Lösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit"

Transkript

1 Prof. Dr.-Ing. Jörg Raisch Dr.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Veranstaltung Mehrgrößenregelsysteme Aufgabe 2. ösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit a) (i) Eigenwerte von A:λ =, λ 2 =,λ 3 = 2 System ist instabil (ii) = 3, Rang() = 2 (A, B) nicht steuerbar 2 (iii) Rang( H, ) = 3,λ steuerbar Rang( H,2 ) = 3,λ 2 steuerbar Rang( H,3 ) = 2,λ 3 nicht steuerbar mit H,i = [λ i I A B (iv) Transformationsmatrix: z.b. T = 3 mitt = Transformiertes System (für gewähltest ):.5 ẋ (t) =.5 x (t)+ u(t) () 2 Steuerbares Teilsystem (für gewähltest ): [ [ [.5 ẋ (t) = x (t)+ x 2.5 (t)+ u(t) (2) Nicht-steuerbares Teilsystem (für gewähltest ): ẋ 2 (t) = 2x 2 (t) (3) (v) Eigenwerte des steuerbaren Teilsystems (A ): λ, =,λ,2 = Eigenwerte des nicht-steuerbaren Teilsystems (A 22):λ 22 = 2 Die Eigenwerte ändern sich durch die Transformation nicht. Zusätzlich stimmen die Eigenwerte des (nicht-)steuerbaren Teilsystems mit den (nicht-)steuerbaren Eigenwerten aus Aufgabenteil (ii) überein. (vi) (A,B) ist stabilisierbar, da für den nicht-steuerbaren Eigenwert gilt: Re(λ 22 ) <. Das sieht man auch schon in (iii). b)

2 (i) Eigenwerte von A:λ = 2, λ 2 =, λ 3 = System ist instabil (ii) =, Rang() = (A, B) nicht steuerbar (iii) Rang( H, ) = 2,λ nicht steuerbar Rang( H,2 ) = 3,λ 2 steuerbar Rang( H,3 ) = 2,λ 3 nicht steuerbar mit H,i = [λ i I A B (iv) Transformationsmatrix: z.b. T = mitt = Transformiertes System (für gewähltest ): 2 5 ẋ (t) = 2 2 x (t)+ u(t) (4) Steuerbares Teilsystem (für gewähltest ): ẋ (t) = x (t)+ [ 2 5 x 2(t)+u(t) (5) Nicht-steuerbares Teilsystem (für gewähltest ): [ 2 2 ẋ 2(t) = x 2(t) (6) (v) Eigenwerte des steuerbaren Teilsystems (A ): λ = Eigenwerte des nicht-steuerbaren Teilsystems (A 22 ):λ 22, = 2, λ 22,2 = Die Eigenwerte ändern sich durch die Transformation nicht. Zusätzlich stimmen die Eigenwerte des (nicht-)steuerbaren Teilsystems mit den (nicht-)steuerbaren Eigenwerten aus Aufgabenteil (ii) überein. (vi) (A,B) ist nicht stabilisierbar, dare(λ 22,2 ) >. Das sieht man auch schon in (iii). c) (i) Eigenwerte von A:λ =, λ 2 = 2, λ 3 = 3, System ist as. stabil (ii) =, Rang() = (A, B) nicht steuerbar (iii) Rang( H, ) = 2,λ nicht steuerbar mit H,i = [λ i I A B Rang( H,2 ) = 2,λ 2 nicht steuerbar Rang( H,3 ) = 2,λ 3 nicht steuerbar Anmerkung: Aus Aufgabenteil (ii) kann auch direkt geschlussfolgert werden, dass kein Eigenwert des Systems steuerbar ist. (iv) Es existiert kein steuerbares Teilsystem, da kein Eigenwert steuerbar ist. Das gegebene System entspricht also dem nichtsteuerbaren Teil (A 22 = A). 2

3 (v) Eigenwerte des steuerbaren Teilsystems: keine. Eigenwerte des nicht-steuerbaren Teilsystems sind die Eigenwerte von A. (vi) (A,B) ist stabilisierbar, dare(λ i ) < i. Das sieht man auch schon in (i). Aufgabe 2.2 a) (i) Eigenwerte von A:λ = 2, λ 2 =,λ 3 = System ist instabil (ii) O = Rang(O) = < 3 (A,) nicht beobachtbar [ λi I A (iii) Rang(O H, ) = 2,λ nicht beobachtbar mito H,i = Rang(O H,2 ) = 3,λ 2 beobachtbar Rang(O H,3 ) = 2,λ 3 nicht beobachtbar (iv) Transformationsmatrix: z.b. T = mit T = Transformiertes System (für gewähltest ) ẋ (t) = x (t)+ u(t) (7) y(t) = [ x (t) (8) beobachtbares Teilsystem (für gewähltest ) ẋ (t) = x (t)+u(t) (9) y(t) = x (t) () nicht-beobachtbares Teilsystem (für gewähltest ) [ [ ẋ 2 (t) = x 2 (t)+ x (t) () (v) Eigenwerte des beobachtbaren Teilsystems (A ): λ, = Eigenwerte des nicht-beobachtbaren Teilsystems (A 22):λ 22, = 2 undλ 22,2 = Die Eigenwerte ändern sich durch die Transformation nicht. Zusätzlich stimmen die Eigenwerte des (nicht-)beobachtbaren Teilsystems mit den (nicht-)beobachtbaren Eigenwerten aus Aufgabenteil (ii) überein. (vi) Das System ist entdeckbar, dare(λ 22,i ) <,i =,2. Das sieht man auch in (iii). 3

4 b) (i) Eigenwerte von A:λ =, λ 2 = 2, λ 3 = 3 System ist instabil (ii) O = Rang(O) = 2 < 3 (A,) nicht beobachtbar 5 [ λi I A (iii) Rang(O H, ) = 2,λ nicht beobachtbar mito H,i = Rang(O H,2 ) = 3,λ 3 beobachtbar Rang(O H,3 ) = 3,λ 3 beobachtbar (iv) Transformationsmatrix: z.b. T = mit T = Transformiertes System (für gewähltest ) ẋ (t) = 6 5 x (t)+ u(t) (2) 5 3 y(t) = [ x (t) (3) beobachtbares Teilsystem (für gewähltest ) [ [ ẋ (t) = x 6 5 (t)++ u(t) (4) y(t) = [ x (t) (5) nicht-beobachtbares Teilsystem (für gewähltest ) ẋ 2(t) = x 2(t)+ [ 5 3 x (t)+u(t) (6) (v) Eigenwerte des beobachtbaren Teilsystems (A ): λ, = 2 undλ,2 = 3 Eigenwerte des nicht-beobachtbaren Teilsystems (A 22): λ 22 = Die Eigenwerte ändern sich durch die Transformation nicht. Zusätzlich stimmen die Eigenwerte des (nicht-)beobachtbaren Teilsystems mit den (nicht-)beobachtbaren Eigenwerten aus Aufgabenteil (ii) überein. (vi) Das System ist nicht entdeckbar, dare(λ 22 ) >. Das sieht man auch in (iii). c) (i) Eigenwerte von A:λ =, λ 2 = 2, λ 3 = 3, System ist asymptotisch stabil (ii) O = Rang(O) = < 3 (A,) nicht beobachtbar [ λi I A (iii) Rang(O H, ) = 2,λ nicht beobachtbar mito H,i = Rang(O H,2 ) = 2,λ 3 nicht beobachtbar Rang(O H,3 ) = 2,λ 3 nicht beobachtbar Anmerkung: Aus Aufgabenteil (ii) kann auch direkt geschlussfolgert werden, dass kein Eigenwert des Systems beobachtbar ist. 4

5 (iv) Es existiert kein beobachtbares Teilsystem, da kein Eigenwert beobachtbar ist. Das gegebene System entspricht also dem nichtbeobachtbaren Teilsystem (A 22 = A). (v) Eigenwerte des beobachtbaren Teilsystems: keine Eigenwerte des nicht-beobachtbaren Teilsystems sind die Eigenwerte von A (vi) (A,B) entdeckbar, dare(λ i ) < i Aufgabe 2.3 a) Steuerbarkeitsmatrix: = Rang() = 2, (A, B) nicht steuerbar Transformationsmatrix: 3 z.b. T = 2 3 mit T = 2 Transformiertes System (für gewähltest ) 2 ẋ (t) = 3 7 x (t)+ u(t) (7) 2 Steuerbares Teilsystem (für gewähltes T ): [ [ [ 2 ẋ (t) x 3 (t) x 2 7 (t)+ u(t) (8) Nicht-steuerbares Teilsystem (für gewähltest ): ẋ 2 (t) = 2x 2 (t) (9) Das System ist stabilisierbar, da Re(λ 22 ) <. b) Beobachtbarkeitsmatrix: O = 2 Rang(O) = 2 < 3 nicht beobachtbar (2) Aufgabe 2.4 5

6 a) Eigenwerte vona: λ = 2,λ 2 =,λ 3 = b) Steuerbarkeitsmatrix: 2 4 = 5 8 alle Eigenwerte sind steuerbar, da Rang() = 3 c) Beobachtbarkeitsmatrix: 2 3 O = Alle Eigenwerte sind beobachtbar, da Rang(O) = 3 Aufgabe 2.5 i out A i i u c u in M M2 R a) Modellierung: Masche M:u in = u +R i = u +R du dt Masche M2:u in = u + i = di dt +i Knoten A: i out = i +i = u R + u in R +i Zustandsmodell: ẋ(t) = [ R R x(t)+ 2 [ R u(t) mitx(t) = y(t) = [ R x(t)+ R u(t) mity(t) = i out (t) [ u (t), u(t) = u i (t) in (t) (2) 6

7 b) Steuerbarkeitsmatrix: = [ R 2 2, Rang() = n det() (22) Damit ergibt sich die Bedingung für Steuerbarkeit: R c) Ermitteln des steuerbaren Teilsystems von (2): Annahme:R =, d.h. das System ist nicht vollständig steuerbar. MitR = in (2) und (22) ergibt sich: [ ẋ(t) = R x(t)+ 2 }{{} =:A [ R2 }{{} =:B u(t) (23) y(t) = [ R x(t)+ u(t) (24) }{{} R =: Steuerbarkeits- [ und Transformationsmatrix: R2 R2 2 = 2 Rang() = wähle z.b. T = 2 Transformiertes System (für gewähltest) : [ ẋ [ (t) = R x (t)+ u(t) (25) 2 }{{}}{{} =T B =T AT y(t) = [ R x (t)+ u(t) (26) }{{} R =T steuerbares Teilsystem (für gewähltest): [ R2 ẋ (t) = x (t)+u(t) ( y(t) = R ) x (t)+ R u(t) +x 2 (t) }{{} Dynamik klingt exponentiell ab (27) d) Das steuerbare Teilsystem (27) ist erster Ordnung. Damit ist die Ausgangsmatrix skalar und gleich der Beobachtbarkeitsmatrix. Das steuerbare Teilsystem ist beobachtbar, wenn R, also wenn R (28) Anmerkung: Wenn die Systemmatrix ein Vielfaches der Einheitsmatrix ist, dann ist sie identisch mit der Systemmatrix des transformierten Systems unabhängig vom gewähltent. 7

8 e) Interpretation der Ergebnisse: Aufstellen der Übertragungsfunktion des Gesamtsystems (2): G(s) := i out(s) u in (s) = (si A) B+D (29) = [ R [ s+ [ R s+ R R 2 + (3) R ( ) s s+ + (R s+) = ( ) (3) s+ (R s+) Interpretation der Bedingungen: Wenn R =, dann besitzen beide Zweige der Schaltung die gleiche Zeitkonstante und können nicht mehr unabhängig von einander beeinflusst werden (d.h. das System ist nicht vollständig zustandssteuerbar). In (25) sieht man, dass x 2(t) exponentiell gegen geht. Mit x(t) = Tx (t) folgt daraus, dass für genügend große t x (t) = x 2 (t) gilt, dass also die Kondensatorspannung immer das -fache des Spulenstroms ist, unabhängig von der Eingangsspannung u in (t). Somit können in diesem Fall nicht beide Zustände unabhängig voneinander beeinflusst werden. Das System ist deshalb nicht steuerbar. Des Weiteren kommt es fürr = zu einer Pol-Nullstellen-Kürzung in (3). G(s) = s+ R s+ = s+ R s+ (32) Daher ist (2) keine Minimalrealisierung von (32) (siehe Übungsblatt Zustandsdarstellungen aus Übertragungsmatrizen ). Aber das steuerbare Teilsystem (27) ist eine Minimalrealisierung von (32), solange R, da es dann steuerbar und beobachtbar ist. Wenn nun zusätzlichr = gilt, dann kommt es zu einer weiteren Pol-Nullstellen- Kürzung in (32): G(s) = (33) Der Strom i out verhält sich dann (nach Abklingen der homogenen ösung) proportional zur Spannungu in. Somit sind keine Aussagen über die Zustände des Systems aufgrund von Ein- und Ausganssignalen mehr möglich (das System ist nicht beobachtbar). 8

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik Formelsammlung für den Teilbereich Zustandsraumdarstellung der Vorlesung Einführung in die Regelungstechnik Diese Formelsammlung ist ein Auszug aus der Formelsammlung zur Systemtheorie-Vorlesung von Matthias

Mehr

Übungsskript Regelungstechnik 2

Übungsskript Regelungstechnik 2 Seite 1 von 11 Universität Ulm, Institut für Mess-, Regel- und Mikrotechnik Prof. Dr.-Ing. Klaus Dietmayer / Seite 2 von 11 Aufgabe 1 : In dieser Aufgabe sollen zeitdiskrete Systeme untersucht werden.

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Klausur: Regelungs- und Systemtechnik 2

Klausur: Regelungs- und Systemtechnik 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Klausur: Regelungs- und Systemtechnik 2 Kirchhoff-Hörsaal 1 Donnerstag, den 19. 09. 2013 Beginn: 09.30 Uhr Bearbeitungszeit: 120 Minuten

Mehr

Zusammenfassung der 7. Vorlesung

Zusammenfassung der 7. Vorlesung Zusammenfassung der 7. Vorlesung Beschreibung und Analyse dynamischer Systeme im Zustandsraum Methoden zur Berechnung der Transitionsmatrix Φ(t) = e At Numerische Integration Reihenentwicklung Mit Hilfe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am.. Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

60 Minuten Seite 1. Einlesezeit

60 Minuten Seite 1. Einlesezeit 60 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Erreichbarkeit und Zustandsregler

Erreichbarkeit und Zustandsregler Übung 5 Erreichbarkeit und Zustandsregler 5. Kriterium für die Erreichbarkeit Betrachtet wird wieder ein zeitkontinuierliches, lineares und zeitinvariantes System (LZI bzw. LTI : Linear Time Invariant)

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3..7 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 68 Punkte) Prof. Dr. H. P. Geering Prof. Dr. L. Guzzella BSc - Sessionsprüfung 7..8 egelungstechnik II 5-59- Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 unterschiedlich

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Die Riccati-Gleichung

Die Riccati-Gleichung Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Institut für Mess- und Regeltechnik Prof. M. Steiner, Prof. Dr. H. P. Geering Ch. Roduner Die Riccati-Gleichung Inhalt:

Mehr

Band I: Analyse und Synthese. lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K

Band I: Analyse und Synthese. lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K J. Ackermann Abtastregelung Zweite Auflage Band I: Analyse und Synthese Mit 71 Abbildungen lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K laventa r- h' r O o JJj Sadigebiefei

Mehr

Mathematische Modelle und numerische Methoden in der Biologie

Mathematische Modelle und numerische Methoden in der Biologie Institut für Angewante un Numerische Mathematik Prof. Dr. Tobias Jahnke, Dipl.-Biol. Michael Kreim Mathematische Moelle un numerische Methoen in er Biologie Sommersemester 2012 5. Übungsblatt Gruppenübung

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge MTR/BMT

Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge MTR/BMT TECHNISCHE UNIVERSITÄT ILMENAU Institut für Automatisierungs- und Systemtechnik Fachgebiet Simulation und Optimale Prozesse Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge

Mehr

1 Frequenzverhalten Revision : 996

1 Frequenzverhalten Revision : 996 Signale & Systeme 2 - Formelsammlung (Revision : 996 - powered by LATEX Seite von 6 Frequenzverhalten Revision : 996 Logarithmische Darstellungen Lrel (db Lrel (NP P2/P A2/A 00000 53 0 0 0 5 90000 0362

Mehr

Stabilität von geschalteten DAEs

Stabilität von geschalteten DAEs Elgersburg Workshop 2011, 16.02.2011, 17:30-18:00 Einleitung Klassische DAEs Distributionelle Lösungen für geschaltetet DAEs Inhalt 1 Einleitung Systemklasse: Definition und Motivation Beispiele 2 Klassische

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Automatisierungstechnik 1

Automatisierungstechnik 1 Automatisierungstechnik Hinweise zum Laborversuch Motor-Generator. Modellierung U a R Last Gleichstrommotor Gleichstromgenerator R L R L M M G G I U a U em = U eg = U G R Last Abbildung : Motor-Generator

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden.

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden. Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

4.7 Lineare Systeme 1. Ordnung

4.7 Lineare Systeme 1. Ordnung 3. Die allgemeine Lösung der inhomogenen Differentialgleichung lautet damit yx = y hom x + y inh x = c x + c 2 x + 8 x + 4 xlnx2 4 xlnx = C x + C 2 x + 4 xlnx2 4 xlnx. Wir haben c 2 + 8 zu C 2 zusammengefasst.

Mehr

Entwurf durch Polvorgabe

Entwurf durch Polvorgabe Grundidee der Zustandsregelung Entwurf durch Polvorgabe Zustandsgröß ößen, innere Informationen aus dem Prozeß,, werden zurückgef ckgeführt. Vorteile: Bei Bei vollständiger Steuerbarkeit ist ist eine eine

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte) BSc - Sessionsprüfung 6.8.8 Regelungstechnik II (5-59-) Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 (unterschiedlich gewichtet, total 6 Punkte) Um die

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Moderne Methoden der Regelungstechnik

Moderne Methoden der Regelungstechnik Moderne Methoden der Regelungstechnik Professor Dr.-Ing. Ferdinand Svaricek Professur für Steuer und Regelungstechnik Fakultät für Luft und Raumfahrttechnik Universität der Bundeswehr München Vorwort Diese

Mehr

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Behrang Monajemi Nejad Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung Grundlagen der Regelungstechnik

Mehr

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte)

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte) Prof. L. Guzzella Prof. R. D Andrea BSc - Sessionsprüfung 5.8.8 Regelungstechnik I (151-591-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 1 Minuten 9 (unterschiedlich

Mehr

Erster Akt: Begriffe und Beispiele

Erster Akt: Begriffe und Beispiele Eigenvektoren 1 Erster Akt: Begriffe und Beispiele 2 Sei L : A A eine lineare Abbildung von einem Vektorraum A in sich sich selbst. (Man denke an z. B. an A = R 2.) 3 Ein Vektor a A, a 0, heißt ein Eigenvektor

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Einführung in die Laplace Transformation

Einführung in die Laplace Transformation Einführung in die aplace Transformation Peter Riegler 17. Oktober 2 Zusammenfassung Dieser Text gibt Ihnen eine kurze Einführung in das Werkzeug der aplace Transformation. Es zeigt Ihnen, wo und warum

Mehr

Regelung einer Luft-Temperatur-Regelstrecke

Regelung einer Luft-Temperatur-Regelstrecke Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Regelung einer Luft-Temperatur-Regelstrecke

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Systemtheorie und Regelungstechnik Abschlussklausur

Systemtheorie und Regelungstechnik Abschlussklausur Systemtheorie und Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 7. März 5, 9:-:, Freiburg, Georges-Koehler-Allee, HS 6 und HS 6 page

Mehr

Signal- und Systemtheorie 2

Signal- und Systemtheorie 2 Signal- und Systemtheorie 2 Tamara Ulrich WS 03/04 ii Inhaltsverzeichnis 1 Elementare Prinzipien und Modellierung 1 1.1 Elemente in Systemen........................ 1 1.1.1 Mechanisches Translationssystem

Mehr

Regelungstechnik I (WS 15/16) Übung 2

Regelungstechnik I (WS 15/16) Übung 2 Regelungstechnik I (WS 5/6) Übung Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Aufgabe. (Linearität, Zeitinvarianz). Überprüfen Sie die folgenden dynamischen Systeme auf Linearität

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Populations Modelle Das Lotka-Volterra Model. Robin Gwinner Seminarleiterin: Dr. Iryna Rybak

Populations Modelle Das Lotka-Volterra Model. Robin Gwinner Seminarleiterin: Dr. Iryna Rybak Populations Modelle Das Lotka-Volterra Model Robin Gwinner Seminarleiterin: Dr. Iryna Rybak 04.05.2016 Motivation Rote Liste: Motivation Rote Liste: Motivation Rote Liste: Motivation Motivation Motivation

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Lösungen zur 3. Übung

Lösungen zur 3. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Zusammenfassung der 6. Vorlesung

Zusammenfassung der 6. Vorlesung Zusammenfassung der 6. Vorlesung w-transformation Die w-transformationbildet das Innere des Einheitskreises der z-ebene in die linke w-ebene ab. z 1 w= z+1, bzw. z= 1+w 1 w Nach Anwendung der w-transformationist

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft

UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft Institut für Elektrotechnik u. Informationstechnik Grundlagen der Systemtheorie Prof. Dr. techn. F. Gausch 21 Inhaltsverzeichnis I Dynamik

Mehr

Zustandsraum: Historische Einordnung

Zustandsraum: Historische Einordnung Zustandsraum: Historische Einordnung Die Grundlagen der Zustandsraummethoden wurden im Zeitraum 1955 1965 von Kalman und seinen Kollegen in dem Research Institute for Advanced Studies in Baltimore entwickelt.

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Übungsaufgaben Lösungen

Übungsaufgaben Lösungen Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Differentialgleichungssysteme Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 DGlSysteme - Zusammenfassung Allgemeine Differentialgleichungssysteme.Ordnung

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Vordiplomprüfung Grundlagen der Elektrotechnik III

Vordiplomprüfung Grundlagen der Elektrotechnik III Vordiplomprüfung Grundlagen der Elektrotechnik III 16. Februar 2007 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/

Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/ Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/10 2.3.2010 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN SS 2001 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4

Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4 Prof. Roland Gunesch Sommersemester Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4 Analysieren Sie folgende mathematischen Modelle der Liebesbeziehung zwischen

Mehr

1. Klausur zu Vektor- und Matrizenrechnung I und II WS 2009/10 und SS 2010 am Dienstag, dem 27. Juli 2010

1. Klausur zu Vektor- und Matrizenrechnung I und II WS 2009/10 und SS 2010 am Dienstag, dem 27. Juli 2010 Dr. M. Scheer Fakultät für Mathematik Technische Universität Dortmund 1. Klausur zu Vektor- und Matrizenrechnung I und II WS 2009/10 und SS 2010 am Dienstag, dem 27. Juli 2010 Name: Vorname: Matr.-Nr.:

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

Zustandsraum und Digitale Regelung

Zustandsraum und Digitale Regelung Zustandsraum und Digitale Regelung von Erstellt am 13 April 2015 Seite 1 Inhaltsverzeichnis 2. Digitale Regelung: Einführung 3. Kurzübersicht: Zeitdiskrete Systeme 4. Stabilität zeitdiskreter Systeme 5.

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte)

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 013/014 Prof. Dr. J. Schmalian Blatt 8 Dr. P. P. Orth Abgabe 0.1.013 1. Komplexe Zahlen (5 + 5 + 5 + 5 + 5

Mehr

Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik

Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik Jürgen Struckmeier j.struckmeier@gsi.de, www.gsi.de/ struck Vortrag im Rahmen des Winterseminars Aktuelle Probleme der Beschleuniger-

Mehr

Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016

Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016 Hörsaal 2 Montag, den 08. 08. 2016 Beginn: 10.00 Uhr Bearbeitungszeit: 120

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Anwendungen des Eigenwertproblems

Anwendungen des Eigenwertproblems Anwendungen des Eigenwertproblems Lineare Differentialgleichungssysteme 1. Ordnung Lineare Differentialgleichungssysteme 2. Ordnung Verhalten der Lösung von linearen autonomen DGLS Hauptachsentransformation

Mehr