Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt."

Transkript

1 FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen der beiden Geraden und die Koordinaten ihres Schnittpunkts S. Ermittle die Schnittpunkte der Geraden h mit den Koordinatenachsen.. a) Gegeben sind die beiden Funktionen f:y0,5x und g:xy 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt. b) Gegeben sind zwei unvollständige lineare Funktionen: g : y 4x... h:y...x5 Vervollständige beide Funktionsgleichungen für folgende Bedingungen: Beide Geraden stehen senkrecht aufeinander, und die Gerade g verläuft durch den Punkt P,5 1. Beantworte mithilfe einer Rechnung oder einer Zeichnung. a) Welcher der Punkte A 0,5,5, B 4,5 0 oder C,5 liegt oberhalb der Geraden g: y 0,5x,5? b) Bestimme die Gleichung der Geraden h mit der Steigung m durch den Punkt T4,5 8. c) Bestimme den Schnittpunkt der Geraden y 1 x 6 mit der x - Achse. d) Bestimme den Schnittpunkt S der Geraden c: x 1 x und d: x 0,75x 0,5. 4. Bestimme die Geradengleichungen zu folgenden Aussagen: a) Die Ursprungsgerade g 1 ist parallel zur Geraden h: y,4x,8 b) Die Gerade g 5 verläuft durch den Punkt A 0 6 und steht senkrecht auf der Geraden k: y,50,75x. c) Die Gerade g schneidet die x-achse im Punkt B16 0 und hat die Steigung 4.

2 5. a) Bestimme die Gleichung der Geraden g, die durch die Punkte E8 1,5 und F11,5 verläuft. b) Berechne die Schnittpunkte von g mit den Koordinatenachsen. c) Bestimme die Gleichung der Geraden h, die senkrecht zu g verläuft und den Punkt T 6 1 enthält. 6. a) Gegeben sind die Geraden g und h zweier linearer Funktionen (siehe nebenstehendes Bild). Zeichne zu jeder Geraden ein Steigungsdreieck und gib die beiden Geradengleichungen an. b) Bestimme die Gleichung der Geraden s, die parallel zur Geraden y 0,x16 und durch den Punkt R 1 verläuft. c) Bestimme die Gleichung der Geraden t, die durch den Punkt S 4 verläuft und die x - Achse bei x 5 schneidet. 7. Die beiden Punkte P und Q61 liegen auf der Geraden k. Ermittle rechnerisch die Schnittpunkte der Geraden k mit den Koordinatenachsen. 8. Zeichne in ein Koordinatensystem die Graphen folgender Funktionen ein (jeweils mit einem geeigneten Steigungsdreieck). a) f(x) 0,5x,5 b) g(x) 8 x c) h(x) 1 x Die beiden Punkte R,5, 5 und SxS 7 liegen auf einer gemeinsamen Ursprungsgeraden. Berechne deren Funktionsgleichung und die Koordinate x S. Liegt der Punkt P5,5 ebenfalls auf dieser Geraden?

3 10. Gegeben ist die Funktion f mit der Gleichung y x 6. a) Berechne die Nullstelle b) Zeige rechnerisch, ob der Punkt P4 9 auf der Geraden liegt. c) Liegt der Punkt Q4 8 oberhalb oder unterhalb der Geraden? Kreuze an oberhalb der Geraden unterhalb der Geraden und begründe dies mathematisch 11. a) Zeichne in das gegebene Koordinatensystem die Graphen zu den Funktionen mit den Funktionsgleichungen: (I) f (x) 0,8 x y (II) g(x) x 4 (III) h(x) Beschrifte jeden Graphen! 1 x b) Eine Parallele zur y - Achse durch den Punkt P5 0 hat die Gleichung: 1. a) Im nebenstehend abgebildeten Graphen ist das Fahrverhalten eines Fahrzeugs während 1000 m dargestellt. Beschreibe die Fahrt möglichst genau. b) Begründe, dass der Graph zu einer Funktion gehört.

4 1. a) Gib zu den Graphen G f und G g jeweils die Zuordnungsvorschrift an. Lese günstige Werte aus dem Diagramm ab. b) Begründe rechnerisch, ob der Punkt P 40 17, 5 genau auf, über oder unter dem Graphen G liegt. f G f G g 14. Die beiden unten gezeichneten (innen hohlen) Behälter 1 und werden mit gleichmäßig zufließendem Wasser gefüllt. Die rechts abgebildeten Graphen sind Funktionen, bei denen jeweils der Zeit t eine Füllhöhe h zugeordnet wird. Ordne den beiden Behältern jeweils den richtigen Funktionsgraphen zu. Begründe deine Auswahl. 15. Gegeben ist die Gerade g mit der Gleichung g: y 1,6x 4. a) Zeichne die Gerade in ein Koordinatensystem (Platzbedarf in alle Richtungen jeweils 5 cm) b) Berechne die Nullstelle von g. c) Eine weitere Gerade h mit der Steigung mh 5 4 hat die gleiche Nullstelle wie die Gerade g. Zeichne die Gerade h in das unter a) angelegte Koordinatensystem und bestimme mit Hilfe des Graphen die Gleichung der Geraden h.

5 16. Berechne die fehlenden Koordinaten der Punkte P5y P und Qx Q 4,5 des Graphen der Funktion f mit der Gleichung f(x) 1 x In einem Koordinatensystem sind die Punkte P 1 und Q6 gegeben. a) Bestimme durch eine geeignete Rechnung die Funktionsgleichung f für eine Gerade, die durch die Punkte P und Q verläuft. b) Berechne, für welchen x - Wert die Funktion f den y - Wert 1 besitzt. 18. Zeichne in einem Koordinatensystem die Graphen der folgenden Funktionen ein, sofern es sich dabei um lineare Funktionen handelt. (Beschrifte die Graphen deutlich!) f: f(x) x x h: h(x) 0,5x 1 k: k(x)0,54x 19. Zeichne in ein geeignetes Koordinatensystem die Graphen folgender Funktionen. Beschrifte jeden Graphen eindeutig. a) f(x),5x; g(x) ; h(x) x ; k(x)0,x 5 b) Ermittle durch Rechnung (1) ob der Punkt A 5 1 auf h(x) liegt; () welche x - Koordinate der Punkt Bx 1 auf k(x) hat; () an welcher Stelle f(x) die x - Achse schneidet; (4) den Schnittpunkt zwischen f (x) und h(x). 0. Zwei Geraden g 1 und g haben jeweils die Gleichung g 1 :y,6x g :y 0,4x7 a) Berechne den Schnittpunkt der beiden Geraden. b) Wo liegt die Nullstelle der Geraden g 1?

6 1. Das Bewegungsdiagramm zeigt den Sprung eines Fallschirmspringers aus einem Flugzeug. a) Aus welcher Höhe springt der Fallschirmspringer ab? Wie lange ist der Springer in der Luft? Wie weit ist der Springer 45 Sekunden nach Absprung vom Boden entfernt? b) Wann in etwa hat der Fallschirmspringer seine größte Fallgeschwindigkeit? c) Mit welcher Geschwindigkeit trifft er am Boden auf? d) Welches der Diagramme A bis D beschreibt die Zuordnung Zeit Fallgeschwindigkeit des Springers richtig? Falls keines der vorgeschlagenen Diagramme passt, dann skizziere den Geschwindigkeitsverlauf in einem eigenen Diagramm. Begründe deine Entscheidung! A B C D

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe . Mathematikschulaufgabe. Stelle die folgende Produktmenge im Koordinatensystem dar: M = [ -2; +2 ] Q x [ -2; + ] Q 2.0 Gegeben ist die Funktion f: y = 2 + x G= Q x Q 2. Zeichne die Funktion in ein Koordinatensystem.

Mehr

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner . Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle. Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

2.2 Funktionen 1.Grades

2.2 Funktionen 1.Grades . Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung

Mehr

4.1. Aufgaben zu linearen Funktionen

4.1. Aufgaben zu linearen Funktionen .. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );

Mehr

Mathematik - Arbeitsblatt Lineare Funktionen

Mathematik - Arbeitsblatt Lineare Funktionen Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an.

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. Teste dich! - (/6) Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Gemeinsamkeiten: Beide

Mehr

Thema aus dem Bereich Analysis Funktionen 1.Grades

Thema aus dem Bereich Analysis Funktionen 1.Grades Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden

Mehr

Üben. Lineare Funktionen. Lösung. Lineare Funktionen

Üben. Lineare Funktionen. Lösung. Lineare Funktionen Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2)

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2) Vermischte Übungen (1) Verschiebung der Normalparabel 1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,). In der Abbildung

Mehr

Einführungsphase. Viel Erfolg! Aufgabe 1: Quadratische Funktion Flugbahn (29 Punkte)

Einführungsphase. Viel Erfolg! Aufgabe 1: Quadratische Funktion Flugbahn (29 Punkte) Name: Klasse: 2. Klausur Mathematik Einführungsphase 22.12.2011 Bitte benutze für jede Aufgabe einen neuen Bogen/ein neues Blatt!!! Die Ausführungen müssen in puncto Sauberkeit und Rechtschreibung den

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

7 Aufgaben im Dokument. Aufgabe P5/2010

7 Aufgaben im Dokument. Aufgabe P5/2010 Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

ELEMENTE. Grundkompetenzen DER MATHEMATIK. für die neue Reifeprüfung. Mit Lösungen

ELEMENTE. Grundkompetenzen DER MATHEMATIK. für die neue Reifeprüfung. Mit Lösungen 5 ELEMENTE DER MATHEMATIK GK Grundkompetenzen für die neue Reifeprüfung Mit Lösungen Die Formulierung der Grundkompetenzen (GK) bezieht sich auf den Stand von August 2010. 1. Auflage, 2010 Gesamtherstellung:

Mehr

F u n k t i o n e n Lineare Funktionen

F u n k t i o n e n Lineare Funktionen F u n k t i o n e n Lineare Funktionen Dieses Muster entstand aus der Drehung einer Geraden um einen kleinen Kreis. Dieser kleine Kreis dreht wiederum um einen grösseren Kreis. ADSL Internetanschlüsse

Mehr

KOMPETENZHEFT ZU LINEAREN FUNKTIONEN

KOMPETENZHEFT ZU LINEAREN FUNKTIONEN KOMPETENZHEFT ZU LINEAREN FUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Gib die Gleichung der dargestellten Gerade in Normalform an. a) b) Aufgabe 1.2. Ein Skatepark ist ein speziell für Skater/innen eingerichteter

Mehr

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse.

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse. Geraden Eine Gerade wird durch eine Gleichung der Form y = mÿx + b bzw. f(x) = mÿx + b beschrieben. Die Schreibweise f(x) = wird teils erst in der Oberstufe verwendet. b ist der y- Achsenabschnitt, d.h.

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

WM.3.1 Die Polynomfunktion 1. Grades

WM.3.1 Die Polynomfunktion 1. Grades WM.3.1 Die Polynomfunktion 1. Grades Wenn zwischen den Elementen zweier Mengen D und W eine eindeutige Zuordnungsvorschrift vorliegt, dann ist damit eine Funktion definiert (s. Abb1.), Abb1. wobei D als

Mehr

Geradengleichung. c Roolfs

Geradengleichung. c Roolfs Geradengleichung a) b) c) d) Welche Beziehung ( =...) besteht zwischen den Koordinaten und der Punkte A( ), die auf der Geraden liegen? Tipp: Betrachte die Gerade unter a) und frage dich, wie sich die

Mehr

Aufgabenpool zur Quereinstiegsvorbereitung Q1

Aufgabenpool zur Quereinstiegsvorbereitung Q1 Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Geraden Anwendungen. z.b. A(1 4), in die Geradengleichung ein. Löse sie nach b auf, es ergibt sich b = 13

Geraden Anwendungen. z.b. A(1 4), in die Geradengleichung ein. Löse sie nach b auf, es ergibt sich b = 13 Geraden Anwendungen 1. Berechne die Nullstelle, d. h. den Schnittpunkt der Geraden mit der x-achse. a) y = 4x+ 1 b) y = 3 5 x+ 1 3 1. Eine Nullstelle ist der Schnittpunkt mit der x-achse. Weil der Punkt

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Lernkontrolle Relationen, Funktionen, lineare Funktionen

Lernkontrolle Relationen, Funktionen, lineare Funktionen Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie

Mehr

Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind

Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1 Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1. Zeichne die Graphen zu den folgenden Funktionen in ein Koordinatensystem, indem Du zuerst

Mehr

Eingangstest Mathematik Jgst.11

Eingangstest Mathematik Jgst.11 SINUS-Set Projekt F3 Erfinden Sie zu dem abgebildeten Graphen eine Sachsituation, die durch den Graphen dargestellt wird. Gehen Sie dabei auch auf den Verlauf des Graphen ein! Zeit in F4 In der Abbildung

Mehr

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis) .5 Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Die Verschiebung des Graphen 5.1 Die Verschiebung des Graphen in y-richtung.........................

Mehr

Mathematik Nachhilfe: Aufgaben zu linearen Funktionen, Teil 2

Mathematik Nachhilfe: Aufgaben zu linearen Funktionen, Teil 2 Mathematik Nachhilfe Blog Mathe so einfach wie möglich erklärt Mathematik Nachhilfe: Aufgaben zu linearen Funktionen, Teil 2 Veröffentlicht am 3. September 2016 Neuigkeiten aus dem Mathe Unterricht Tim

Mehr

Ferienaufgaben Mathematik 8. Klasse

Ferienaufgaben Mathematik 8. Klasse Ferienaufgaben Mathematik 8. Klasse 8.A Funktionen 8.A. Begriff Entscheide in den folgenden Fällen, ob eine Funktion vorliegt und begründe Deine Antwort! Jeder Zahl wird ihr um eins erhöhtes Quadrat zugeordnet.

Mehr

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

min km/h

min km/h Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Lineare Funktionen. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Lineare Funktionen. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 8 8. Klasse: auszug aus dem Originaltitel: Gehört der Punkt zum Funktionsgraph?. Betrachte die Funktion y = x +. Gehört der Punkt P(/5)

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (/6) Schreibe mithilfe von Potenzen. a) ( 5) ( 5) ( 5) ( 5) b) a a a a a a b b b c) r r r r 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Berechne ohne Taschenrechner. a) 9 0 5 b)

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

Zusammengesetzte Übungsaufgaben lineare Funktionen

Zusammengesetzte Übungsaufgaben lineare Funktionen Zusammengesetzte Übungsaufgaben lineare Funktionen Nr Aufgabe Lösung 1 Gegeben ist die Funktion g mit g ( x ) = 3 x + 9 a) Geben Sie die Steigung und den y- Achsenabschnitt an. (Begründung) c) Bestimmen

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt: Punkte im Koordinatensstem Funktionen und ihre Schaubilder Punktprobe und Koordinaten berechnen Proportionale Funktionen 5 Steigung und Steigungsdreieck 6 Die Funktion = m + b 7 Funktionsgleichungen

Mehr

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen

Mehr

( ) 3. Lösungsblatt. Potenzrechnung und Potenzfunktionen. Teste dich! - Potenzrechnung und Potenzfunktionen (1/6)

( ) 3. Lösungsblatt. Potenzrechnung und Potenzfunktionen. Teste dich! - Potenzrechnung und Potenzfunktionen (1/6) Teste dich! - (/6) Schreibe mithilfe von Potenzen. a) ( 5) ( 5) ( 5) ( 5) ( 5) = 5 b) a a a a a a b b b a 6 b c) r r r r r ( ) 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Berechne ohne Taschenrechner.

Mehr

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte (c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3

Mehr

Beispielaufgabe zum Format der Komplexaufgaben im MSA Mathematik ab 2017

Beispielaufgabe zum Format der Komplexaufgaben im MSA Mathematik ab 2017 Anlage Beispielaufgabe zum Format der Komplexaufgaben im MSA Mathematik ab 07 Format der Komplexaufgaben und Wahlverfahren ab 07 Im Teil B (Komplexaufgaben) werden den Schülerinnen und Schülern vier Aufgaben

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

Relationen / Lineare Funktionen

Relationen / Lineare Funktionen Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine

Mehr

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung Lineare Funktionen Eine kurze Wiederholung Mathematik Einführungsphase Eine lineare Funktion ist zunächst einmal eine Funktion, d.h. eine eindeutige Zuordnung, bei der jedem x-wert aus einem Definitionsbereich

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am 24.2.15 1 NT 2013: Quadratische und lineare Funktionen Die abgebildete Parabel gehört zur Funktion f mit f(x) = x 2 5 x + 4. a) Zeige durch eine Rechnung,

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren Seite von 5 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Gegeben ist die Funktion f mit f ( = 0,5 x 4,5 x + x 9. Die Abbildung zeigt den zu f gehörigen Graphen. Abbildung a) Ermitteln

Mehr

Zuordnungen. 2 x g: y = x + 2 h: y = x 1 4

Zuordnungen. 2 x g: y = x + 2 h: y = x 1 4 Zuordnungen Bei Zuordnungen wird jedem vorgegebenen Wert aus einem Bereich ein Wert aus einem anderen Bereich zugeordnet. Zuordnungen können z.b. durch Wertetabellen, Diagramme oder Rechenvorschriften

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

Diese Gleichung hat für einige a nur Lösungen aus C und nicht aus R.

Diese Gleichung hat für einige a nur Lösungen aus C und nicht aus R. Aufgabe 1 Zahlenmengen, quadratische Gleichungen Gegeben ist eine quadratische Gleichung a 0 mit a R. Kreuzen Sie die beiden zutreffenden Aussagen an! Diese Gleichung hat für einige a nur Lösungen aus

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Übungsaufgaben Analysis hilfsmittelfrei

Übungsaufgaben Analysis hilfsmittelfrei Übungsaufgaben Analysis hilfsmittelfrei Aufgabe 1 Der Graph der Funktion f (x) = 0,5x3+ 1,5x2+ 4,5x 3,5 hat im Punkt T( 1 6) einen relativen (lokalen) Tiefpunkt und im Punkt H(3 10) einen relativen (lokalen)

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Lineare Funktionen Kapitel 7

Lineare Funktionen Kapitel 7 . Bestimmen Sie für folgende Funktionen die fehlenden Koordinaten: a) ( x) x 3 f A 8 / y; B 6 / y f ( x) x C 4 / y; D x / 7 f 3( x) 4x E / y; F x / 4 f ( ) 4 x x 4 G / y; H x / 0,5 5x 0, K x /3,75; L x

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Eingangstest aus der Mathematik

Eingangstest aus der Mathematik Staatliche Fachoberschule und Berufsoberschule Coburg FOS: Technik Wirtschaft, Verwaltung und Rechtspflege Sozialwesen BOS: Technik - Wirtschaft REGIOMONTANUS-SCHULE C O B U R G Eingangstest aus der Mathematik

Mehr

Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion

Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion Datum:.0.0 Thema: Quadratische Funktionen. Formen Sie die Scheitel(punkt)form der quadratischen Funktion f mit f(x) = ( x ) + in die Polynomdarstellung um und bestimmen Sie die Nullstellen und den Schnittpunkt

Mehr

Zusammenfassung und Wiederholung zu Geraden im IR ²

Zusammenfassung und Wiederholung zu Geraden im IR ² Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüung Fachhochschulreie 204 Baden-Württemberg Augabe 2 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com September 204 Gegeben ist die Funktion mit

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

Mag. Günter Mitasch. Schularbeiten der 5. Klasse

Mag. Günter Mitasch. Schularbeiten der 5. Klasse Mag. Günter Mitasch Schularbeiten der 5. Klasse Schularbeiten der 5. Klasse Seite 1 5A/A 1. M- Schularbeit, am 30.10.1997 1 Bestimme die Gleichungen folgender Geraden g1, g2 und g3. g3 g1 g2 Weiters ist

Mehr

Mathematik Klasse 9b, AB 03 Lineare Funktionen 02 - Lösung

Mathematik Klasse 9b, AB 03 Lineare Funktionen 02 - Lösung Allgemeiner Hinweis: An einigen Stellen fehlen aus Platzgründen bei Gleichungsumformungen die Anzeige der Äquivalenzumformungen, wenn sie eindeutig sind. Also 2 x=10 x=5 statt 2x=10 :2 x=5. In der Arbeit

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2005 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 2005 Prüfungsdauer: 09:00-12:00 Uhr Hilfsmittel:

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

1. Zeichnen Sie ein kartesisches Koordinatensystem mit folgenden Punkten: P 1 (3/2); P 2 (-2,4), P 3 (-3/-2), P 4 (1/-2), P 4 (-2/4)

1. Zeichnen Sie ein kartesisches Koordinatensystem mit folgenden Punkten: P 1 (3/2); P 2 (-2,4), P 3 (-3/-2), P 4 (1/-2), P 4 (-2/4) Aufgaben analytische Geometrie:. Zeichnen Sie ein kartesisches Koordinatensystem mit folgenden Punkten: P (/2); P 2 (-2,4), P (-/-2), P 4 (/-2), P 4 (-2/4) 2. In welchem Quadranten liegt folgender Punkt?

Mehr

Mathematik im Berufskolleg I

Mathematik im Berufskolleg I 1 Bohner Ott Deusch Mathematik im Berufskolleg I Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 6. Auflage 2016 ISBN 978-3-8120-0234-9 Das Werk und seine Teile sind urheberrechtlich geschützt.

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg Pflichtteilaufgaben zu Funktionenkompetenz Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016 1 Übungsaufgaben: Ü1: Die Abbildung zeigt

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

Lineare Funktion Aufgaben und Lösungen

Lineare Funktion Aufgaben und Lösungen Lineare Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. November 0 Inhaltsverzeichnis Ursprungsgerade. y = m x...................................................... Aufgaben.................................................

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen 1. Tageslänge Im Verlauf eines Jahres ändert sich aufgrund der geneigten Erdachse die astronomische Sonnenscheindauer, d.h. die Zeitspanne zwischen Sonnenaufgang und - untergang.

Mehr

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0)

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0) Abiturprüfung Berufliche Oberschule Mathematik Nichttechnik - A II - Lösung Teilaufgabe. x Gegeben ist die Funktion f( x) ( x ) in ihrer maximalen Definitionsmenge D f IR. Der zugehörige Graph heißt. Teilaufgabe.

Mehr

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner)

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner) Lineare Funktionen Auftrag : Ein Wasserwerk verlangt von seinen Kunden jährlich eine Grundgebühr von,0. Für einen m³ Wasser muss man 0,80 und zudem 0,0 Kanalgebühren bezahlen. a) Notiere eine passende

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

CAS-Einheit: Formen der Funktionsgleichung bei rationalen Funktionen

CAS-Einheit: Formen der Funktionsgleichung bei rationalen Funktionen CAS-Einheit: Formen der Funktionsgleichung bei rationalen Funktionen Die folgende Bildfolg zeigt, wie man Funktionsgraphen mit dem CAS-Rechner zeichnen kann: Aufgaben Lasse mit Hilfe des CAS-Rechners die

Mehr

Aufgaben. zu Inhalten der 5. Klasse

Aufgaben. zu Inhalten der 5. Klasse Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht

Mehr

1. Lineare Funktionen und lineare Gleichungen

1. Lineare Funktionen und lineare Gleichungen Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase 1 Lösung für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr