Direkte Proportionalität

Save this PDF as:

Größe: px
Ab Seite anzeigen:

Download "Direkte Proportionalität"

Transkript

1 M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor ) ist. der Graph der Zuordnung eine Ursprungsgerade ist. Ananas kosten Wie viel kosten Ananas? Die Zuordnung ist proportional. Dreisatz oder Proportionalitätsfaktor

2 M 8.2 Indirekte Proportionalität Zwei einander zugeordnete Größen und sind indirekt (oder umgekehrt ) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. das Produkt ist. für alle Wertepaare gleich ist. der Graph der Zuordnung eine Hyperbel ist. Mit Schläuchen ist ein Schwimmbecken in 2,5 Stunden gefüllt. Wie lange dauert es mit Schläuchen? Die Zuordnung Dreisatz oder ist indirekt proportional.

3 M 8.3 Funktionsbegriff Eine Zuordnung, die jedem Wert für jeweils nur einen einzigen Wert für zuordnet, heißt Funktion. Der von abhängige Wert bzw. heißt Funktionswert. Die Menge aller zulässigen -Werte heißt Definitionsmenge. Die Menge aller möglichen Funktionswerte heißt Wertemenge. Funktion: Keine Funktionen Schreibweisen: Graph:

4 M 8.4 Umfang Umfang und Flächeninhalt des Kreises Flächeninhalt Der Durchmesser ist direkt proportional zum Umfang. ist der Proportionalitätsfaktor. Kreiszahl ( ist keine rationale Zahl) [ Kreis um mit Radius ]

5 M 8.5 Lineare Funktionen Funktionsgleichung: Steigung -Achsenabschnitt Graph: Gerade mit der Steigung durch den Punkt Ein -Wert, für den der Funktionswert Null ist, heißt Nullstelle. Zeichne den Graphen der Funktion. Markiere den Punkt. Trage von dort den Nenner von in -Richtung ab und trage dann den Zähler von in -Richtung ab.

6 M 8.6 Aufstellen der Geradengleichung Ansatz: 1. Schritt: Bestimme die Steigung 2. Schritt: Bestimme den -Achsenabschnitt Bestimme den Funktionsterm der linearen Funktion, deren Graph durch die Punkte und verläuft. Ansatz: 1. Schritt: 2. Schritt: Setze oder in ein:

7 M 8.7 Lineare Ungleichungen Ungleichungen kann man wie Gleichungen schrittweise vereinfachen. Vorsicht: Bei Multiplikation oder Division mit einer negativen Zahl, kehrt sich das Ungleichheitszeichen um! Die Lösungsmenge kann man in Mengen- oder Intervallschreibweise angeben.

8 M 8.8 Lineare Gleichungssysteme I Zwei lineare Gleichungen mit zwei gleichen Variablen bilden ein lineares Gleichungssystem mit zwei Variablen. Die Gleichungen lassen sich durch Geraden graphisch darstellen ( Auflösen nach ). eine Lösung keine Lösung Unendlich viele Lösungen

9 M 8.9 Lineare Gleichungssysteme II Graphische Lösung Gleichsetzungsverfahren in : Einsetzungsverfahren Additionsverfahren

10 M 8.10 Grundbegriffe der Wahrscheinlichkeitsrechnung Ein Zufallsexperiment ist ein Experiment, bei dem verschiedene Ergebnisse möglich sind. Die Menge aller möglichen Ergebnisse nennt man Ergebnismenge Eine Teilmenge der Ergebnismenge nennt man Ereignis. Zählprinzip Bei einem mehrstufigen Zufallsexperiment erhält man die Gesamtzahl der verschiedenen Möglichkeiten, indem man die Anzahlen der verschiedenen Möglichkeiten in den einzelnen Stufen multipliziert. Wie viele Möglichkeiten gibt es, sechs Personen auf sechs Stühlen anzuordnen?

11 M 8.11 Laplace-Experimente Zufallsexperimente, bei denen alle Ergebnisse gleich wahrscheinlich sind, heißen Laplace- Experimente. Die Wahrscheinlichkeit eines Ereignisses berechnet man mit: Einmaliger Würfelwurf, Einmaliger Münzwurf,

12 M 8.12 Gebrochen rationale Funktionen Bruchterme Terme, bei denen eine Variable im Nenner auftritt, heißen Bruchterme. Funktionen, deren Funktionsterm ein Bruchterm ist, heißen gebrochen rationale Funktionen. Ihr Graph ist eine Hyperbel. Für die Variablen dürfen keine Zahlen eingesetzt werden, für die der Nenner null wird. Diese Zahlen nennt man Definitionslücken. Sie gehören nicht zur Definitionsmenge der Funktion. Geraden, an die sich der Graph beliebig genau annähert, nennt man Asymptoten.

13 M 8.13 Rechnen mit Bruchtermen Kürzen Zähler und Nenner faktorisieren Gleiche Terme kürzen Nie aus Summen kürzen! Addieren und Subtrahieren Bruchterme gleichnamig machen Zähler addieren/subtrahieren Multiplizieren Zähler mal Zähler, Nenner mal Nenner Dividieren Multiplizieren mit dem Kehrbruch

14 M 8.14 Bruchgleichungen 1. Schritt: Definitionsmenge bestimmen 2. Schritt: Beide Seiten mit dem gemeinsamen Nenner aller Bruchterme multiplizieren und anschließend kürzen 3. Schritt: Bruchtermfreie Gleichung lösen 4. Schritt: Überprüfen, ob die Lösung zur Definitionsmenge gehört 5. Schritt: Lösungsmenge angeben

15 M 8.15 Potenzen mit ganzzahligen Exponenten Faktoren für jede natürliche Zahl für jede natürliche Zahl, für jede rationale Zahl ; ; Gleitkommadarstellung gibt an, um wie viele Stellen man das Komma verschieben muss ;

16 M 8.16 Rechnen mit Potenzen Multiplizieren Hochzahlen addieren Dividieren Hochzahlen subtrahieren Potenzieren einer Potenz Hochzahlen multiplizieren Potenzieren von Produkten und Quotienten Hochzahlen verteilen Vorsicht: kein Verteilen der Hochzahlen bei Summen

17 M 8.17 Strahlensätze V-Figur X-Figur 1. Strahlensatz 1. Strahlensatz 2. Strahlensatz 2. Strahlensatz

18 M 8.18 Ähnliche Figuren Zwei Figuren und heißen ähnlich ( ), wenn man so vergrößern oder verkleinern kann, dass die Bildfigur zu kongruent ist. Für ähnliche Figuren gilt: entsprechende Winkel sind gleich groß die Verhältnisse entsprechender Streckenlängen sind gleich Dreiecke sind ähnlich, wenn bereits eine der beiden Eigenschaften erfüllt ist.

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient = für alle Wertepaare gleich ist. (= Proportionaliätsfaktor

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient = für alle Wertepaare gleich ist. (= Proportionaliätsfaktor

Mehr

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn zum n-fachen Wert von x der n-fache Wert von y gehört. der Quotient y = q für alle Wertepaare gleich

Mehr

sfg Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn

sfg Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn zum n-fachen Wert von x der n-fache Wert von y gehört. y der Quotient = q für alle Wertepaare gleich

Mehr

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor.

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor. M 8.1 Direkte Proportionalität Wann heißen zwei Größen (direkt) proportional? Ananas kosten Wie viel kosten Ananas? Bestimme den Proportionalitätsfaktor. Zeichne den Graphen der Zuordnung. M 8.2 Indirekte

Mehr

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? M 8.2. Indirekte Proportionalität

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? M 8.2. Indirekte Proportionalität M 8.1 Direkte Proportionalität Wann heißen zwei Größen (direkt) proportional? Ananas kosten,. Wie viel kosten Ananas? Bestimme den Proportionalitätsfaktor. Zeichne den Graphen der Zuordnung. M 8.2 Indirekte

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Grundwissen Mathematik 8.Jahrgangsstufe G8

Grundwissen Mathematik 8.Jahrgangsstufe G8 Grundwissen Mathematik 8.Jahrgangsstufe G8 Funktionale Zusammenhänge Direkte Proportionalität Entspricht bei zwei einander zugeordneten Größen und y dem -, -, -, k-fachen der einen Größe das -, -, -, k-fache

Mehr

1. Funktionale Zusammenhänge

1. Funktionale Zusammenhänge 1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,

Mehr

Grundwissen. Direkt proportionale Größen

Grundwissen. Direkt proportionale Größen Kopiere die folgenden Seiten auf dünnen Karton und zerschneide diesen in Lernkarten. Ergänze damit deine Lernkartei der vergangenen Jahre: Wenn im Unterricht ein neuer Lehrstoff behandelt wurde, nimmst

Mehr

Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe Gmnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe Wissen / Können Aufgaben und Beispiele. Proportionalität Proportionale Zuordnungen und sind proportional zueinander, wenn zum n-fachen Wert von der n-fache

Mehr

Direkt und indirekt proportionale Größen

Direkt und indirekt proportionale Größen 8.1 Grundwissen Mathematik Algebra Klasse 8 Direkt und indirekt proportionale Größen Direkte Proportionalität x und y sind direkt proportional, wenn zum doppelten, dreifachen,, n-fachen Wert für x der

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Ignaz-Taschner-Gymnasium Dachau Grundwissen Mathematik 8 (G8)

Ignaz-Taschner-Gymnasium Dachau Grundwissen Mathematik 8 (G8) Grundwissen M8 1. Funktionale Zusammenhänge Proportionalität a) Direkte Proportionalität Wird dem Doppelten, Dreifachen,, k-fachen einer Größe x das Doppelte, Dreifache,, k-fache einer Größe y zugeordnet,

Mehr

1 Zahlen. 1.1 Kürzen ( ) ( ) ( ) 1.2 Addieren und Subtrahieren. 1.3 Multiplizieren und Dividieren Beispiele: Grundwissen Mathematik 8

1 Zahlen. 1.1 Kürzen ( ) ( ) ( ) 1.2 Addieren und Subtrahieren. 1.3 Multiplizieren und Dividieren Beispiele: Grundwissen Mathematik 8 Zahlen x+ a+b Bruchterme sind z.b.: ; ; x a. Kürzen In Faktoren zerlegen: x x Gemeinsame Faktoren kürzen: 4a x + 5 ( x+ ) x x x x ( x+ ). Addieren und Subtrahieren Bsp.:,5 + D QI \{0; } x x Hauptnenner

Mehr

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g.

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g. Gmnasium bei St. Anna, Augsburg Seite Grundwissen 8. Klasse 8. Proportionalität 8.. Proportionale Zuordnungen Gehört bei einer Zuordnung zweier Größen zu einem Vielfachen der einen Größe das gleiche Vielfache

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 8 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Themenbereich 1: Proportionalitätszuordnungen. Proportionale Zuordnungen. y bzw. Umgekehrt proportionale Zuordnungen. 6000g

Themenbereich 1: Proportionalitätszuordnungen. Proportionale Zuordnungen. y bzw. Umgekehrt proportionale Zuordnungen. 6000g Themenbereich : Proportionalitätszuordnungen Benzinmenge in Abhängigkeit von dem Preis: Proportionale Zuordnungen Wenn eine Größe verdoppelt wird, führt dies zur Verdoppelung der Anderen Die Zuordnungsvorschrift

Mehr

@ GN GRUNDWISSEN MATHEMATIK für die Jahrgangsstufe 8. . Ferner: a 0 = 1. =1 : 1 4 = = 4 1 = =

@ GN GRUNDWISSEN MATHEMATIK für die Jahrgangsstufe 8. . Ferner: a 0 = 1. =1 : 1 4 = = 4 1 = = 1 Potenzen 1. Definition: (vgl. Grundwissen Klasse 5 Nr. 1.5) Für a Q {0} und n N gilt: a n 1 a n 1 a a a n Faktoren 1 a 1 a n Faktoren. Ferner: a 0 1. (1) 4 1 1 4 (3) 3 4 (2) 1 1 4 1 3 3 3 3 1 81 1 1

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 8 Direkte Proportionalität Zwei Größen, Q heißen zueinander direkt proportional (~), wenn das -Fache von dem -Fachen von

Mehr

1. Proportionalität Proportionale Zuordnungen Quotientengleichheit, Proportionalitätsfaktor Umgekehrte proportionale

1. Proportionalität Proportionale Zuordnungen Quotientengleichheit, Proportionalitätsfaktor Umgekehrte proportionale Vorwort Vorwort Da es sich hierbei um eine Lernhilfe von Schülern für Schüler handelt, können, trotz sorgfäliger und häufger Kontrolle, formale und inhaltliche Fehler nicht ausgeschlossen werden. Im Zweifelsfall

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Grundwissen Jahrgangsstufe 8

Grundwissen Jahrgangsstufe 8 Grundwissen Jahrgangsstufe 8 GM 8. Direkt proportionale und indirekt proportionale Größen DIREKT PROPORTIONALE GRÖSSEN Definition Zwei Größen und y heißen zueinander direkt proportional, wenn sie quotientengleich

Mehr

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:

Mehr

Grundwissen 8. Klasse Mathematik

Grundwissen 8. Klasse Mathematik Grundwissen Mathematik 8. Klasse Seite von 4 Grundwissen 8. Klasse Mathematik. Funktionale Zusammenhänge. Grundbegriffe Wird bei einer Zuordnung a jedem Wert für genau ein Wert für zugeordnet, so nennt

Mehr

MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM

MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM NEU-ULM Lessing-Gmnasium Neu-Ulm Seite von I. Funktionen. Direkt proportionale Zuordnungen und sind direkt proportional, wenn, zum n-fachen Wert für der

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 8 G8. 1.

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 8 G8. 1. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 905 Eckental Die direkte Propotionalität: Zwei Größen und y heißen direkt

Mehr

Grundwissen Mathematik 8. Klasse

Grundwissen Mathematik 8. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 8. Klasse Wissen Aufgaen/Beispiele Lösungen Funktionale Zusammenhänge Eindeutige Zuordnungen nennt man in der Mathematik Funktionen. Bei einer Funktion

Mehr

Übersicht Grundwissen 8. Klasse

Übersicht Grundwissen 8. Klasse Übersicht Grundwissen 8. Klasse Direkt proportionale Größen 1. Diese Größen sind direkt proportional, wenn es bei mehreren Äpfeln keinen Preisnachlass (Rabatt) gibt. Diese beiden Größen sind voneinander

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite Inhaltverzeichnis Inhalt... Seite Klasse 5: 1 Zahlen... 1 1.1 Zahlenmengen... 1 1.2 Dezimalsystem... 1 1.3 Römische Zahlen... 1 1.4 Runden... 1 1.5 Termarten... 1 1.6 Rechengesetze... 2 1.7 Rechnen mit

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 7./8.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 7./8. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Fit in Test und Klassenarbeit - Mathe 7./8. Klasse Gymnasium Das komplette Material finden Sie hier: School-Scout.de Christine Kestler

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Mathematik Klasse 8 Zusammenfassung

Mathematik Klasse 8 Zusammenfassung Inhalt Lineare Funktionen (Geraden)... Lineare Gleichungssysteme... 3 Kongruenz von Dreiecken... 6 Quadratwurzel reelle Zahlen... 7 Mehrstufige Zufallsexperimente... 8 Quadratische Funktionen... 0 Quadratische

Mehr

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Eigenschaften gebrochen rationaler Funktionen

Eigenschaften gebrochen rationaler Funktionen Aufgabe 1: 1 Zeichne mit geogebra den Graphen der Funktion f: f() = Beantworte (zusammen mit deinem Tischnachbar) folgende Fragen: Welche Zahlen dürfen nicht in den Funktionsterm eingesetzt werden? Wie

Mehr

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN Bleib fit im Umgang mit Bruchzahlen Zahl Algorithmus Klasse 6 1. Prozent- und Zinsrechnung 1.1 Absoluter und relativer Vergleich Anteile in Prozent 1.2 Grundaufgaben der Prozentrechnung Im Blickpunkt:

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr

Inhaltsverzeichnis: Lösungswege 5 E-BOOK+

Inhaltsverzeichnis: Lösungswege 5 E-BOOK+ 1. Zahlen und Zahlenmengen Inhaltsverzeichnis: Lösungswege 5 E-BOOK+ kommentierte Linksammlung: Videos, Zeitungsartikel, Websites zum Thema Zahlen und S. 6 Zahlenmengen GeoGebra-Anleitung: Rechnen mit

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stichwortverzeichnis. Symbole. Stichwortverzeichnis Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,

Mehr

Aufgabenpaket zum Crashkurs Mathematik

Aufgabenpaket zum Crashkurs Mathematik Wilhelm-Hausenstein-Gymnasium Sprachliches und Naturwissenschaftlich-technologisches Gymnasium Elektrastraße 61 8195 München Telefon (089) 999690 Fa (089) 9996939 Aufgabenpaket zum Crashkurs Mathematik

Mehr

Unterrichtsinhalte in der Jahrgangsstufe 5 Seite 1

Unterrichtsinhalte in der Jahrgangsstufe 5 Seite 1 Unterrichtsinhalte in der Jahrgangsstufe 5 Seite 1 Natürliche Zahlen o Zahlen sammeln und Darstellen (erstellen & lesen von Diagrammen) o Rechnen mit natürlichen Zahlen o Umgang mit Größen Symmetrie o

Mehr

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag?

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag? Aufgaben zum Grundwissen ================================================================== I. Proportionale und umgekehrt proportionale Zuordnungen 1. Von welcher Art können die durch die Tabellen gegebenen

Mehr

Schulcurriculum (1/4 der Jahresstunden)

Schulcurriculum (1/4 der Jahresstunden) Mathematik: Curriculum Jahrgang 8 G9 Jahresstundenzahl des Faches: 35 Schulwochen x 4 (Wochenstundenzahl laut Kontingentstundentafel) = 140 1.Lerneinheit: Prozentrechnung Zinsrechnung (25 Stunden) Leitidee

Mehr

Berechnungen$am$Kreis$!!! Kreisumfang$

Berechnungen$am$Kreis$!!! Kreisumfang$ GrundwissenimFachMathematik 8/1 BerechnungenamKreis Kreisumfang U Kreis = d π = 2r π mitkreiszahl π 3,14 Kreisfläche A Kreis = r 2 π Bsp.:FüreinenKreismitdemRadius r = 3 cm unddamiteinemdurchmesser d =

Mehr

G8 Curriculum Mathematik Klasse 7

G8 Curriculum Mathematik Klasse 7 G8 Curriculum Mathematik Klasse 7 1. Lerneinheit: Prozent- und Zinsrechnung (20 Stunden) - mit Prozentangaben in vielfältigen und auch komplexen Situationen sicher umgehen - Prozentsatz, Prozentwert, Grundwert

Mehr

Stoffverteilungsplan Mathematik 8 auf der Grundlage des Lehrplans Schnittpunkt 8 Klettbuch

Stoffverteilungsplan Mathematik 8 auf der Grundlage des Lehrplans Schnittpunkt 8 Klettbuch K5: Mit Variablen und Termen arbeiten K5: Mit Variablen und Termen arbeiten K2: Geeignete heuristische Hilfsmittel (z. B. informative Figuren), Strategien und Prinzipien zum Problemlösen auswählen und

Mehr

Was ist eine Funktion?

Was ist eine Funktion? Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen

Mehr

1 Intervallschachtelung von Quadratwurzeln Umformen von Quadratwurzeln Wurzelgleichungen... 18

1 Intervallschachtelung von Quadratwurzeln Umformen von Quadratwurzeln Wurzelgleichungen... 18 A Terme und Gleichungen 1 Quadratzahlen und Quadratwurzeln... 4 2 Ausmultiplizieren und Faktorisieren... 5 3 Binomische Formeln... 6 4 Faktorisieren von Binomischen Formeln... 7 5 Bruchterme... 8 6 Lösen

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Fachcurriculum. Mathematik Klassen 7 und 8

Fachcurriculum. Mathematik Klassen 7 und 8 Fachcurriculum Mathematik Klassen 7 und 8 Ab Schuljahr 2006/07 (überarbeitet 2013/14) Mathematik 7/8 Seite 1 Themenbereich 7.1 Prozent- und Zinsrechnung Absoluter und relativer Vergleich - Anteile in Prozent.

Mehr

Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Mathematik

Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Mathematik Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Mathematik (Stand: 01.08.2013) (Lehrwerk: Elemente der Mathematik) Klasse 5 Nr. Themen, Schwerpunkte, inhaltsbezogene 1 Natürliche Zahlen und Größen

Mehr

Lernmodul Bruchrechnen. Gemischte, unechte Brüche. Brüche: Addition, Subtraktion. Brüche multiplizieren. Kehrwert.

Lernmodul Bruchrechnen. Gemischte, unechte Brüche. Brüche: Addition, Subtraktion. Brüche multiplizieren. Kehrwert. Lernmodul Bruchrechnen Gemischte, unechte Brüche Brüche: Addition, Subtraktion Brüche multiplizieren Kehrwert Brüche dividieren Lernmodul Dezimalrechnung Dezimalzahlen addieren, subtrahieren Dezimalzahlen

Mehr

Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen

Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen auf der Basis des Kernlehrplans für das Fach an Lehrwerk: Lambacher Schweizer, für Gymnasien 5 1. Zahlen und Größen Darstellen - Strichlisten- Säulendiagramme - Große Zahlen - Größen messen und schätzen

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

LT 9.1 INFO ZUM SCHULINTERNEN LEISTUNGSTEST IN DER 9. JAHRGANGSSTUFE LÖSUNGEN IM FACH MATHEMATIK ENDE SEPT. 2018

LT 9.1 INFO ZUM SCHULINTERNEN LEISTUNGSTEST IN DER 9. JAHRGANGSSTUFE LÖSUNGEN IM FACH MATHEMATIK ENDE SEPT. 2018 LT 9. INFO ZUM SCHULINTERNEN LEISTUNGSTEST IN DER 9. JAHRGANGSSTUFE IM FACH MATHEMATIK ENDE SEPT. 08 LÖSUNGEN 0.08.08 Kr AUS DER 7. JAHRGANGSSTUFE Kap. V.: S. 3 7a) 9( y) 5y + (y + 7) 38 9y 5y + y + 38

Mehr

Schulinternes Curriculum Mathematik Jahrgangsstufe 7

Schulinternes Curriculum Mathematik Jahrgangsstufe 7 Schulinternes Curriculum Mathematik Jahrgangsstufe 7 Unterrichtsvorhaben I: Rationale Zahlen Arithmetik / Algebra Ordnen Operieren rationale Zahlen ordnen und vergleichen Grundrechenarten für rationale

Mehr

Argumentieren / Kommunizieren Die SuS

Argumentieren / Kommunizieren Die SuS Kap. im Arithmetik / Algebra Die I. II. II. 3, 4, 5, 6, 7 IV. 5 unterscheiden rationale und irrationale Zahlen wenden das Radizieren als Umkehrung des Potenzierens an; berechnen und überschlagen Quadratwurzeln

Mehr

Grundlagen Algebra. Bruchgleichungen

Grundlagen Algebra. Bruchgleichungen Bruchgleichungen EL / GS -.0.05 - _Bruchgl.mc Definition: Eine Gleichung, bei er eine Variable x auch im Nenner vorkommt, ohne ass man sie kürzen kann, heißt Bruchgleichung. Bezeichnung: Gleichungen, ie

Mehr

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum Fach Mathematik und der Jahrgangsstufe 5 am Gymnasium Natürliche Zahlen und Größen Rechnen mit natürlichen Zahlen Körper und Figuren Flächen- und Rauminhalte Anteile - Brüche Stellentafel; Zweiersystem;

Mehr

Lineare Funktionen. Die lineare Funktion

Lineare Funktionen. Die lineare Funktion 1 Die lineare Funktion Für alle m, t, aus der Zahlenmenge Q heißt die Funktion f: x m x + t lineare Funktion. Die Definitionsmenge ist Q (oder je nach Zusammenhang ein Teil davon). Der Graph der linearen

Mehr

Übungsaufgaben mit Lösungen

Übungsaufgaben mit Lösungen Übungsaufgaben mit Lösungen Auf den folgenden Seiten findest du einen Überblick über alle Themengebiete mit der Anzahl der Aufgaben. Suche dir die Themen heraus, die du noch einmal üben solltest, zum Beispiel,

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 8. Klasse Seite 1 von 6

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 8. Klasse Seite 1 von 6 Dietrich-Bonhoeer-Gymnasium Oberasbach - Mathematik 8. Klasse Seite von 6 Standardaugaben Grundwissen M8 Beispielaugaben mit Lösung A. Die Funktion Eine Funktion ist eine eindeutige Zuordnung. ( Jedem

Mehr

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische

Mehr

1. Selbsttest Heron-Verfahren Gleichungen

1. Selbsttest Heron-Verfahren Gleichungen 1. Selbsttest 1.1. Heron-Verfahren Mit dem Heron-Verfahren soll ein Näherungswert für 15 gefunden werden. Führe die ersten drei Schritte des Heron- Verfahrens durch. Gib dann unter Verwendung der Werte

Mehr

Zahlen. Bruchrechnung. Natürliche Zahlen

Zahlen. Bruchrechnung. Natürliche Zahlen Themenübersicht 1/5 Alle aktuell verfügbaren Themen (Klasse 4 10) Dieses Dokument bildet alle derzeit verfügbaren Themen ab. Die jeweils aktuellste Version des Dokuments können Sie auf der Startseite in

Mehr

Potenzen mit ganzzahligen Exponenten: Rechenregeln

Potenzen mit ganzzahligen Exponenten: Rechenregeln Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die

Mehr

Mathematik. Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien

Mathematik. Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien Mathematik Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien I. Termumformungen II. Lineare Gleichungen und ihre Lösungsmengen III. Quadratische Gleichungen

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Kompetenzliste 0501_US_wd.indd :10:17

Kompetenzliste 0501_US_wd.indd :10:17 Kompetenzliste 16.06.2011 08:10:17 Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells in den durchgerechneten Beispielen der Angewandten Mathematik 1

Mehr

1.1 Bruchteile und Bruchzahlen Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen darstellen: 6 3 = Schraffiert:

1.1 Bruchteile und Bruchzahlen Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen darstellen: 6 3 = Schraffiert: Zahlen. Bruchteile und Bruchzahlen Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen darstellen: Gelb: 6 = Schraffiert: 20 0 Bruchteile gibt man häufig in Prozent (%) an. Prozent = Hundertstel

Mehr

Schulcurriculum für das Fach Mathematik

Schulcurriculum für das Fach Mathematik Evangelisches Gymnasium Siegen Schulcurriculum für das Fach Mathematik Unterrichtsinhalte der Jahrgangsstufe 5 1. Zahlen (Kapitel 1) Runden und Schätzen Große Zahlen Zahlen in Bildern 2. Größen (Kapitel

Mehr

Station 1 TERME BEGRIFFE 1. Station 2 ADDITION UND SUBTRAKTION GANZER ZAHLEN. Berechne a) 7 13 = b) 7 13 = d) = h) = f) 9 28 = g) 9 28 =

Station 1 TERME BEGRIFFE 1. Station 2 ADDITION UND SUBTRAKTION GANZER ZAHLEN. Berechne a) 7 13 = b) 7 13 = d) = h) = f) 9 28 = g) 9 28 = Station 1 ADDITION UND SUBTRAKTION GANZER ZAHLEN Berechne a) 7 13 = b) 7 13 = c) 7 + 13 = d) 7 + 13 = e) 9 + 28 = f) 9 28 = g) 9 28 = h) 9 + 28 = Station 2 TERME BEGRIFFE 1 Benenne die einzelnen Elemente

Mehr

Kantonsschule Solothurn RYS SS11/ Nach welcher Vorschrift wird der Funktionswert y aus x berechnet? Welcher Definitionsbereich ID ist sinnvoll?

Kantonsschule Solothurn RYS SS11/ Nach welcher Vorschrift wird der Funktionswert y aus x berechnet? Welcher Definitionsbereich ID ist sinnvoll? RYS SS11/1 - Übungen 1. Nach welcher Vorschrift wird der Funktionswert y aus berechnet? Welcher Definitionsbereich ID ist sinnvoll? a) : Seitenlänge eines Quadrates (in cm) y: Flächeninhalt des Quadrates

Mehr

1. Selbsttest Direkte Proportionalität Spielzeugeisenbahn Gleichung James Blond. Volumen des Flüssigsprengstoffs in Litern

1. Selbsttest Direkte Proportionalität Spielzeugeisenbahn Gleichung James Blond. Volumen des Flüssigsprengstoffs in Litern 1. Selbsttest 1.1. Direkte Proportionalität Nenne die drei Erkennungsmerkmale einer direkten Proportionalität y x. 1.2. Spielzeugeisenbahn Eine Spielzeugeisenbahn legt in der Zeit t die Strecke s zurück.

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b Klammerrechnung Für das Rechnen mit Klammern gilt: Steht vor einer Klammer ein Minus, so drehen sich beim Auflösen der Klammern die Vorzeichen um. Distributivgesetz: Wird eine ganze Zahl mit einer eingeklammerten

Mehr

Eine zugehörige interaktive Selbstkontrolle findet sich jeweils am Ende des Kapitels.

Eine zugehörige interaktive Selbstkontrolle findet sich jeweils am Ende des Kapitels. Materialienübersicht Verstehen Theorieunterstützung Kompetenzenübersicht für die standardisierte Reife- und Diplomprüfung... 5... 63... 95... 145 Eine zugehörige interaktive Selbstkontrolle findet sich

Mehr

2016/17 Jahrgangsstufe 9 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am

2016/17 Jahrgangsstufe 9 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 2016/17 Jahrgangsstufe 9 A Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2016 Name: Note: Klasse: Punkte: 1 Aufgabe 1 [AB] ist der Durchmesser des Kreises mit Mittelpunkt M.

Mehr

Tipps und Tricks für die Abschlussprüfung

Tipps und Tricks für die Abschlussprüfung Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Klasse 9 (Pluszweig) Lösungen

Klasse 9 (Pluszweig) Lösungen . Beschreibe den Term : unter Verwendung der mathematischen Fachbegriffe. Berechne den Termwert nachvollziehbar ohne Taschenrechner und erkläre dabei, was man unter Erweitern und Kürzen eines Bruches versteht.

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Nenner befindet. f() = a h() Beispiel 1: f() = 1 Beispiel 2: f() = 1 ² Definitionsbereich und Definitionslücken Bei einer

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr