2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c."

Transkript

1 2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist ein Teiler von b) und b ist ein Vielfaches von a. Wir schreiben dafür: a b. Wenn a die Zahl b nicht teilt, schreiben wir: a b. Ist a b und b = qa, so ist q = b eindeutig durch das Paar a, b bestimmt. a Die trivialen Teiler von b sind ±b und ±1(b = 1 b = b 1 und b = ( 1)( b) = ( b)( 1)). 2.1 Regel (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c. (c) Aus a b und c d folgt ac bd (insbes.: a b = ac bc). (d) Aus a b und a c folgt a bx + cy für beliebige x, y. (e) Aus ac bc und c 0 folgt a b. Beweis. (a) b = qa = b = ( q)a, b = ( q)( a), b = q( a), b = q a (b) b = qa, c = rb = c = r(qa) = (rq)a = a c (c) b = qa, d = rc = bd = (qa)(rc) = (qr)(ac) = ac bd (d) b = qa, c = ra = bx + cy = qax + ray = (qx + ry)a (e) bc = q(ac), c = b = qa = a b Ist a 0, so kann man b durch a immer mit Rest dividieren. 2.2 Division mit Rest. Sei a 0 und b beliebig. Dann gibt es zu a, b genau ein Zahlenpaar q, r mit ( ) b = qa + r und 0 r < a 1

2 (a b r = 0). Man nennt q den unvollständigen Quotienten von b durch a, und r den Divisionsrest (Rest bei der Division von b durch a). Beweis. 1. Existenz. Es genügt, dies für a > 0 zu zeigen, denn: Wenn a < 0, so ist a > 0. Aus b = q( a) + r mit 0 r < a = a folgt: b = qa + r, wobei q := q. Für u 0 = b ist b u 0 a = b + b a 0. Also ist die Menge M := {b ua u Z und b ua 0} N nicht leer. Nach dem Prinzip vom kleinsten Element existiert somit eine kleinste natürliche Zahl r der Form r = b qa, q Z. Wegen der Minimalität von r ist r a = b (q + 1)a < 0, also r < a. Damit ist, wie gefordert b = qa + r und 0 r < a. 2. Eindeutigkeit. Sei b = qa + r = q a + r mit 0 r < a und 0 r < a. Dann ist (q q )a = r r und r r < a. Es folgt q q = 0, und r r = 0 a = 0, also r = r. Der größte gemeinsame Teiler von zwei Zahlen. 2.3 Bemerkung. Ist a 0 und b a, so ist b a. Insbesondere kommen als Teiler von a nur die endlich vielen Zahlen ±1, ±2,..., ±a in Frage. Beweis. b a = a = qb, q 0, da a 0 = q 1 = a = q b b. Nach dieser Bemerkung gibt es einen größten gemeinsamen Teiler von zwei Zahlen a, b, welche nicht beide Null sind. Schreibe für den größten gemeinsamen Teiler (a, b) oder ggt (a, b). Mit anderen Worten: Der größte gemeinsame Teiler (a, b) von a und b ist die eindeutig bestimmte natürliche Zahl d mit folgenden Eigenschaften: (i) d a und d b (ii) Gilt t a und t b, so ist t d. Ist (a, b) = 1 so heißen a und b teilerfremd. In der Tat sind dann +1 und 1 die einzigen gemeinsamen Teiler von a und b. 2.4 Satz. Seien a und b nicht beide 0 und d = (a, b). Dann gilt: 2

3 (a) d ist die kleinste positive Zahl der Form ax + by. (b) Ist (a, b) = 1, so gibt es Zahlen x und y mit ax + by = 1 (c) Ist t gemeinsamer Teiler von a und b, so ist t ein Teiler von d. Beweis. M + = {ax + by x, y ganz und ax + by > 0} ist nicht leer, da a 2 + b 2 M +. Sei δ = MinM +. Zeige zunächst: (1) δ a und δ b (2) t a und t b = t δ Sei δ = ax + by Zu (1) Dividiere a durch δ mit Rest: a = qδ + r, 0 r < δ = r = a qδ = a q(ax + by) = a(1 qx) + b( qy) = ax + by. Es folgt r = 0, da δ = MinM +, und a = qδ, d.h. δ a. Analog zeigt man, daß δ b. Zu (2) t a und t b = 2.1 t ax + by = δ Speziell gilt (2) für t = d = d δ = d δ. Nach (1) ist δ gemeinsamer Teiler von a und b, somit δ d. Es folgt d = δ, und (a) ist bewiesen. (b) folgt aus (a). Wegen (2) und δ = d gilt auch (c). 2.5 Korollar. M = {ax + by x, y Z} ist die Menge der Vielfachen von (a, b). Beweis. (a, b) = d a und d b = 2.1 d ax + by, d.h. ax + by ist Vielfaches von d. Nach 2.4 ist d von der Form d = ax 0 + by 0. Sei v = qd Vielfaches von d = v = a(qx 0 ) + b(qy 0 ) M. Das kleinste gemeinsame Vielfache von zwei Zahlen. b heißt Vielfaches von a, wenn a b. Definition. Seien a > 0 und b > 0. Eine Zahl m heißt kleinstes gemeinsames Vielfaches von a und b, wenn m das kleinste unter den gemeinsamen 3

4 positiven Vielfachen von a und b ist (es gibt solche Vielfache, etwa ab). Schreibe dafür kgv (a, b). 2.6 Bemerkung. Seien a > 0 und b > 0. Dann gilt: Aus a n und b n folgt kgv (a, b) n. In Worten: Jedes gemeinsame Vielfache von a und b ist ein Vielfaches von kgv (a, b). Beweis. Sei m = kgv (a, b). Division mit Rest ergibt n = qm + r, 0 r < m. = r = n qm = 2.1 a r und b r = r = 0 nach Definition von m. 2.7 Satz. Seien a > 0 und b > 0. Dann gilt (a, b)kgv (a, b) = ab. Beweis. Sei m = kgv (a, b). Aus a ab und b ab folgt nach 2.6: m ab und g = ab ist ganz. Es ist zu zeigen, daß g = (a, b). m a = g m, b = g m mit m, m Z, also gilt b a a b (1) g a und g b. Aus t a und t b folgt b t, a t Z und a a b t, b b a t Also ist gezeigt: 2.6 = m ab t (2) Aus t a und t b folgt t g, insbesondere t g. Aus (1) und (2) ergibt sich: g = (a, b). = t ab m = g Nach Satz 2.7 können wir den Begriff kgv eigentlich wieder vergessen. Wir notieren noch 2.8 Regeln für den größten gemeinsamen Teiler. Sei a 0. (a) 1 (a, b) Min( a, b ) falls auch b 0 (folgt aus 2.3) (b) (a, 1) = 1 (folgt aus a)) (c) (a, 0) = a, ( a, b) = (a, b) = (b, a) (klar) (d) Für c > 0 ist (ac, bc) = c (a, b) (e) ( a, b ) = 1 (a,b) (a,b) (f) (a, b + ax) = (a, b) für alle x (g) b a = (a, b) = b 4

5 (h) a bc und (a, b) = 1 = a c Beweis. d) d = (a, b) a und d b = dc ac und dc bc = 2.4 dc (ac, bc) =: δ c ac und c bc = 2.4 c δ = δ ist ganz. Es folgt: δ ac = δ a und c c δ bc = δ b c δ a und δ b = 2.4 δ d = δ dc c c c dc δ und δ dc = dc = δ e) (a, b) = ( a b d) (a, b), (a, b)) = (a, b)( a (a,b) (a,b) Kürzen ergibt die Behauptung. (a,b), b ) (a,b) f) t a und t b = 2.1 t a und t b + ax = 2.1 t a und t (b + ax) ax = b. Also haben die Paare a, b und a, b+ax die gleichen gemeinsamen Teiler = (a, b) = (a, b + ax) g) a = bq = (a, b) = (bq, b 1) d) = c) b (q, 1) b) = b. h) c = 0 = a c. c 0, a ac, a bc = a (ac, bc) = c (a, b) = c = a c. 2.9 Der euklidische Algorithmus zur Bestimmung des größten gemeinsamen Teilers von a und b. Nach 2.8 können wir annehmen, daß a > b > 0. Man erhält (a, b) nach dem folgenden Verfahren: Setze a 0 := a und a 1 := b. 1. Schritt. Dividiere a 0 durch a 1 mit Rest: a 0 = q 0 a 1 + a 2 mit 0 a 2 < a 1 Bleibt kein Rest, so ist a 1 a = (a, b) = (a 0, a 1 ) = a 1 = b. Sonst gilt 0 < a 2 < a 1 < a Schritt. Dividiere a 1 durch a 2 mit Rest: a 1 = q 1 a 2 + a 3, 0 a 3 < a 2 Solange ein Rest bleibt fährt man fort und kommt zum k ten Schritt. Es ist 0 < a k < a k 1 <... < a 1 < a 0. 5

6 k ter Schritt. Dividiere a k 1 durch a k mit Rest: a k 1 = q k 1 a k + a k+1, 0 a k+1 < a k Wegen 0 a k+1 < a k <... < a 1 < a 0 = a muß das Verfahren abbrechen (und zwar nach höchstens a Schritten), d.h.: Es gibt eine Zahl n 1, so daß (i) a k 1 = q k 1 a k + a k+1, 0 < a k 1 < a k für 1 k n 1 (ii) a n 1 = q n 1 a n (also a n a n 1 und daher (a n, a n 1 ) = a n ). Nach Regel f) gilt: (a k, a k 1 ) = (a k+1 + q k 1 a k, a k ) = (a k+1, a k ) für 1 k n 1. Also ist Fazit. (a, b) = (a 1, a 0 ) = (a 2, a 1 ) =... = (a n, a n 1 ) = a n (1) Ist b a, so ist (a, b) = b. (2) Ist b a, so ist (a, b) der letzte Divisionsrest, der beim euklidischen Algorithmus auftritt. Rechenbeispiel. a = 531, b = 93 (siehe 2) 531 = = = = letzter Divisionsrest 12 = 4 3 Also ist (531, 93) = 3. Sind a > 0 und b > 0 teilerfremd, so gibt es nach 2.4 b) Zahlen x und y, so daß ax + by = 1 ist. Mit Hilfe des euklidischen Algorithmus kann man solche x, y leicht berechnen. Verfahren zur Lösung der Gleichung ax + by = 1, wenn (a, b) = 1 ist. 6

7 1. Schritt. Führe den euklidischen Algorithmus für a, b durch (o.e. a > b). Erhalte Gleichungen (a 0 = a, a 1 = b). a 0 = q 0 a 1 + a 2 a 1 = q 1 a 2 + a 3. a k 2 = q k 2 a k 1 + a k. a n 2 = q n 2 a n 1 + a n a n = (a, b) a n 1 = q n 1 a n Im Falle (a, b) = 1 ist dabei a n = 1, q n 1 = a n Schritt. Bestimme rekursiv von unten nach oben für k = n, n 1,... z. Zahlen x k, y k, so daß ( ) x k a k 2 + y k a k 1 = 1 Beginn der Rekursion. k = n : 1 a n 2 + ( q n 2 )a n 1 = 1. Im Fall k = n = 2 ist man fertig. Sei nun n k 3 und seien x k, y k mit der Eigenschaft ( ) schon bestimmt. Setze die Gleichung aus dem Euklidischen Algorithmus a k 1 = a k 3 q k 3 a k 2 in ( ) ein und erhalte 1 = x k a k 2 + y k (a k 3 q k 3 a k 2 ) = (x k y k q k 3 )a k 2 + y k a k 3 = x k 1 a k 3 + y k 1 a k 2 Am Ende erhält man für k = 2 1 = x 2 a 0 + y 2 a 1 = x 2 a + y 2 b Rechenbeispiel. Zeige, daß (97, 44) = 1 und löse 97x + 44y = 1 97 = = = = = = Aus 1 = und 8 = folgt 1 = Aus 1 = und 9 = folgt 1 = Fazit: x = 5, y = 11 ist eine Lösung der Gleichung 97x + 44y = 1. 7

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS von Rolf Waldi Inhaltsverzeichnis Kapitel I. Elementare Zahlentheorie 1 Grundlegende Regeln und Prinzipien 3-11 2 Teilbarkeit in Z 12-18 3 Primzahlen

Mehr

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer

Mehr

2. Teilbarkeit. Euklidischer Algorithmus

2. Teilbarkeit. Euklidischer Algorithmus O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}

Mehr

Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen.

Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen. Was ist Zahlentheorie? Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, welches sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 70 Andreas Gathmann 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie man ein Ringelement

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 70 Andreas Gathmann 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie man ein Ringelement

Mehr

3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1

3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1 3 Primzahlen Die Zahl 1 hat nur einen positiven Teiler, nämlich 1. Jede Zahl a > 1 hat mindestens zwei positive Teiler: 1 und a. Definition. Eine Primzahl ist eine Zahl a > 1, welche nur die Teiler 1 und

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 4 Das Lemma von Bezout Satz 1. (Lemma von Bézout) Jede Menge von ganzen Zahlen a 1,...,a n besitzt einen größten gemeinsamen Teiler

Mehr

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen Vorlesung Mathematische Strukturen Sommersemester 2016 Prof. Barbara König Übungsleitung: Christine Mika & Dennis Nolte Division mit Rest Seien a, b Z zwei ganze mit a 0. Dann gibt es eindeutig bestimmte

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 10. Teilbarkeit in Ringen 67 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie

Mehr

5 Kongruenzrechnung. Definition. Zwei Zahlen heißen kongruent modulo m, wenn sie bei der Division durch m den gleichen Rest lassen.

5 Kongruenzrechnung. Definition. Zwei Zahlen heißen kongruent modulo m, wenn sie bei der Division durch m den gleichen Rest lassen. 5 Kongruenzrechnung Sei m > 0 fest vorgegeben Nach wissen wir: Jede Zahl a läßt sich auf eindeutige Weise durch m mit Rest dividieren, dh: Es gibt genau ein Zahlenpaar q, r mit der Eigenschaft ( ) a =

Mehr

Seminar zur. Zahlentheorie. Prof. Dr. T. Wedhorn. Vortrag zum Thema. Euklidische und faktorielle Ringe Peter Picht. und.

Seminar zur. Zahlentheorie. Prof. Dr. T. Wedhorn. Vortrag zum Thema. Euklidische und faktorielle Ringe Peter Picht. und. Seminar zur Zahlentheorie Prof. Dr. T. Wedhorn Vortrag zum Thema Euklidische und faktorielle Ringe 13.11.2007 Peter Picht und Stephan Schmidt 4 Euklidische und faktorielle Ringe (A) Assoziierheit, Irreduziblität,

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

Euklidische Algorithmus, Restklassenringe (Z m,, )

Euklidische Algorithmus, Restklassenringe (Z m,, ) Euklidische Algorithmus, Restklassenringe (Z m,, ) Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 14 Gröÿter gemeinsamer Teiler Denition 1. [Teiler] Eine Zahl m N ist Teiler von n Z, wenn der

Mehr

Einführung in die Algebra. Algebra I. Alfred Geroldinger. Franz Halter-Koch. und. und. basierend auf dem Skriptum von

Einführung in die Algebra. Algebra I. Alfred Geroldinger. Franz Halter-Koch. und. und. basierend auf dem Skriptum von Einführung in die Algebra und Algebra I basierend auf dem Skriptum von Alfred Geroldinger und Franz Halter-Koch i ii Vorbemerkungen Wir bezeichnen mit N = {0, 1, 2, 3,... } die Menge der natürlichen Zahlen

Mehr

Der größte gemeinsame Teiler und das kleinste gemeinsame Vielfache Proseminar Modul 4c, Gruppe 3: Primzahlen, Dr. Regula Krapf

Der größte gemeinsame Teiler und das kleinste gemeinsame Vielfache Proseminar Modul 4c, Gruppe 3: Primzahlen, Dr. Regula Krapf Der größte gemeinsame Teiler und das kleinste gemeinsame Vielfache Proseminar Modul 4c, Gruppe 3: Primzahlen, Dr. Regula Krapf Carina Hilger Inhaltsverzeichnis 1 Der größte gemeinsame Teiler (ggt) 2 1.1

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2.

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2. Schweizer Mathematik-Olympiade smo osm Zahlentheorie I Thomas Huber Aktualisiert: 1. August 2016 vers. 1.0.0 Inhaltsverzeichnis 1 Teilbarkeit 2 2 ggt und kgv 3 3 Abschätzungen 6 1 Teilbarkeit Im Folgenden

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Übungen zum Seminar Grundlagen der Mathematik Blatt 10 Abgabe: Dienstag Aufgabe 1 (15 Punkte + 5 Bonuspunkte = 20 Punkte)

Übungen zum Seminar Grundlagen der Mathematik Blatt 10 Abgabe: Dienstag Aufgabe 1 (15 Punkte + 5 Bonuspunkte = 20 Punkte) Universität Ulm Gerhard Baur Bianca Jaud Übungen zum Seminar Grundlagen der Mathematik Blatt 10 Abgabe: Dienstag 12.01.2016 Aufgabe 1 (15 Punkte + 5 Bonuspunkte = 20 Punkte) 1) Lesen Sie sich die Texte

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Teilbarkeitslehre

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Teilbarkeitslehre Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Teilbarkeitslehre Teilbarkeitslehre Setup R = Z oder R = K[X ] für einen Körper K Division mit Rest Ganzzahldivision

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Euklid-1 Euklid sche Ringe (Das Rechnen in Z und in K[T]). Ist K ein Körper und f K[T] ein Polynom, so nennt man f normiert, falls f 0 gilt und der höchste Koeffizient von f gleich 1 ist. (Natürlich gilt:

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

3. Der größte gemeinsame Teiler

3. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2016) 18 3. Der größte gemeinsame Teiler (3.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r

KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r KAPITEL 13 Polynome 1. Primfaktorzerlegung in den ganzen Zahlen DEFINITION 13.1 (Primzahl). Eine Zahl p ist genau dann eine Primzahl, wenn folgende beiden Bedingungen gelten: (1) Es gilt p > 1. (2) Für

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das

Mehr

Anzahl der Generatoren

Anzahl der Generatoren Anzahl der Generatoren Satz Anzahl Generatoren eines Körpers Sei K ein Körper mit q Elementen. Dann besitzt K genau φ(q 1) viele Generatoren. Beweis: K ist zyklisch, d.h. K besitzt einen Generator a mit

Mehr

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004 Zahlentheorie Anna Rieger 0355556 Stefan Takacs 0356104 Daniela Weberndorfer 0355362 Linz, am 2. Juni 2004 Zusammenfassung Die vorliegende Arbeit über die grundlegenden Sätze der Zahlentheorie beschäftigt

Mehr

8. Musterlösung zu Mathematik für Informatiker II, SS 2004

8. Musterlösung zu Mathematik für Informatiker II, SS 2004 8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in

Mehr

5. Der größte gemeinsame Teiler

5. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2017) 22 5. Der größte gemeinsame Teiler (5.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

Integritätsbereiche und Teilbarkeit

Integritätsbereiche und Teilbarkeit Kapitel 5 Integritätsbereiche und Teilbarkeit 5.1 Einfache Teilbarkeitsregeln 5.1.1 Definition. Sei (I,+, 0,,, 1) ein Integritätsbereich. Sind a, b I, dann heißt a durch b teilbar und b ein Teiler von

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 9 Aufgabe 1 (4 Punkte +) Sei

Mehr

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18 Vorkurs Mathematik Prof. Udo Hebisch WS 2017/18 1 1 Logik 2 1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Kapitel 1 Die natürlichen und die ganze Zahlen

Kapitel 1 Die natürlichen und die ganze Zahlen Kapitel 1 Die natürlichen und die ganze Zahlen Inhalt 1.1 1.1 Vollständige Induktion z.b. z.b. 1+ 1+ 2 + 3 +...... + n = n(n+1)/2 1.2 1.2 Die Die Peano-Axiome Ein Ein Axiomensystem für für die die natürlichen

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Grundlegendes der Mathematik

Grundlegendes der Mathematik Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

2 Restklassenringe und Polynomringe

2 Restklassenringe und Polynomringe 2 Restklassenringe und Polynomringe Sei m > 1 ganz und mz := {mx x Z}. Nach I. 5.3 gilt: Die verschiedenen Restklassen von Z modulo m sind mz, 1 + mz,..., (m 1) + mz. Für die Gesamtheit aller Restklassen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Diskrete Strukturen Vorlesungen 11 und 12

Diskrete Strukturen Vorlesungen 11 und 12 Sebastian Thomas RWTH Aachen, WS 2016/17 24.11.2016 30.11.2016 Diskrete Strukturen Vorlesungen 11 und 12 10 Teilbarkeitslehre Ziel dieses Abschnitts ist es zu sehen, dass es starke formale Ähnlichkeiten

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65

2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65 2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65 Nun kommen wir zur Teilbarkeitstheorie in Integritätsbereichen. Es wird ganz elementar in dem Sinne, dass wir wieder mehr von Elementen als von

Mehr

WURZEL Werkstatt Mathematik Polynome Grundlagen

WURZEL Werkstatt Mathematik Polynome Grundlagen Die WURZEL Werkstatt Mathematik Polynome Grundlagen Wer lange genug über hunderten von Problemen gebrütet hat, kann bei vielen bereits erraten, aus welchem Land sie kommen. So lieben die Briten etwa die

Mehr

Euklidischer Algorithmus

Euklidischer Algorithmus Euklidischer Algorithmus Ermitteln des größten gemeinsamen Teilers mit Euklid: function ggt (m, n) Hierbei ist m begin 0undn 0vorausgesetzt. if m = 0 then return n else return ggt (n mod m, m) fi end Man

Mehr

Zeigen Sie unter Verwendung der Tatsache, dass (K, +) bereits eine abelsche Gruppe ist:

Zeigen Sie unter Verwendung der Tatsache, dass (K, +) bereits eine abelsche Gruppe ist: FU Berlin: WiSe 1-14 (Analysis 1 - Lehr. Übungsaufgaben Zettel 11 Aufgabe 47 Wir betrachten die Menge K Q Q zusammen mit den Verknüpfungen: (a, b(c, d (a b, c d, a, b, c, d Q (a, b (c, d (ac 2bd, ac bd,

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit Kapitel 2 Ganze Zahlen In diesem Kapitel setzen wir voraus, dass die Menge Z der ganzen Zahlen, ihre Ordnung und die Eigenschaften der Addition und Multiplikation ganzer Zahlen dem Leser vertraut sind.

Mehr

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019 1 Diskrete Strukturen Vorlesung 15: Arithmetik 5. Februar 2019 Nächste Termine Modul Diskrete Strukturen Hörsaalübung (Mo. 9:15) Vorlesung (Di. 17:15) 4.2. Tutorium (Klausurvorbereitung) 11.2. 12.2. 5.2.

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2018/2019 Grundkurs Mathematik I Vorlesung 20 Wir kehren zur Thematik der Primzahlen und der Primfaktorzerlegung einer natürlichen Zahl zurück. Bisher kennen wir nur die

Mehr

Algebra und Zahlentheorie I (WS03/04), Lösungen zu Blatt 12

Algebra und Zahlentheorie I (WS03/04), Lösungen zu Blatt 12 Algebra und Zahlentheorie I (WS03/04), Lösungen zu Blatt 12 Aufgabe 1. (Division mit Rest in Polynomringen) Es sei R ein kommutativer Ring {0} und R[X] ein Polynomring in der Unbestimmten X über R. Ferner

Mehr

Zahlentheorie. Vorlesung 2. Ideale

Zahlentheorie. Vorlesung 2. Ideale Prof. Dr. H. Brenner Osnabrück WS 016/017 Zahlentheorie Vorlesung Ideale Alle Vielfachen der 5, also Z5, bilden ein Ideal im Sinne der folgenden Definition. Definition.1. Eine nichtleere Teilmenge a eines

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Elementare Zahlentheorie Florian Kainrath SS 19 Hinweise (auf sicherlich vorhandene) (Tipp-)Fehler sind willkommen und erwünscht. 1 2 Wir verwenden die üblichen Bezeichnungen der Mengenlehre: Für zwei

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen.

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Seminarausarbeitung Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Andre Eberhard Mat. Nr. 25200607 5. November 207 Inhaltsverzeichnis

Mehr

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname:

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname: Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA I 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe Punktzahl /60

Mehr

17 Euklidische Ringe und Polynome

17 Euklidische Ringe und Polynome 17 Euklidische Ringe und Polynome Definition 17.1. Sei R ein Integritätsbereich. Eine Abbildung δ : R \{0} N 0 heißt euklidisch falls gilt (E1) a, b R mit b 0: q, r R mit r = 0 oder mit r 0 und δ(r)

Mehr

13 Polynome und Nullstellen

13 Polynome und Nullstellen 60 II. Differentialrechnung 13 Polynome und Nullstellen Lernziele: Resultat: Zwischenwertsatz Methoden: Raten von Nullstellen, Euklidischer Algorithmus, Horner-Schema Kompetenzen: Bestimmung von Nullstellen

Mehr

Ringe und Ideale. 2.1 Definitionen

Ringe und Ideale. 2.1 Definitionen Ringe und Ideale 2 In den ersten Kapiteln haben wir ja schon Ringe und Ideale kennengelernt. Allerdings ist es meistens ungünstig, mit ganz allgemeinen Ringen zu hantieren. Wir wollen uns deshalb in diesem

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung

Mehr

Integritätsbereiche und Teilbarkeit

Integritätsbereiche und Teilbarkeit Kapitel 5 Integritätsbereiche und Teilbarkeit 5.1 Einfache Teilbarkeitsregeln 5.1.1 Definition. Sei (I,+, 0,,, 1) ein Integritätsbereich. Sind a, b I, dann heißt a durch b teilbar und b ein Teiler von

Mehr

Der Euklidische Algorithmus Dieter Wolke

Der Euklidische Algorithmus Dieter Wolke Der Euklidische Algorithmus Dieter Wolke Einleitung. Für den Begriff Algorithmus gibt es keine einheitliche Definition. Eine sehr knappe findet sich in der Encyclopaedia Britannica (1985) A systematic

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester 2005-06 vom 21. Januar 2006 1. Sei (N, v) Peano-Menge

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

3 Teilbarkeit in Integritätsringen

3 Teilbarkeit in Integritätsringen 3 Teilbarkeit in Integritätsringen 3.1 Division mit Rest in Z Zu a, b Z, b > 0 existieren eindeutig bestimmte Zahlen q, r Z a = qb + r, 0 r < b. 3.2 Satz Sei K ein Körper zu f, g K[T ], g 0 existieren

Mehr

4. Dezember Kongruenzen und Restklassenringe

4. Dezember Kongruenzen und Restklassenringe 4. Dezember 2018 Kongruenzen und Restklassenringe Kongruenzen und Restklassenringe Setup R = Z oder R = K[X ] für einen Körper K m R \ {0} (m steht für modulus, lat. Maß.) Kongruenzen Definition a, b R

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

Mathematische Strukturen Teilbarkeit und Faktorisierung

Mathematische Strukturen Teilbarkeit und Faktorisierung Mathematische Strukturen Teilbarkeit und Faktorisierung Hagen Knaf SS 2014 Einleitung Im Ring Z = {... 3, 2, 1, 0, 1, 2, 3,...} der ganzen Zahlen ist der Begriff der Teilbarkeit einer Zahl z Z durch eine

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

3 Die g adische Darstellung natürlicher Zahlen

3 Die g adische Darstellung natürlicher Zahlen 3 Die g adische Darstellung natürlicher Zahlen Wir sind gewöhnt, natürliche Zahlen im Dezimalsystem darzustellen und mit diesen Darstellungen zu rechnen. Dazu führt man zehn Zeichen (Ziffern) ein, üblicherweise

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e

mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e 1 Rechnen mit ganzen Zahlen Führen Sie die nachfolgenden Berechnungen aus: 1.1 a. 873 112 1718 157 3461 + b. 1578 9553 7218 212 4139 + 1.3 Berechnen Sie: a. 34 89 b. 67 46 c. 61 93 d. 55 11 e. 78 38 1.2

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 2002/03 Institut für Informatik Aufgabenblatt 8 Prof. Dr. J. Csirik 2. Dezember 2002 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 2-4 und nv jokar@mathtu-berlinde Kapitel 4 Der

Mehr

2: Restklassen 2.1: Modulare Arithmetik

2: Restklassen 2.1: Modulare Arithmetik 2: Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32, 64} Prüfziffern mod 10 oder mod 11... 71 S. Lucks Diskr Strukt.

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr