R. Brinkmann Seite

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "R. Brinkmann Seite"

Transkript

1 R. Brinkmann Seite 9..8 Linearen Funktion Aus der Sekundarstufe I sind Ihnen die Graphen linearer Funktionen als Geraden bekannt und deren Funktionsgleichungen als Geradengleichungen. Proportionale Zusammenhänge lassen sich durch Geraden darstellen. Am Fischstand auf dem Wochenmarkt kosten g Schillerlocken,5. Frau Barsch möchte g kaufen. Sie muss also,5 =,5 zahlen. Herr Dorsch kauft 5 g und muss,5 5 =,5 zahlen. Allgemein lässt sich sagen, die Kosten K bei konstantem Preis p. für die gekaufte Menge betragen K = p Die Kosten K sind also von der Menge abhängig und somit eine Funktion von. Dafür schreibt man K = p. K() wird auch Kostenfunktion genannt. Für den Kauf von Schillerlocken lautet die Kostenfunktion K() =,5, wobei,5 der Preis pro Mengeneinheit in und die Anzahl der Mengeneinheiten in Vielfachen von g ist. Ersetzt man K() durch, dann entsteht die bekannte Gleichung =,5. Im Koordinatensstem ist das eine Gerade durch den Nullpunkt. Sven hat einen Handvertrag mit monatlichen Grundgebühren von. Für jede Minute die er telefoniert fallen, an. a) Welche Kosten entstehen monatlich, wenn Sven min, 6 min, 9 min, min telefoniert? Stellen Sie die Werte in einer Wertetabelle dar. b) Zeichnen Sie den Graphen in ein geeignetes Koordinatensstem. c) Wie lautet die Funktionsgleichung für die Kostenrechnung? Lösung a) Die Kosten setzen sich additiv aus einem festen ( ) und einem variablen Anteil (, ) zusammen, wobei die Anzahl der telefonierten Minuten ist. Gesprächsdauer in min 6 9 Kosten in 6 8 Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite von

2 R. Brinkmann Seite 9..8 b) Graph 6 5 Kosten in f( ) =, Gesprächsdauer in min c) ist die unabhängige Variable für die Gesprächsdauer in Minuten. = f() ist die abhängige Variable für die monatlichen Gesamtkosten in. Bei folgender Rechnung werden die Einheiten min und weggelassen. Ansatz für die Funktionsgleichung: min: = f ( ) =, + = die Grundgebühren fallen immer an min: = f ( ) =, + = 6 6 min: = f ( 6) =, 6 + =... min: = f =, + Funktionsgleichung für Minuten Gesprächsdauer Beispiele zum aufstellen von Funktionsgleichungen: Ein Abwasserschacht enthält Liter Wasser. Jeden Tag kommen Liter dazu. Funktionsgleichung für die Wassermenge in Liter: f ( ) = +. Thorsten verdient jeden Monat netto. Funktionsgleichung für den Nettoverdienst in : Funktionsgleichung für den Nettoverdienst in : f ( ) = Ein Tank enthält Liter Diesel. Jede Woche verbraucht ein Motor 5 Liter. Funktionsgleichung für den Tankinhalt in Liter: f = 5 +. Soll für einen proportionalen Zusammenhang die Funktionsgleichung aufgestellt werden, ist zuerst zu überlegen: - Gibt es einen Anfangswert a - Wie groß ist die Änderungsrate (z.b. Änderung pro Tag, Minute, Stück oder Gewicht). - Ist die Änderungsrate positiv oder Negativ (positiv = Zunahme, negativ = Abnahme). Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite von

3 R. Brinkmann Seite 9..8 Sie kennen die Funktionsgleichung der Geraden in der Form: = m + b oder = m + n Da Geradengleichungen zur Familie der ganzrationalen Funktionen gehören, die ein zentrales Thema der Oberstufenmathematik sind, soll deren Darstellungsart von Anfang an auf diese übertragen werden. Definition Ganzrationale Funktion n ten Grades n n n Eine Funktion f ( ) mit f ( ) = an + an + an a + a + a heißt ganzrationale Funktion n - ten Grades. Die Zahlen a ; a ; a ;... a ; a ; a heißen Koeffizienten n n n Da die beiden letzten Summanden a + a zum Funktionsterm der Geradengleichung gehören, folgt die Definition: Definition Ganzrationale Funktion. Grades Eine Funktion f mit f = a + a und a, a heißt ganzrationale Funktion. Grades oder lineare Funktion Der Grad der Funktion wird durch den höchsten Eponenten von (hier also, denn = ) bestimmt. Der Koeffizient a steht für m und a steht für b oder n. Die Bezeichnung lineare Funktion rührt daher, dass der Graph einer linearen Funktion im rechtwinkligem Koordinatensstem eine Gerade darstellt. Merke Der Graph einer linearen Funktion stellt eine Gerade dar. Beispiele für Funktionsgleichungen linearer Funktionen: f( ) = f( ) = + f( ) = π f( ) = 5 f( ) = + a f( ) = a U Stellen Sie für die ganzzahligen Werte von D eine Wertetabelle auf und zeichnen Sie den Graphen. f ( ) = Definitionsmenge D = { 5} Bestimmen Sie die Wertemenge W für die Definitionsmenge D. In welchen Punkten schneidet der Graph die Koordinatenachsen? Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite von

4 R. Brinkmann Seite 9..8 Lösung f ( ) = D = { 5} f( ) = ( ) = = =,75 f( ) = = 9 f() = = = = =,5 6 f = = = = =,5 9 9 f = = = = =,75 f( ) = = = 5 5 f( 5) = 5 = = = =,75 5 f,75,75,5,75,75 5 = { } ( ) W,75,75 P und P f( ) Achsenschnittpunkte Achsenschnittpunkte sind die Punkte, in denen der Graph die Koordinatenachsen schneidet. Diese Werte lassen sich mehr oder weniger genau aus dem Graphen ablesen. Oft besteht auch die Möglichkeit, der Wertetabelle diese Daten zu entnehmen. Nun soll es darum gehen, diese Werte durch Rechnung, ohne Wertetabelle und Graph zu nutzen zu bestimmen. = f P (? ) P (? ) Schnittpunkt mit der - Achse (Ordinate) P : Die - Werte aller Punkte, die auf der - Achse liegen haben den Wert =. = + Allgemeine Gleichung der linearen Funktion: f a a Bedingung: = f = a + a = + a = a P a Der Schnittpunkt mit der Ordinate ist durch den Koeffizienten a bestimmt. Beispiel f P hat die Koordinaten. Wir schreiben: P = ( ) ( ) Merke Der Schnittpunkt mit der - Achse kann für alle lineare Funktionen der Form f = a + a direkt aus der Funktionsgleichung abgelesen werden P a. Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite von

5 R. Brinkmann Seite Schnittpunkt mit der - Achse (Abszisse) P : Die - Werte (Funktionswerte) aller Punkte, die auf der - Achse liegen, haben den Wert. Lösungsansatz: P f = wegen P f Beispiel: Bestimmen Sie von folgender Funktion die Achsenabschnitte und zeichnen Sie den Graphen. f( ) = + Schnittpunkt mit der - Achse: f( ) P Schnittpunkt mit der - Achse: f( ) = + = + = 9 = s = = 8 9 P =,5 8 f( ) Die - Koordinate des Schnittpunktes mit der - Achse wird auch Nullstelle genannt. Denn für diesen - Wert (an dieser Stelle ) ist der Funktionswert Null. U Berechnen Sie die Achsenschnittpunkte und zeichnen Sie den Graphen für f( ) = + Kontrollieren Sie die Nullstelle durch Einsetzen in f(). Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite 5 von

6 R. Brinkmann Seite Lösung f( ) = + Schnittpunkt mit der Achse : f( ) = P Schnittpunkt mit der Achse : f( ) = + = 9 9 = P 8 8 f( ) Probe: f 8 = + = + = + = 8 Die Steigung Die meisten Schienen oder Straßenfahrzeuge können nur geringe Steigungen überwinden. Im Gebirge setzt man daher Zahnradbahnen oder Seilbahnen ein, diese eignen sich auch für steile Strecken. % Das Verkehrsschild % Steigung bedeutet: Auf m horizontaler Strecke steigt die Straße um m an. Es wird ein Höhenunterschied von m überwunden. Steigungsdreieck m m Das Verhältnis zwischen Höhenunterschied und horizontaler Strecke wird Steigung genannt. Im dargestellten Fall beträgt die Steigung m : m =, % Definition Das Steigungsdreieck ist ein rechtwinkliges Dreieck für das gilt: Gegenkathete Steigung = m = = tan( α) Ankathete Der Winkel α wird auch Steigungswinkel genannt. α Ankathete Gegenkathete Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite 6 von

7 R. Brinkmann Seite In der nebenstehenden Grafik ist eine Ursprungsgerade, durch die Punkte P und P abgebildet. Die Steigung der Geraden soll mit Hilfe der Koordinaten von P und P ermittelt werden. Die Längen von Gegenkathete und Ankathete sind durch die Koordinatendifferenzen der beiden Punkte festgelegt. Für die Differenzen schreibt man: Δ = bzw. Δ = = f( ) = f() = f P α Δ = P Δ = Aus dem Steigungsdreieck lässt sich die Steigung der Geraden ablesen: ( ) f f Steigung = m = = = = tan( α) Die Steigung einer Geraden im Koordinatensstem ist das Verhältnis von Gegenkathete zur Ankathete eines beliebigen rechtwinkligen Dreiecks (Steigungsdreieck), dessen Hpotenuse Teil des Funktionsgraphen ist. Die Vermutung liegt nahe, dass der Koeffizient a der Geradengleichung f() = a + a für die Steigung der Geraden verantwortlich ist. Das soll nun bewiesen werden. Behauptung: Die Steigung m entspricht dem Koeffizienten a der Geradengleichung: f( ) = a+ a Beweis: f = a + a f = a m = = = + a Δ f( ) f( ) a + a ( a + a) Δ a + a a a a a a( ) a m a = = = = = Satz Die Steigung des Graphen einer linearen Funktion f = a + a a = = = = tan α Kurzfor der durch die Punkte P und P verläuft wird durch den Koeffizienten a bestimmt. f( ) f( ) m: a = Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite 7 von

8 R. Brinkmann Seite Sind also zwei Punkte einer Geraden durch ihre Koordinaten gegeben, so kann man:. Die Gerade zeichnen indem man die beiden Punkte miteinander verbindet und die so entstandene Gerade über die Punkte hinaus verlängert.. Die Steigung der Geraden mit Hilfe des Steigungsdreiecks errechnen. Beispiel P( ) und P( ) sollen Punkte einer Geraden sein, deren Steigung zu bestimmen ist. α P ( ) P ( ) P( ) = und = P ( ) = und = a + = = = = = tg α + α= arctg mit dem Taschenrechner (TI): : = nd TAN α 6,87 Funktionsgraphen zeichnen. Der Graph einer linearen Funktion ist immer eine Gerade. Um eine Gerade zeichnen zu können, sind zwei Punkte nötig. Ist die Funktionsgleichung bekannt, kennen wir auch den Schnittpunkt mit der Achse P. Den zweiten Punkt erhalten wir durch die Steigung (Steigungsdreieck). Beispiel f =,5 a =,5 = a = Der Graph schneidet die Achse in P ( ). Diesen Punkt zeichnen wir in das Koordinatensstem. Von P aus gehen wir zwei Einheiten nach rechts und Einheit nach unten. Wir erhalten P ( ). Nun verbinden wir P mit P und verlängern die Gerade nach beiden Seiten. P ( ) P Um von einem bestimmten Punkt der Geraden über das Steigungsdreieck zu einem zweiten Punkt zu gelangen, kann man sich in Kurzform folgendes merken: Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite 8 von

9 R. Brinkmann Seite Merke Nennereinheiten nach rechts, Zählereinheiten in Abhängigkeit vom Vorzeichen nach oben oder nach unten. Dabei gilt: für + nach oben, für nach unten. Liegen die beiden Punkte zu nahe beieinander, dann kann das Verfahren mehrfach angewendet werden. Auch wenn der Steigungsfaktor a eine ganze Zahl ist, lässt sich der zweite Punkt auf diese Weise bestimmen, denn jede Zahl lässt sich in einen Bruch verwandeln. Beispiel Der Punkt P( ) liegt auf einer Geraden mit der Steigung a =. a = = Geht man in vier Schritten vor, so liegen beide Punkte weit genug auseinander um eine saubere Gerade zeichnen zu können. Von P gehen wir vier mal jeweils einen Schritt nach rechts und einen Schritt nach unten und erhalten den Punkt P. Vier Schritte nach rechts und Schritte nach unten führt auf das gleiche Ergebnis. P( ) P ( ) Beispiel = f( ) = + a = = a = Der Graph schneidet die - Achse in P ( ). Diesen Punkt zeichnen wir in das Koordinatensstem. Von P aus gehen wir eine Einheit nach rechts und Einheiten nach oben. Wir erhalten P ( 5 ). Nun verbinden wir P mit P und verlängern die Gerade nach beiden Seiten. f( ) Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite 9 von

10 R. Brinkmann Seite 9..8 Training :LINFKT_ Zeichnen Sie die Graphen folgender Geraden möglichst ohne Wertetabelle. Benutzen Sie dazu den Schnittpunkt mit der Achse und das Steigungsdreieck. Berechnen Sie den Schnittpunkt mit der Achse und überprüfen Sie das Ergebnis anhand des Graphen..) f( ) = 5.) f( ) = + f f f 5.) f( ) = +.) 5.) = 6.) 7.) = + 8.) 9.) = +.) Begriffe und Darstellungsarten f = f = + f = f 5 = 7 Der Graph einer Funktion f() wird auch Schaubild K f genannt. Im rechtwinkligen Koordinatensstem hat jeder Punkt P eine und eine Koordinate P ( ). Die Koordinate entspricht der unabhängigen Variablen der Funktion f(). Die Koordinate entspricht dem jeweiligen Funktionswert von f(). Deshalb verwendet man oft die Schreibweise = f(). Speziell bei linearen Funktionen sind auch folgende Schreibweisen üblich: = f( ) = m+ b wird Geradengleichung genannt und ist nur eine andere Schreibweise für f = a + a wobei gilt: m = a und b = a Eine Geradengleichung kann in unterschiedlicher Form auftreten: Allgemeine Form der Geradengleichung: A + B + C = Beispiel : + + = Achsenabschnittsform der Geradengleichung: + = Beispiel: + = a b Zur weiteren Berechnung ist es sinnvoll, diese Gleichungen in die bekannte Form: = f = m + b oder = f = a + a zu bringen. Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite von

11 R. Brinkmann Seite 9..8 U K f ist das Schaubild der linearen Funktion f mit f =,5 ;. Statt Schaubild einer Funktion K f sagt man auch Graph einer Funktion f. a) Liegt der Punkt P(,5,75 ) auf der Geraden K f? Die Punkte A und B liegen auf K. Bestimmen Sie und. b) A B f A B c) Berechnen Sie die Nullstelle von f(). d) Für welche - Werte gilt f() >? e) * Bestimmen Sie den Wertebereich von f(), wenn D = gewählt wird. f) Der Graph g entsteht durch Verschiebung von K f in - Richtung und verläuft durch N( ). + Lösung f =,5 a) Punktprobe: = = f f P,5,75 : f(,5),5,5,75 P liegt auf der Geraden K oder P K b) A : f( ) =,5 = B : f( ) =,5 = A A A B B, 5 = + A A A B,5 = 6 :,5 =,5 = 5 = c) Nullstelle: f =,5 =,5 = + : P = = = d) f( ) =,5 > > + > > Für > ist f() > e) * * f ( ) =,5 D f = + ( + bedeutet > ) { } f > W = = f > f) Verschiebubg in - Richtung durch N( ) f parallele Gerade g( ) = + a Punktprobe mit: N : g = + a = 6+ a = 6 a = 6 g( ) = 6 verläuft parallel zu f ( ) = durch N( ) Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite von

12 R. Brinkmann Seite 9..8 Beispiel Der Schnellimbiss MC- Pommes benötigt für die Fritteusen täglich 9 kg frisches Fett. Momentan sind noch 5 kg im Lager vorhanden. a) Stellen Sie die Funktionsgleichung auf und zeichnen Sie den Graphen in ein geeignetes Koordinatensstem. b) Bei einem Lagerbestand von 95 kg soll der Filialleiter nachbestellen. Nach wie viel Tagen muss die Bestellung erfolgen? c) Wie lange reicht das Fett, wenn nicht nachbestellt wird? Lösung a) Die unabhängige Variable steht für die Zeit in Tagen. Die abhängige Variable f() steht für die verbleibende Menge Fett in kg. Der Anfangswert beträgt 5 kg. Die Änderungsrate ist negativ und beträgt 9kg/Tag. Da ein linearer Zusammenhang besteht gilt: f = a+ a mit a = 9 und a = 5 wird f = Menge in kg f( ) 95 kg 6 8 Zeit in Tagen b) Da bei 95 kg nachbestellt werden soll, gilt der Ansatz: f = = = = 55 : 9 55 = 8,56 9 Die Bestellung muss in etwa 8 Tagen erfolgen. c) Zu bestimmen ist der Schnittpunkt des Graphen mit der - Achse: f = 9+ 5 = 9 5 = = 5 : 9 5 =,58 9 Das Fett reicht noch etwa Tage. Erstellt von R. Brinkmann p_lin_fkt_.doc..7 : Seite von

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt: Punkte im Koordinatensstem Funktionen und ihre Schaubilder Punktprobe und Koordinaten berechnen Proportionale Funktionen 5 Steigung und Steigungsdreieck 6 Die Funktion = m + b 7 Funktionsgleichungen

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

7 Aufgaben im Dokument. Aufgabe P5/2010

7 Aufgaben im Dokument. Aufgabe P5/2010 Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

Zusammengesetzte Übungsaufgaben lineare Funktionen

Zusammengesetzte Übungsaufgaben lineare Funktionen Zusammengesetzte Übungsaufgaben lineare Funktionen Nr Aufgabe Lösung 1 Gegeben ist die Funktion g mit g ( x ) = 3 x + 9 a) Geben Sie die Steigung und den y- Achsenabschnitt an. (Begründung) c) Bestimmen

Mehr

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5 R. Brinkmann http://brinkmann-du.de Seite 07..009 Achsenschnittpunkte quadratischer Funktionen y P y ( 0 y ) s P ( 0) S y s f() P ( 0) s Bei der Betrachtung des Graphen in nebenstehender Abbildung fallen

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite..0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Wir erinnern uns, um die Funktionsgleichung einer Parabel zu bestimmen waren die Koordinaten von

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt:. Punkte im Koordinatensstem....................................... Funktionen und ihre Schaubilder..................................... Punktprobe und Koordinaten berechnen...............................

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

Relationen / Lineare Funktionen

Relationen / Lineare Funktionen Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

PARABELN. 10. Klasse

PARABELN. 10. Klasse PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 HUjmoellerowingen@aol.comU INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

WM.3.1 Die Polynomfunktion 1. Grades

WM.3.1 Die Polynomfunktion 1. Grades WM.3.1 Die Polynomfunktion 1. Grades Wenn zwischen den Elementen zweier Mengen D und W eine eindeutige Zuordnungsvorschrift vorliegt, dann ist damit eine Funktion definiert (s. Abb1.), Abb1. wobei D als

Mehr

Funktionen in der Mathematik

Funktionen in der Mathematik R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft

Mehr

Zusammenfassung und Wiederholung zu Geraden im IR ²

Zusammenfassung und Wiederholung zu Geraden im IR ² Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

Üben. Lineare Funktionen. Lösung. Lineare Funktionen

Üben. Lineare Funktionen. Lösung. Lineare Funktionen Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,

Mehr

Lineare Funktionen. Dirk Sewohl und Carola Willgeroth

Lineare Funktionen. Dirk Sewohl und Carola Willgeroth Dirk Sewohl und Carola Willgeroth Proportionalität vs. Lineare Funktion Arbeitsauftrag: Schaut euch die Aufgaben an und überlegt, welche Station die Proportionalität und welche die lineare Funktion behandelt.

Mehr

Lineare Funktionen Kapitel 7. Lineare Funktionen Kapitel 7 ( ) ( 2) ( 5) P und P auf dem Graphen der Funktion

Lineare Funktionen Kapitel 7. Lineare Funktionen Kapitel 7 ( ) ( 2) ( 5) P und P auf dem Graphen der Funktion Schuljahr 06-07 FOS Schuljahr 06-07 FOS Bestimmen Sie für folgende Funktionen die fehlenden Koordinaten: Fehlt der -Wert, wird der gegebene -Wert in die Funktionsgleichung eingesetzt Fehlt der -Wert, setzt

Mehr

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse.

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse. Geraden Eine Gerade wird durch eine Gleichung der Form y = mÿx + b bzw. f(x) = mÿx + b beschrieben. Die Schreibweise f(x) = wird teils erst in der Oberstufe verwendet. b ist der y- Achsenabschnitt, d.h.

Mehr

KOMPETENZHEFT ZU LINEAREN FUNKTIONEN

KOMPETENZHEFT ZU LINEAREN FUNKTIONEN KOMPETENZHEFT ZU LINEAREN FUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Gib die Gleichung der dargestellten Gerade in Normalform an. a) b) Aufgabe 1.2. Ein Skatepark ist ein speziell für Skater/innen eingerichteter

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Geradengleichung. c Roolfs

Geradengleichung. c Roolfs Geradengleichung a) b) c) d) Welche Beziehung ( =...) besteht zwischen den Koordinaten und der Punkte A( ), die auf der Geraden liegen? Tipp: Betrachte die Gerade unter a) und frage dich, wie sich die

Mehr

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g.

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g. Gmnasium bei St. Anna, Augsburg Seite Grundwissen 8. Klasse 8. Proportionalität 8.. Proportionale Zuordnungen Gehört bei einer Zuordnung zweier Größen zu einem Vielfachen der einen Größe das gleiche Vielfache

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011

Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011 Korrigendum Lambacher Schweizer 9/,. Auflage Klett und Balmer Verlag, Baar. April. Seite, Aufgabe Tipp: Suche dir Punkte auf dem Kreis, die du zur Bestimmung heranziehen kannst Bestimme das Streckzentrum

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Lernkontrolle Relationen, Funktionen, lineare Funktionen

Lernkontrolle Relationen, Funktionen, lineare Funktionen Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

4.1. Aufgaben zu linearen Funktionen

4.1. Aufgaben zu linearen Funktionen .. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );

Mehr

Lineare Funktionen Kapitel 7

Lineare Funktionen Kapitel 7 . Bestimmen Sie für folgende Funktionen die fehlenden Koordinaten: a) ( x) x 3 f A 8 / y; B 6 / y f ( x) x C 4 / y; D x / 7 f 3( x) 4x E / y; F x / 4 f ( ) 4 x x 4 G / y; H x / 0,5 5x 0, K x /3,75; L x

Mehr

1 Koordinatensystem. Grundlagen der Funktionentheorie Lineare Funktionen. Schuljahr 2016/2017. Inhalt

1 Koordinatensystem. Grundlagen der Funktionentheorie Lineare Funktionen. Schuljahr 2016/2017. Inhalt Berufskolleg Marienschule Lippstadt Schule der Sekundarstufe II mit gymnasialer Oberstufe - staatlich anerkannt - Schuljahr 06/07 Kurs: Mathematik AHR Kurslehrer: Langenbach Grundlagen der Funktionentheorie

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Als Nullstelle einer Funktion f bezeichnet man eine Stelle mit dem Funktionswert 0. d.h. x 0 ist Nullstelle von f f(x 0 ) = 0.

Als Nullstelle einer Funktion f bezeichnet man eine Stelle mit dem Funktionswert 0. d.h. x 0 ist Nullstelle von f f(x 0 ) = 0. Der Funktionsbegriff Eine Funktion drückt die Abhängigkeit einer Größe von einer anderen aus. Traditionell werden Funktionen als Regel oder Vorschrift definiert, die eine Eingangsgröße (Argument, meist

Mehr

Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der

Eigentlich löst man n Gleichungen mit n Unbekannten (die. normalerweise eindeutig lösbar sind) am besten mit Hilfe der Eigentlich löst man n Gleichungen mit n Unbekannten (die normalerweise eindeutig lösbar sind) am besten mit Hilfe der Determinantenmethode (die aber in den Schulen nicht mehr gelernt wird) bzw. am allerschnellsten

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Lineare Funktionen. Übungszirkel Mathematik 8. Klasse Realschule

Lineare Funktionen. Übungszirkel Mathematik 8. Klasse Realschule Naturwissenschaft Lisa Müller Lineare Funktionen. Übungszirkel Mathematik 8. Klasse Realschule Unterrichtsentwurf Lerngruppe: 8a Fach: Mathematik Unterrichtsentwurf Thema der Unterrichtseinheit: Lineare

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner)

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner) Lineare Funktionen Auftrag : Ein Wasserwerk verlangt von seinen Kunden jährlich eine Grundgebühr von,0. Für einen m³ Wasser muss man 0,80 und zudem 0,0 Kanalgebühren bezahlen. a) Notiere eine passende

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Die lineare Funktion; Steigung einer Strecke

Die lineare Funktion; Steigung einer Strecke linft.nb Die lineare Funktion; Steigung einer Strecke. Steigung und Gefälle einer Strasse Einleitung: -Wie würden Sie die Steilheit einer Strasse "messen"? Wie kann man die Steilheit einer Strasse, einer

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am 24.2.15 1 NT 2013: Quadratische und lineare Funktionen Die abgebildete Parabel gehört zur Funktion f mit f(x) = x 2 5 x + 4. a) Zeige durch eine Rechnung,

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit

Mehr

Lineare Funktionen (=Linie)

Lineare Funktionen (=Linie) Was sind Funktionen? Wikipedia definiert das so: Lineare Funktionen (=Linie) Eine Funktion drückt die Abhängigkeit einer Größe von einer anderen aus. Traditionell wird eine Funktion als Regel oder Vorschrift

Mehr

Funktionen. 1.1 Wiederholung

Funktionen. 1.1 Wiederholung Technische Zusammenhänge werden meist in Form von Funktionen mathematisch erfasst. Kennt man die Eigenschaften verschiedener Funktionstpen, lässt sich im Anwendungsfall das Arbeiten mit diesen erleichtern.

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:

Mehr

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )

Mehr

Lösungen G1. c) Die Steigung m wird als Bruch angegeben: m Å. Der y-achsenabschnitt ist der Wert auf der y-achse, bei dem die Gerade durchgeht.

Lösungen G1. c) Die Steigung m wird als Bruch angegeben: m Å. Der y-achsenabschnitt ist der Wert auf der y-achse, bei dem die Gerade durchgeht. Lösungen G. Aufgabe a) Die Gerade g ist eine fallende Gerade, sie kommt von links oben und geht nach rechts unten. Die Gerade g ist eine steigende Gerade, sie kommt von links unten und geht nach rechts

Mehr

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt. FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen

Mehr

Klassenarbeit Mathematik SF11S Gruppe A NAME:

Klassenarbeit Mathematik SF11S Gruppe A NAME: R. Brinkmann http://brinkmann-du.de Seite 8.0.008 Klassenarbeit Mathematik..00 SFS Gruppe A NAME: Beachten Sie: Der Rechenweg bzw. Begründungen für Ihre Ergebnisse müssen immer erkennbar sein! Zu jeder

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 8/9 5 7 Elementarmathematik (LH) und Fehlerfreiheit 5. Trigonometrie 5.. Trigonometrische Terme am Einheitskreis 5... Das olarkoordinatensstem Man kann die Lage eines unktes im -dimensionalen Raum folgendermaßen

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen. Gegeben ist die Funktion f() = (sin( π )) Ihr Graph sei K. a) Skizzieren Sie K im Intervall [0,]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

Grundwissen Mathematik 8.Jahrgangsstufe G8

Grundwissen Mathematik 8.Jahrgangsstufe G8 Grundwissen Mathematik 8.Jahrgangsstufe G8 Funktionale Zusammenhänge Direkte Proportionalität Entspricht bei zwei einander zugeordneten Größen und y dem -, -, -, k-fachen der einen Größe das -, -, -, k-fache

Mehr

Grundlagen zu Geraden

Grundlagen zu Geraden Grundlagen zu Geraden Punkte in ein Koordinatensystem einzeichnen: Bei einem Punkt P(x y) wird die erste Komponenten (die erste Zahl in der Klammer) auf der x-achse abgetragen und die zweite Komponente

Mehr

Becker I Brugger. Erfolg in Mathe Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen

Becker I Brugger. Erfolg in Mathe Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen Becker I Brugger Erfolg in Mathe 0 Realschulabschluss Baden-Württemberg Wahlteil Übungsbuch mit Tipps und Lösungen Inhaltsverzeichnis Vorwort Aufgaben 5 Algebra....................................... 5

Mehr

1. Funktionale Zusammenhänge

1. Funktionale Zusammenhänge 1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,

Mehr

46 Maurer: Mathe macht Spass

46 Maurer: Mathe macht Spass 6 Maurer: Mathe macht Spass 3 Funkttiionen 3.. Deffi initti ion derr Funktti ion und Darrsttel llungsfforrmen Eine wesentliche Aufgabe der Mathematik ist die Beschreibung und Analse, der Beziehungen aller

Mehr

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung Lineare Funktionen Eine kurze Wiederholung Mathematik Einführungsphase Eine lineare Funktion ist zunächst einmal eine Funktion, d.h. eine eindeutige Zuordnung, bei der jedem x-wert aus einem Definitionsbereich

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, )

Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, ) Mathematik bla Funktionen 1. Einführung 167 René Descartes Cartesius (Frankreich, 1596-1650)...führt das kartesische Koordinatensystem ein. Er beschreibt einen Punkt als ein Paar von reellen Zahlen und

Mehr

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen

12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen . Berechnung und Darstellung betriebswirtschaftlicher Funktionen.. Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF.--. Die anteilmässigen

Mehr

Mathematik - Arbeitsblatt Lineare Funktionen

Mathematik - Arbeitsblatt Lineare Funktionen Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor.

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor. M 8.1 Direkte Proportionalität Wann heißen zwei Größen (direkt) proportional? Ananas kosten Wie viel kosten Ananas? Bestimme den Proportionalitätsfaktor. Zeichne den Graphen der Zuordnung. M 8.2 Indirekte

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mi SG22 D Gruppe A NAME:

Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mi SG22 D Gruppe A NAME: R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mi 0.0.0 SG D Gruppe A NAME: Hilfsmittel: Taschenrechner, außer bei Alle Ergebnisse sind soweit möglich

Mehr

R. Brinkmann Seite Anwendungen der Exponentialfunktion

R. Brinkmann  Seite Anwendungen der Exponentialfunktion R. Brinkmann http://brinkmann-du.de Seite 6..2 Aufstellen der Funktionsgleichung : Anwendungen der Eponentialfunktion Coli Bakterien verrichten ihre Arbeit im menschlichen Darm. Sie vermehren sich durch

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion

Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion Datum:.0.0 Thema: Quadratische Funktionen. Formen Sie die Scheitel(punkt)form der quadratischen Funktion f mit f(x) = ( x ) + in die Polynomdarstellung um und bestimmen Sie die Nullstellen und den Schnittpunkt

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner . Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 8 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte Aufgabe 1 Aufgabe 2 Die Funktion f ist eine ganzrationale Funktion dritten Grades. Die Summanden sind nicht in der richtigen Reihenfolge und müssen deshalb nach absteigenden x- Potenzen geordnet werden.

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr