Rechnen mit Bruchzahlen

Größe: px
Ab Seite anzeigen:

Download "Rechnen mit Bruchzahlen"

Transkript

1 Addition und Subtraktion von Brüchen Aufgabe: Rechnen mit Bruchzahlen In einem Gefäß befinden sich Liter Orangensaft. a.) Jemand trinkt b.) Jemand gießt c.) Jemand gießt Liter davon. Wie viel Saft befindet sich jetzt noch im Gefäß? Liter dazu. Wie viel Saft befindet sich nun im Gefäß? Liter dazu. Wie viel Saft befindet sich nun im Gefäß? d.) Jemand trinkt 6 Liter davon. Wie viel Saft befindet sich jetzt noch im Gefäß? e.) Jemand gießt Liter dazu. Wie viel Saft befindet sich nun im Gefäß? Darstellung der Aufgaben: + l + l l l l l l l 6 zu a.) zu b.) l l l l l + l l l l ml ml 00 ml ml + 6 ml 00 ml, l zu c.) zu d.) 9 l + l l + l l l l l l l l ml + 00 ml ml, l ml, ml 6, ml Seite von

2 zu d.) 9 9 l + l l + l l l (000 ml ml ml, l :0 9 ml ml ml ) MERKE:.) Brüche mit gleichen Nennern werden addiert (subtrahiert), indem man ihre Zähler addiert (subtrahiert) und den Nenner beibehält..) Brüche mit verschiedenen Nennern werden addiert (subtrahiert), indem man die Brüche gleichnamig macht (man bringt sie durch Erweitern auf den gleichen Nenner, den Hauptnenner) und danach ihre Zähler addiert (subtrahiert). Übungen dazu:.) 9 +.).) +.) ) ).) + +.) ) 9.).).) ) ).) +.) Seite von

3 Addition und Subtraktion von Bruchzahlen In einem Gefäß befinden sich Liter Orangensaft. a.) Jemand trinkt b.) Jemand gießt c.) Jemand gießt Liter davon. Wie viel Saft befindet sich jetzt noch im Gefäß? Liter dazu. Wie viel Saft befindet sich nun im Gefäß? Liter dazu. Wie viel Saft befindet sich nun im Gefäß? d.) Jemand trinkt 6 Liter davon. Wie viel Saft befindet sich jetzt noch im Gefäß? e.) Jemand gießt Liter dazu. Wie viel Saft befindet sich nun im Gefäß? Versuche, die Aufgaben a.) bis d.) mit Hilfe der unten abgebildeten Gefäße zeichnerisch zu lösen. Danach sollst du die Aufgaben a.) bis d.) mit Hilfe einer Rechnung lösen. Vergleiche jeweils, ob die Rechnung mit der Zeichnung übereinstimmen kann. Probiere dann aus, ob die Aufgabe e.) mit Hilfe einer Rechnung lösen kannst. Gefäß a.) Gefäß b.) Gefäß c.) Gefäß d.) l l l l Gefäß enthält jetzt Gefäß enthält jetzt Gefäß enthält jetzt Gefäß enthält jetzt Liter Saft Liter Saft Liter Saft Liter Saft Platz für deine Rechnungen: Seite von

4 Aufgabe: Welche Bruchzahl muss man für x einsetzen: Vorüberlegungen mit natürlichen Zahlen: + x x + x 9 x x x x + x 9 Gegenrechnung! Gegenrechnung! Gegenrechnung! keine Gegenrechnung! x x x x Aufgaben mit Bruchzahlen: + x x + x x 0 6 Gegenrechnung! Gegenrechnung! Gegenrechnung! keine Gegenrechnung! x x x + x x x x + x 0 0 x x x x 0 Aufgaben: Addition und Subtraktion von gemischten Bruchzahlen.) ) ) ) ) ) + +.) + +.) ) ) Seite von

5 Anordnen von Brüchen, Addition, Subtraktion.) Welche Brüche werden durch die Pfeile am Zahlenstrahl dargestellt? Notiere für jeden Buchstaben den entsprechenden Bruch in der Grunddarstellung oder als gemischten Bruch. 0 A B C D E F G H Beantworte die folgenden Fragen: a.) Wie heißt der Bruch, der um b.) Wie heißt der Bruch, der um 6 größer als E ist? kleiner als F ist?.) Trage folgende Brüche auf einem geeigneten Zahlenstrahl ein: 9 ; ; ; ; ; ) Ordne folgende Brüche der Größe nach. Beginne mit dem kleinsten Bruch: ; ; ; ; ; ; 6 9.) Berechne bis zur Grunddarstellung: 9 a.) + b.) + c.) + + d.) e.) f.) g.) + + h.) ) Bestimme jeweils den Wert des Platzhalters x: a.) + x b.) x + c.) x d.) x e.) x ) Lisa verteilt Gummibärchen. Sie gibt Torsten 0, Michael und Ina des Inhalts ihrer Tüte. a) Welchen Anteil der Gummibärchen behält sie für sich? b) In der Tüte sind 0 Gummibärchen. Wie viele Gummibärchen erhält jedes der vier Kinder? Seite von

6 Anordnen von Brüchen, Addition, Subtraktion (Lösungen) zu.) A B C D 6 6 E F G H 6 6 zu b.) zu c.) zu.) zu.) < < < < < < < < < < < < 9 6 zu a.) + + b.) c.) d.) e.) f.) g.) h.) Seite 6 von

7 zu.) a.) + x x x x b.) x + x x x c.) x x + x + x d.) x x x x e.) x x x x x 0 x 9 x 0 zu 6.) 9 :60 9 a.) + + b.) Lisa : von 0 : 0 0 GB :0 + + Torsten : von 0 : 0 9 GB : Michael : von 0 : GB : Ina : von 0 : GB Seite von

8 Vervielfachen von Bruchzahlen mit einer natürlichen Zahl Aufgaben:.) ) ) MERKE: Man multipliziert einen Bruch mit einer natürlichen Zahl, indem man den Zähler mit der Zahl multipliziert und den Nenner beibehält (mit multipliziert). Wichtig: Vor dem Ausmultiplizieren auf das Kürzen achten! Weitere Beispiele:.) ) ) 6 Aufgabe: Teilen von Bruchzahlen durch eine natürliche Zahl Was passiert, wenn man durch dividiert, das heißt in gleiche Teile teilt? Offensichtlich erhält man nach der Zeichnung. Wie kann man das durch eine Rechnung deutlich machen? Seite von

9 .) : denn (Gegenrechnung) : 9 9.) : 9 denn (Gegenrechnung) : ) : 0 denn (Gegenrechnung) : ) : denn (Gegenrechnung) : ) : 0 denn (Gegenrechnung) : MERKE: Man dividiert einen Bruch durch eine natürliche Zahl, indem man den Nenner mit der Zahl multipliziert und den Zähler beibehält (mit multipliziert). Man multipliziert also den zu teilenden Bruch mit dem Kehrwert der natürlichen Zahl! Wichtig: Vor dem Ausmultiplizieren auf das Kürzen achten! Aufgabe: Multiplizieren von Bruchzahlen Eine Tafel Schokolade besteht aus Stücken. Von dieser Tafel sind noch übrig. Julian erhält von diesem Rest. Welchen Bruchteil der ganzen Schokolade erhält Julian? Stelle die Aufgabe mit Hilfe einer Zeichnung dar und versuche eine Antwort zu finden. Julian erhält offensichtlich die Hälfte der ganzen Schokolade. Wie kann man nun diese Aufgabe rechnerisch lösen? Seite 9 von

10 Rechnung: von bedeutet:.) Teile in gleichgroße Teile: : 6.) Nimm von einem solchen Teil das -fache: Eine andere Möglichkeit wäre: : von bedeutet also offenbar: i also: i MERKE:.) Man multipliziert Brüche miteinander, indem man Zähler mit Zähler und Nenner mit Nenner multipliziert..) Kommt das Wort von in einer Aufgabe vor, so muss man in der Bruchrechnung multiplizieren. Wichtig: Vor dem Ausmultiplizieren auf das Kürzen achten! Kürzen spart Rechenarbeit! Beispiele:.) Das -fache von bedeutet: i.) Das -fache von bedeutet: i.) 6 von 0 bedeutet: i ) Berechne: 6 6 Seite 0 von

11 Berechne:.) 6 6 Mehrfaches Multiplizieren von Bruchzahlen.).) Seite von

12 Übungsaufgaben Bruchrechnen.) Wie heißen die Brüche, die auf dem folgenden Zahlenstrahl dargestellt sind. Gib alle Brüche in der Grunddarstellung oder als gemischten Bruch an. 0 A B C D E F G H.) Ordne die folgenden Brüche der Größe nach. Beginne mit dem kleinsten Bruch: 9 ; ; ; ; ; 6 ; 9 ; 6.) Berechne, gib das Ergebnis immer in der Grunddarstellung an: a.) + b.) c.) d.) e.) ) Berechne, gib das Ergebnis immer in der Grunddarstellung an: a.) b.) : c.) 9 d.) 9 e.) f.) : g.) 6 h.) 6 9 i.) 9.) Berechne, gib das Ergebnis immer in der Grunddarstellung und in der nächst kleineren Einheit an: a.) von kg b.) von 9 km c.) 6 von Stunden d.) von 0 Liter e.) von Stunde f.) von 0 t g.) von g h.) von Tagen 6.) Übersetze folgende Terme in die Bruchrechnung und berechne bis zur Grunddarstellung: a.) ( : ) + (9 : ) b.) ( : ) (9 : ) c.) (6 : ) (6 : ).) Berechne die folgenden Terme: a.) + b.) + c.) + : 9 9 Seite von

13 Übungsaufgaben Bruchrechnen (Lösungen) zu.) 9 A B C D 6 6 E F G H zu.) zu.) a.) + + b.) c.) d.) e.) zu.) 9 a.) b.) : c.) 9 d.) e.) f.) : g.) h.) i.) zu.) a.) von kg kg kg kg 0 g b.) 9 von 9 km km km km 6m c.) von Stunden h h h 0 min d.) von 0 Liter l l l 00 ml Seite von

14 zu.) e.) von Stunde h h min 0 f.) von t t t 0 kg 0 0 g.) von g g g g 00 mg 9 h.) von Tagen d d d 99 h zu 6.) a.) ( : ) + (9 : ) b.) ( : ) (9 : ) c.) (6 : ) (6 : ) zu.) a.) + b.) c.) : Seite von

15 Division mit Brüchen Aufgabe: Das Aquarium von Peter fasst Liter Wasser. Sein Schöpfgefäß fasst Schöpfgefäß nachfüllen, bis das Aquarium voll ist? Liter. Wie oft muss er mit seinem Die Rechnung zu dieser Aufgabe lautet: Liter : Liter Diese Rechnung kann man auch mit Hilfe von kleineren Einheiten durchführen: Liter.000 ml.000 ml : 0 ml 0 mal Liter 0 ml Man muss also auch bei der Rechnung mit Bruchzahlen das Ergebnis 0 mal erhalten: 0 0 Liter : Liter 0 denn : 0 Aufgabe: Ein Behälter fasst Liter. Wie oft muss man mit einem -Liter-Gefäß schöpfen, bis der Behälter voll ist? 6 Rechnung: : 6 mal denn : MERKE: Man dividiert mit einem Bruch, in dem man mit dem Kehrwert (Gegenoperator) des Bruches multipliziert. Das bedeutet: Der erste Bruch bleibt immer unverändert und nur der. Bruch hinter dem Divisionszeichen wird umgedreht. Wichtig: Vor dem Ausmultiplizieren auf das Kürzen achten! Aufgabe: Anwendungsaufgaben für die Division mit Brüchen.) Die Schillerschule wird von 6 Mädchen besucht. Das sind die Schillerschule insgesamt? aller Schüler. Wie viele Schüler besitzt x 6 : x 6 6 x 6 : x Schüler Seite von

16 .) Jörgs Vater ist Landwirt. Er hat auf Hektar Weizen angebaut. Das sind des gesamten Feldes. Wie groß ist das gesamte Feld? x ha : x ha x ha : x Hektar MERKE: Kommt das Wort sind in einer Aufgabe vor, und muss man auf den Anfangswert zurückrechnen, so muss man in der Bruchrechnung dividieren. Nacheinander Ausführen der Rechenarten:.).).) : + : : MERKE:.) Führt man bei der Bruchrechnung eine Strichrechnung ( + ; ) durch, so muss man die Brüche auf den gleichen Nenner bringen (gleichnamig machen)..) Führt man in der Bruchrechnung eine Punktrechnung ( ; : ) durch, so muss man die Zähler und Nenner entsprechend den Rechenregeln auf einen langen Bruchstrich übertragen. Seite 6 von

17 Terme mit Klammern Aufgabe: + + Wir erinnern uns an die Regeln für Terme mit Klammern aus der Klasse : Innere Klammer zuerst Äußere Klammer Punkt- vor Strichrechnung Von Links nach Rechts rechnen Innere Klammer zuerst Klammer zuerst Punktrechnung vor Strichrechnung Von links nach rechts rechnen Weitere Übungsaufgaben dazu:.) :.) : : : : : : : : : : : : 0 6 Seite von

18 .) : :.) : : : : : : : 6 + : : : : Seite von

19 Übersetzen von Textaufgaben in Terme Aufgabe.) Multipliziere die Summe der Brüche und mit ihrer Differenz. Aufgabe.) Ein Rechteck ist cm lang und cm berechne seinen Umfang (u) und seinen Flächeninhalt (A). breit. Zeichne das Rechteck in seiner tatsächlichen Größe und Aufgabe.) Ein Quadrat ist cm lang. Zeichne das Quadrat in seiner tatsächlichen Größe und berechne seinen Umfang (u) und seinen Flächeninhalt (A). Aufgabe.) Berechne den Umfang (u) und den Flächeninhalt (A) der dargestellten Fläche: m m m m Aufgabe.) Sabine und Till helfen beim Himbeerpflücken im Garten. Ihr Vater hat schon pflückt kg und Till pflückt beiden Kinder teilen. kg. Zum Einkochen werden Erhält jeder der beiden Kinder mehr als Pfund Himbeeren? kg kg 0 gepflückt; Sabine gebraucht, den Rest dürfen sich die Seite 9 von

20 Aufgabe.): Multipliziere die Summe der Brüche und Übersetzt in einen mathematischen Term heißt das: mit ihrer Differenz. Aufgabe.): Ein Rechteck ist cm lang und cm berechne seinen Umfang (u) und seinen Flächeninhalt (A). cm cm breit. Zeichne das Rechteck in seiner tatsächlichen Größe und u cm + cm A cm cm 9 u cm + cm A cm 9 6 u cm + cm A cm cm u cm + cm cm Aufgabe.): Ein Quadrat ist cm lang. Zeichne das Quadrat in seiner tatsächlichen Größe und berechne seinen Umfang (u) und seinen Flächeninhalt (A). u cm A cm cm u cm A cm u cm A cm 0 cm Seite 0 von

21 Aufgabe.): Berechne den Umfang (u) und den Flächeninhalt (A) der dargestellten Fläche: m m m m m u m + m + m + m + m + m 0 u m + m + m + m + m + m u m 0 m 0 m A m m + m m 6 A m + m A m + m A m + m m m Aufgabe.): Sabine und Till helfen beim Himbeerpflücken im Garten. Ihr Vater hat schon pflückt kg und Till pflückt beiden Kinder teilen. kg. Zum Einkochen werden Erhält jeder der beiden Kinder mehr als Pfund Himbeeren? kg kg 0 gepflückt; Sabine gebraucht, den Rest dürfen sich die kg + kg + kg kg : 0 6 kg + kg + kg kg : kg kg : 0 0 kg kg : 0 0 kg : kg kg 6 Gramm Pfund 00 g Jeder der beiden Kinder erhält Gramm mehr als Pfund Himbeeren. Seite von

22 Bruchrechnung.) Berechne bis zur Grunddarstellung: a.) + b.) c.) d.) : e.).) Berechne schrittweise den folgenden Term unter Beachtung der Rechengesetze: 0 : + 6.) Notiere als Term in einer Zeile und berechne dann schrittweise: Addiere den Quotienten der Brüche und zu dem Produkt dieser Brüche..) Frau Süß kocht Marmelade aus Zu den folgenden Textaufgaben ist jeweils eine Antwort zu geben! kg Johannisbeeren, kg Rhabarber und kg Erdbeeren. Dazu nimmt sie ebensoviel Zucker wie alle Früchte zusammen wiegen. Anschließend verteilt sie die Marmelade auf 0 Einmachgläser. Wie viel Gramm Marmelade befinden sich jetzt in jedem Einmachglas?.) Eine Zimmertür mit einer quadratischen Glasscheibe besitzt die in der Zeichnung angegebenen Maße. m Die Tür soll auf einer Seite weiß gestrichen werden. Wie viel Quadratmeter müssen mit Farbe bedeckt werden? 0 m 9 0 m Seite von

23 6.) Ein Rasengrundstück mit einem quadratischen Teich besitzt die in der Zeichnung angegebenen Maße. m mähen? Wie viel Quadratmeter Rasen muss der Besitzer m 6 m.) Verwandle in die nächstkleinere Einheit: a.) kg b.) 0 m c.) cm d.) 6 d e.) 0 (Cent C).) Wandle die folgenden Brüche in unechte, gemischte Brüche oder in eine natürliche Zahl um: 9 a.) b.) 9 6 c.) 9 d.) 9.) Stelle mit Hilfe von drei beliebigen Zeichnungen folgende Brüche dar: a.) den Bruch b.) den Bruch c.) den Bruch 0.) Ein Sportverein besitzt 0 Mitglieder. Davon spielen Handball, Fußball und der Rest Volleyball. a.) Wie viele Mitglieder spielen Handball, wie viele spielen Fußball und wie viele spielen Volleyball? b.) Wie groß ist der Anteil der Volleyballspieler? Gib möglichst den besten Bruch an. c.) Zu diesem Sportverein kommen von einem anderen Verein noch Handballspieler dazu. Wie groß ist jetzt der Anteil der Handballspieler? Gib möglichst den besten Bruch an. 6 d.) In einem anderen Sportverein gibt es Fußballspieler, das sind aller Mitglieder. Wie viele Mit- glieder gibt es insgesamt in diesem Verein? kg ; Packun-.) Mutter hat eingekauft: Päckchen Reis zu je kg ; kg 0 gen Pommes Frites zu je kg und kg Äpfel. a.) Wie schwer ist der Inhalt ihrer Einkaufstasche in Kilogramm und Gramm? b.) Welcher Bruchteil fehlt noch bis zum nächsten ganzen Kilogramm? Käse; Bratwürste zu je Seite von

24 Bruchrechnung (Lösungen) zu.) a.) + + b.) c.) d.) : e.) 9 9 zu.) : : : : : zu.) : zu.) kg + kg + kg kg kg kg : kg + kg + kg kg kg kg : kg + kg : 0 kg + kg :0 kg : g :0 00 Gramm Seite von

25 zu.) 9 m m m m m m m m m m m m zu 6.) m 6 m m m 9 9 m m 60 9 m m m m m m zu.) a.) kg 0 g b.) m dm c.) cm mm d.) d 9 h e.) C zu.) a.) b.) 9 c.) d.) 6 6 zu 0.) a.) 0 Handball b.) c.) Fußball d.) : Mitglieder 6 0 ( + 0) 0 Volleyball zu.) kg + kg + kg + kg + kg 0 6 kg + kg + kg + kg + kg 0 kg + kg + kg + kg + kg 0 60 kg + kg + kg + kg + kg kg + kg 6 kg + kg 0 kg Es fehlen noch kg bis zum nächsten ganzen Kilogramm! 0 Seite von

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck.

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck. Bruchzahlen Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. Hinweis: a.) Färbe ; ; ; ; ; ; 6 b.) Färbe ; ; ; ; ; ; 6 von diesem Rechteck. von diesem Rechteck.

Mehr

Einführung in die Bruchrechnung

Einführung in die Bruchrechnung - Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Bruchteile. Anteile gibt man in Bruchschreibweise an. Anteil : 1 8. Bruchteil : 1 cm 2. Bruchteil : 0,5 cm 2. Anteil : 3 8. Bruchteil : 3 cm 2

Bruchteile. Anteile gibt man in Bruchschreibweise an. Anteil : 1 8. Bruchteil : 1 cm 2. Bruchteil : 0,5 cm 2. Anteil : 3 8. Bruchteil : 3 cm 2 Bruchteile Anteile gibt man in Bruchschreibweise an. Anteil : 8 Bruchteil : cm Anteil : 8 Bruchteil : 0, cm Anteil : 8 Bruchteil : cm Anteil : 8 Bruchteil :, cm 8 nennt man einen Bruch. 8 heißt Nenner

Mehr

Aufgabensammlung Bruchrechnen

Aufgabensammlung Bruchrechnen Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

Selbstüberprüfungsbogen Bruchrechnung

Selbstüberprüfungsbogen Bruchrechnung Selbstüberprüfungsbogen Bruchrechnung Modul: Bruchrechnung Name: SINUS.NRW 00 ) Vorstellung zu Brüchen r f Übungen a) Notiere die zugehörigen Brüche. b) Wie groß ist der Anteil der Fläche mit der? c) Wie

Mehr

Ferienaufgaben Mathematik 6. Klasse

Ferienaufgaben Mathematik 6. Klasse Ferienaufgaben Mathematik 6. Klasse 6.A Bruchzahlen 6.A. Brüche ) Welcher Bruchteil a) aller Figuren sind Kreise, b) aller Figuren sind Vierecke, c) aller Figuren sind schwarz, d) aller Figuren sind weiß,

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte Inhalt A B C D Bruchzahlen Bruchteile 6 Bruchteile von Größen Kürzen und Erweitern von Brüchen 0 Verhältnisse und Maßstäbe Bruchzahlen 6 Brüche und Dezimalbrüche Prozentzahlen Addition und Subtraktion

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Kapitel 1: ADDITION UND SUBTRAKTION VON BRÜCHEN

Kapitel 1: ADDITION UND SUBTRAKTION VON BRÜCHEN BRUCHRECHNEN 2 Kapitel 1: ADDITION UND SUBTRAKTION VON BRÜCHEN Bei der Addition und Subtraktion von Brüchen müssen Sie unterscheiden, ob die Brüche gleichnamig oder ungleichnamig sind. Kapitel 1.1: Addition

Mehr

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält.

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält. GRUNDWISSEN MATHEMATIK. JAHRGANGSSTUFE a b. Bruchzahlen: mit a, b N. a heißt Zähler, b heißt Nenner. a) Ein Bruch wird mit einer natürlichen Zahl erweitert (gekürzt), indem man Zähler und Nenner mit dieser

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen () 6. Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

Grundwissen Mathematik 6. Klasse

Grundwissen Mathematik 6. Klasse Themen Brüche Eigenschaften Besonderheiten - Beispiele Ein Bruchteil ist stets ein Teil eines Ganzen, zum Beispiel eine Hälfte, ein Drittel oder drei Viertel. Bruchteile stellt man mithilfe von Brüchen

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen Grundwissen Klasse 6 I. Bruchzahlen 1. Sicheres Umgehen mit Bruchzahlen - Brüche als Anteil verstehen - Brüche am Zahlenstrahl darstellen - Brüche erweitern / kürzen können (Mathehelfer1: S.16/17) Aufgabe

Mehr

5. 7. Brüche und Dezimalzahlen. Mathematik. Das 3-fache Training für bessere Noten: Klasse. Klasse

5. 7. Brüche und Dezimalzahlen. Mathematik. Das 3-fache Training für bessere Noten: Klasse. Klasse Das 3-fache Training für bessere Noten: WISSEN ÜBEN TESTEN Die wichtigsten Regeln zum Thema Brüche und Dezimalzahlen mit passenden Beispielen verständlich erklärt Zahlreiche Übungsaufgaben in drei Schwierigkeitsstufen

Mehr

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ]

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] Bruchzahlen Herbert Paukert 1 DIE BRUCHZAHLEN Version 2.0 Herbert Paukert 1. Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] 4. Multiplizieren und Dividieren [

Mehr

Bruchrechnung Wir teilen gerecht auf

Bruchrechnung Wir teilen gerecht auf Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen

Mehr

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : =

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : = Anhang 5 Eingangstest I 1. Berechnen Sie: 63,568 1000 = 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3. Wie groß ist die Summe von 4 3 und 6 5? 8 4 4. Berechnen Sie: : = 35 15 5. Berechnen Sie:

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

9x x + 7 = 10a 6 a b 14,5 = ordnen 9x 5x = 10a 12a 6 14,5 + 7b = zusammenfassen 4x a 20,5 + 7b

9x x + 7 = 10a 6 a b 14,5 = ordnen 9x 5x = 10a 12a 6 14,5 + 7b = zusammenfassen 4x a 20,5 + 7b D Gleichungen 1 Terme umformen Terme sind Rechenausdrücke mit verschiedenen/mehreren Rechenzeichen, Zahlen und Variablen (Platzhaltern), z. B. 3 1 2 + 2x 6 4 0,8x. Erst wenn Zahlen für die Variablen eingesetzt

Mehr

Währungseinheiten. Mathematische Textaufgaben, Klasse 3 Bestell-Nr. 350-10 Mildenberger Verlag

Währungseinheiten. Mathematische Textaufgaben, Klasse 3 Bestell-Nr. 350-10 Mildenberger Verlag Währungseinheiten Anzahl der Centmünzen Es gibt sechs verschiedene Centmünzen. Dies sind Münzen zu 1 Cent, Münzen zu 2 Cent, Münzen zu 5 Cent, Münzen zu 10 Cent, Münzen zu 20 Cent und Münzen zu 50 Cent.

Mehr

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6 Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (

Mehr

Dezimalzahlen. Dezimalzahlen sind Zahlen, die ein Komma besitzen, es sind also keine natürlichen Zahlen.

Dezimalzahlen. Dezimalzahlen sind Zahlen, die ein Komma besitzen, es sind also keine natürlichen Zahlen. Dezimalzahlen Information: Dezimalzahlen sind Zahlen, die ein Komma besitzen, es sind also keine natürlichen Zahlen. Beispiele für Dezimalzahlen mit Einheiten wären also:,8 7, kg,4 m 0,7 l 8,7 s, usw.

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen.

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen. Grundwissen Klasse 6 - Lösungen I. Bruchzahlen. Sicheres Umgehen mit Bruchzahlen Brüche als Anteil verstehen Brüche am Zahlenstrahl darstellen Brüche erweitern / kürzen können (Mathehelfer: S.6/7) Aufgabe

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden 1 (ca. 4 n, 16 h) Stellen zu Sachsituationen Fragen, suchen nach nutzen Lösungsstrategien (Schätzen, Probieren) und hinterfragen diese Größen und Messen: Längen, Flächeninhalt und Volumina unterscheiden

Mehr

Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und

Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und Zeitraum Rahmenplan Klasse 5 und 6 Schnittpunkt 5 Klassenarbeit Darstellen und Ordnen natürlicher Zahlen, große Zahlen Runden, Schätzen und Überschlagen Kapitel 1 Natürliche Zahlen Unsere neue Klasse 1

Mehr

5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy

5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy 5. bis 10. Klasse SMS Schnell-Merk-System Mathematik Kompaktwissen Testfragen Mit Lernquiz fürs Handy 2 Zahlen und Rechnen Rechnen mit natürlichen Zahlen Multiplikation ist die mehrfache Addition gleicher

Mehr

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Mathematik für die Ferien Seite 1

Mathematik für die Ferien Seite 1 Mathematik für die Ferien Seite. Zähle die natürlichen geraden Zahlen auf, die größer als 0 und kleiner oder gleich 0 sind.. Schreib als Zahl: Deutschland hat 8 Millionen Einwohner. China hat Milliarde

Mehr

Fördermaterialienordner Mathematik 5/6

Fördermaterialienordner Mathematik 5/6 Fördermaterialienordner 5/6 Inhaltsverzeichnis 1 Zahl und Zahlbereiche 1.1 Natürliche Zahlen 1.2 Rechnen mit natürlichen Zahlen 1.3 Rechnen mit Größen 1.4 Brüche 1.5 Teilbarkeit 1.6 Rechnen mit Brüchen

Mehr

Kapitel 7: Gleichungen

Kapitel 7: Gleichungen 1. Allgemeines Gleichungen Setzt man zwischen zwei Terme T 1 und T 2 ein Gleichheitszeichen (=), so entsteht eine Gleichung! Ungleichung Setzt man zwischen zwei Terme T 1 und T 2 ein Ungleichheitszeichen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Aufgaben zu Lambacher Schweizer 6 Hessen

Aufgaben zu Lambacher Schweizer 6 Hessen Aufgaben zu Kapitel I Erweitern und Kürzen Erweitere im Kopf. a) mit ; 6; b) å mit ; 6; 7 c) mit ; ; d) å mit ; ; e) mit ; ; 7 f) mit ; ; Erweitere auf den angegebenen Nenner. a) 0: ; ; ; 0 ; 0 ; 0 b)

Mehr

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Marie-Curie-Gymnasium Waldstrasse 1a 16540 Hohen Neuendorf Tel.: 03303/9580 Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Um euch den Einstieg in den Mathematikunterricht zu erleichtern,

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

Rationale Zahlen Kurzfragen. 26. Juni 2012

Rationale Zahlen Kurzfragen. 26. Juni 2012 Rationale Zahlen Kurzfragen 26. Juni 2012 Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... ) in einer Menge M abgeschlossen? Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... )

Mehr

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b) GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

Übungsaufgaben zur Vergleichsarbeit über die Inhalte der Klasse 5

Übungsaufgaben zur Vergleichsarbeit über die Inhalte der Klasse 5 Übungsaufgaben zur Vergleichsarbeit über die Inhalte der Klasse 5 Anmerkung: Da die Vergleichsarbeiten im März geschrieben werden, deckt dieser Übungszettel nur die Unterrichtsinhalte ab, die bis zum März

Mehr

Grundwissen JS 6: Allgemeine Bruchrechnung

Grundwissen JS 6: Allgemeine Bruchrechnung GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48 FAX 0924/2564 Grundwissen JS 6: Allgemeine Bruchrechnung Was verstehst du

Mehr

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b.

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1 Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1, 1, 1 usw. Diese Brüche bezeichnet man als Stammbrüche. 2 2 Der Stammbruch

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

Übungsmaterialien zur Bruchrechnung

Übungsmaterialien zur Bruchrechnung Übungsmaterialien zur Bruchrechnung Die Materialien sind einsetzbar in Klasse. Unterschiedliche Aspekte des Bruchbegriffs werden angesprochen. Einige Seiten müssen im Maßstab : ausgedruckt werden. Daher

Mehr

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist.

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist. I Körper II 33. Umfang und Flächeninhalt eines Kreises Lösungen Ein Blumenbeet hat die Form eines Viertelkreises mit gegebenem Radius. Fertige eine Skizze an. Berechne den Umfang des Beetes. a) r = 3,9

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 1. Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 2. Teilbarkeit durch 5 und 10 3. Quersummen berechnen 4. Teilbarkeit durch 3, 6 und 9 5. Gemischte

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen Kompetenzen Inhalte Schnittpunkt 6 nehmen Probleme als Herausforderung an nutzen das Buch zur Informationsbeschaffung übertragen Lösungsbeispiele auf neue Aufgaben stellen das Problem anders dar ebener

Mehr

Repetition Mathematik 7. Klasse

Repetition Mathematik 7. Klasse Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Turmzimmer 1: Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 7. Ist die Zahl ein Teiler? 2. Teilbarkeit durch 5 und 10 8. Teiler in der Zahlentafel suchen 3. Quersummen berechnen 9. Ist die

Mehr

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander.

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander. Grundwissen Natürliche Zahlen 1 Zeichne eine Zahlenhalbgerade und markiere. 8; 4; ; 11; 2; 6; 9 ; 1; 0; 4; 10; 60 2 Welches ist die größte (kleinste) natürliche Zahl, die man aus den Ziffern 8, 1,, und

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Währungseinheiten. Mathematische Textaufgaben, Klasse 4 Bestell-Nr. 350-12 Mildenberger Verlag

Währungseinheiten. Mathematische Textaufgaben, Klasse 4 Bestell-Nr. 350-12 Mildenberger Verlag Währungseinheiten Anzahl der Centmünzen Es gibt sechs verschiedene Centmünzen. Dies sind Münzen zu 1 Cent, Münzen zu 2 Cent, Münzen zu 5 Cent, Münzen zu 10 Cent, Münzen zu 20 Cent und Münzen zu 50 Cent.

Mehr

Mathematik - Klasse 6 -

Mathematik - Klasse 6 - Schuleigener Lehrplan Mathematik - Klasse 6 - Stand: 03.11.2011 2 I. Rationale Zahlen Die n Kompetenzen gelten grundsätzlich für alle Kapitel. Abweichungen werden gesondert aufgeführt. Die hier genannten

Mehr

Probeunterricht 2010 an Wirtschaftsschulen in Bayern

Probeunterricht 2010 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:.... Vorname:.

Mehr

Lerneinheit 3: Mit Euro und Cent rechnen

Lerneinheit 3: Mit Euro und Cent rechnen LM Maßeinheiten S. 11 Übergang Schule - Betrieb Lerneinheit 3: Mit Euro und Cent rechnen A: Werden mehrere Größen addiert (+) oder voneinander subtrahiert (-), muss man alle Größen zuvor in die gleiche

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Grundwissen Jahrgangsstufe 6

Grundwissen Jahrgangsstufe 6 GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche

Mehr

DIE NATÜRLICHEN ZAHLEN

DIE NATÜRLICHEN ZAHLEN Natürliche Zahlen Herbert Paukert 1 DIE NATÜRLICHEN ZAHLEN Version 2.0 Herbert Paukert (1) Die natürlichen Zahlen [ 02 ] (2) Die Addition [ 06 ] (3) Die Geometrie der Zahlen [ 10 ] (4) Die Subtraktion

Mehr

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010)

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010) M 6.1 Brüche Brüche beschreiben Bruchteile. Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Erweitern und Kürzen Durch Erweitern und Kürzen ändert sich der Wert des Bruches

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse 1. Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 2. Nachbarzahlen 3. Zahlenrätsel 1/2 4. Zahlenrätsel 2/2 5. Zahlen ordnen

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.1 Brüche Brüche beschreiben Bruchteile bzw. Anteile (s. auch 6.10) Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent

Mehr

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I . Rationale Zahlen Brüche Brüche haben die Form nz mit z I N 0, n I N. z heißt der Zähler, n der Nenner des Bruches. Unechte Brüche kann man in gemischte Zahlen umwandeln. Bruchzahlen: Zu jeder Bruchzahl

Mehr

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine

Mehr

Langenscheidt Training plus, Mathe 6. Klasse

Langenscheidt Training plus, Mathe 6. Klasse Langenscheidt Training plus - Mathe Langenscheidt Training plus, Mathe 6. Klasse Bearbeitet von Uwe Fricke 1. Auflage 13. Taschenbuch. ca. 128 S. Paperback ISBN 978 3 68 60073 9 Format (B x L): 17,1 x

Mehr

Pisafit Mathematik Rechnen mit Brüchen. Inhaltsverzeichnis

Pisafit Mathematik Rechnen mit Brüchen. Inhaltsverzeichnis Rechnen mit Brüchen Inhaltsverzeichnis Inhaltsverzeichnis... 2 Impressum... 3 Grundrechenarten... 4 Aufgabe 1... 6 "Punkt-vor-Strich"- und Klammerrechnung... 7 Aufgabe 2... 9 Aufgabe 3... 10 Textaufgaben...

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

Diagnostisches Interview zur Bruchrechnung

Diagnostisches Interview zur Bruchrechnung Diagnostisches Interview zur Bruchrechnung (1) Tortendiagramm Zeigen Sie der Schülerin/dem Schüler das Tortendiagramm. a) Wie groß ist der Teil B des Kreises? b) Wie groß ist der Teil D des Kreises? (2)

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Voransicht. Brüche auf dem Zahlenstrahl. 1 Beschrifte den Zahlenstrahl. 2 Beschrifte den Zahlenstrahl.

Voransicht. Brüche auf dem Zahlenstrahl. 1 Beschrifte den Zahlenstrahl. 2 Beschrifte den Zahlenstrahl. Brüche Brüche auf dem Zahlenstrahl Brüche können auf einem Zahlenstrahl dargestellt werden: Beschrifte den Zahlenstrahl. Beschrifte den Zahlenstrahl. Trage die Brüche ein, die durch die Pfeile markiert

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Seite 1 Turmzimmer 1: Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 7. Schreibe mit arabischen Ziffern! 1 2. Nachbarzahlen 8. Schreibe mit arabischen Ziffern! 2 3. Zahlenrätsel

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5 Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

Curriculum Mathematik. Bereich Schulabschluss

Curriculum Mathematik. Bereich Schulabschluss Curriculum Mathematik Bereich Schulabschluss Im Folgenden finden Sie eine Übersicht über alle Lerneinheiten im Fach Mathematik. Das Fach Mathematik ist in Lernstufen, Kapitel, Lerneinheiten und Übungen

Mehr

Didaktik der Bruchrechnung

Didaktik der Bruchrechnung Naturwissenschaft Kristin Jankowsky Didaktik der Bruchrechnung Referat (Handout) Mathematisch Naturwissenschaftliche Fakultät II Didaktik der Mathematik Seminar: Prüfungskolloquium Didaktik der Mathematik

Mehr

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259 Klammerrechnung Lösungen 1. Löse die Aufgaben wie im Beispiel. (+ 38) = 90 = 360 (9+ 31) 3= 60 3= 180 (3+ 36) 6= 70 6= 0 (63+ 17) 3= 80 3= 0 (19+ 1) 6= 0 6= 0 (7+ 16) 9= 90 9= 810 (36+ ) 8= 80 8= 60 (8+

Mehr

Thema Bru che addieren und subtrahieren:

Thema Bru che addieren und subtrahieren: Thema Bru che addieren und subtrahieren: Die Frage lautet: Wie addiere und subtrahiere ich Brüche, bzw. wie sieht das Endergebnis aus? Die Antwort lautet: Es kommt darauf an, was wir für Brüche gegeben

Mehr

Mathematik II. Kantonale Vergleichsarbeit 2012/ Klasse Primarschule. Prüfungsnummer: Datum der Durchführung: 16.

Mathematik II. Kantonale Vergleichsarbeit 2012/ Klasse Primarschule. Prüfungsnummer: Datum der Durchführung: 16. Volksschulamt Prüfungsnummer: (wird von der Lehrperson ausgefüllt) Kantonale Vergleichsarbeit 2012013 6. Klasse Primarschule Mathematik II Datum der Durchführung: 16. Januar 2013 Hinweise für Schülerinnen

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr