufnahme einer Abkühlungskurve für reines Zinn. Stelle die Messwerte in einem

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen. Grundbegriffe Definition.. Eine Abbildung oder Funktion f ist eine Zuordnung(svorschrift), die jeder Zahl x aus dem Definitionsbereich D(f) der Funktion

Mehr